

Abstract—Cloud Computing refers to the concept of

outsourcing the services, computational requirements and data
storage to a centralized facility called “Cloud”. Cloud consists
of an assemblage of virtualized resources, which include both
computational and storage services that can be provisioned on
demand, depending on the users’ necessities. Gang Scheduling
is one of the most efficient algorithms for scheduling parallel
jobs and is already functional in the extents of parallel and
distributed systems. This paper associates the enactment of
gang job scheduling algorithm in B2C electronic commerce
architecture to calculate the total response time of the B2C EC
architecture in public cloud, using combination of different
queuing models. Results reveal the performance of job
scheduling algorithm using each of the queuing models and
suggestions are accomplished consequently.

Index Terms—M/G/1, G/M/1, M/M/2, M/M/m G/G/1, cloud
computing, response time, gang scheduling algorithm.

I. INTRODUCTION
In a cloud computing environment, there is mounting

demand for good job scheduling algorithm that will
accomplish the jobs in a subcontracted environment.
However, it is problematic to schedule the tasks on
distributed systems, like cloud computing, among
innumerable competing jobs from varied sources. The
complication arises as the cloud computing environment
consists of several, loosely interconnected processors, where
jobs to be processed by different servers and various
techniques are to be used to coordinate processing. To
determine this,it is critical to appropriately assign the tasks to
servers and then schedule execution on distributed servers to
proficiently schedule parallel jobs. Good scheduling policies
can maximize overall performance of the B2C EC
architecture and avoid unnecessary delays. One idea is gang
scheduling algorithm, where a set of jobs are scheduled to
execute simultaneously on the set of servers.

In this study there are several requests which consist of
parallel tasks that are scheduled to accomplish concurrently
on a set of servers implemented for B2C EC implemented in
a Cloud Computing environment. These numerous requests
arrived at the web server from numerous sources need to start
essentially at the same time, co-ordinate their executions and
compute at the same pace. This entire process is managed

Manuscript received September 10, 2012; revised October 20, 2012.
Riktesh Srivastava is with Skyline University College Information

Systems, UAE (e-mail: riktesh.srivastava@ gmail.com/
rsrivastava@skylineuniversity.com).

through the “gang scheduling algorithm” using “queuing
theory” which allows requests to interact efficiently by using
busy waiting, without the risk of waiting for a task that is not
currently running.

Because gang scheduling stresses that no request complete
unless all other gang member requests execute, some servers
may remain idle even when there are requests waiting to be
run. With gang scheduling, at any time there is a one-to-one
mapping between requests and servers. Although the total
number of requests in the system may be larger than the
number of servers, no gang contains more requests than it
does servers. We assume that all the tasks within the same
gang execute for the same amount of time, i.e, .the
computational load is balanced between them.
Gang scheduling in distributed and parallel systems has been
studied by many authors, such as [1]-[4], The concept of
queuing theory and its implementation is studied in [5]-[8].

The structure of this paper is as follows. Section 2
introduces the model of implementation of B2C electronic
commerce architecture in a Cloud computing environment.
Section 3 presents the metrics used to evaluate the
performance of the scheduling policies. Section 4 displays
the simulation results are both presented and analyzed.
Finally, section 5 summarizes the paper and provides
recommendations for further research.

II. B2C ELECTRONIC COMMERCE ARCHITECTURE AND ITS
IMPLEMENTATION IN PUBLIC CLOUD

The proposed B2C EC architecture is an extension to the
system of Client Server Computing. In the architecture, the
Application Server and the Database Server are implemented
in the public cloud. So the customer using the application is
not fretful with the complexities of the business logic and is
offered the complete web application with added service.
Thus, the architecture offers a significant workload shift.

Fig. 1. B2C EC Architecture implemented in public cloud

Evaluation of Response Time Using Gang Scheduling
Algorithm for B2C Electronic Commerce Architecture

Implemented in Cloud Computing Environment by
Queuing Models

Riktesh Srivastava

71

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

DOI: 10.7763/IJFCC.2013.V2.124

In the proposed architecture, the Web server has to no
longer do the entire profound lifting when it comes to running
applications. The network of clouds, which includes
Application Server and Database Server(s), hold the
impediments of the architecture. Also, the hardware and
software demands on the user’s side dwindle and the web
server only executes the architectures interface software,
whilst the cloud network takes care of the rest. The
comprehensive architecture is depicted in Fig.1

A. Step by Step Architecture Explanation
As illustrated in Fig. 1, all the clients requests is being

received at the Web Server. Since, there is an adoption of
Markovian distribution; the Web Server maintains the first
queue (Q1) and transfers the requests to one of the Job
Pooling Server. Job Pooling Server which stores the request
in a queue (Q2). The set of requests is then transferred to the
Application server. The queue is named as Q3. Application
Server generates the business logic, is implemented in the
public cloud. All the set of database requests, being processed
by the pool of database servers, is taken from the queue,
named, Q4.

For simplicity, the entire concept is elaborated in the figure
Fig. 2, which forms the base for the mathematical analysis of
the model.

Fig. 2. 4 stages of B2C EC architecture

The selection of queuing models for gang scheduling

algorithm is as follows:
Stage 1: A choice between M/G/1, G/M/1 or G/G/1

queuing models
Stage 2: M/M/2 queuing model
Stage 3: M/M/m queuing model
Stage 4: Choice between M/G/1, G/M/1 or G/G/1 queuing

models
Based on the Fig. 2, the total response time for the

complete model is: ܴሺݐሻ ൌ ܴሺݐሻௌ௧௔௚௘ ଵ ൅ ܴሺݐሻௌ௧௔௚௘ ଶ ൅ ܴሺݐሻௌ௧௔௚௘ ଷ ൅ ܴሺݐሻௌ௧௔௚௘ ସ
(1)

It must be noted that the number of requests at the web
server is ࣅ and number of responses is ࣆ. For the worst case, 1+ࣅ=ࣆ.

III. COMPUTATION OF RESPONSE TIME AT EACH STAGE
From Fig. 2, response time needs to be calculated for each

stage of the B2C EC architecture.

A. Response Time for Stage 1
As already indicated in section 2, for stage 1 we have a

choice between M/G/1, G/M/1 or G/G/1 queuing models.
The study is already conducted by [5], which is given in
Table I:

TABLE I: RESPONSE TIME FOR M/G/1, G/M/1 AND G/G/1 ࣆ ࣅ M/G/1 G/M/1 G/G/1
5000 5001 5102 5098 5538
7500 7501 7653 7647 8400
10000 10001 10204 10194 11190
12500 12501 12755 12740 14126
15000 15001 15306 15283 17695

If we plot the graph for these rates of arrivals, it forms the

curve of the form:

2
0 1 2Y a a aφ λ λ= + + (2)

In order to calculate a0,a1 and a2, a non-linear regression
technique is used as already studied by [5],[7],[8].

2
1 20

2 3
0 1 2

2 3 4 2
0 1 2

a i i i

i i i i i

i i i i i

n a a

a a a y

a a a y

λ λ λ

λ λ λ λ

λ λ λ λ

+ + =

+ + =

+ + =

∑ ∑ ∑
∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

(3)

Based on the response time mentioned in Table II, we get
the following values for a0, a1 and a2, wrt to these selected
models.

TABLE II: VALUES FOR A0, A1 AND A2

M/G/1 G/M/1 G/G/1
a0=1484.0 a0=1484.5 a0=1483.5

a1=0.873200 a1=0.873201 a1=0.873377
a2=0.000005 a2=0.0000051 a2=0.000006

From Table II, the response time for the three models is:
2484.0 0.873200 0.000005 λ λ+ + (4)

2
/ /1() 1484.0 0.873200 0.000005M GR t λ λ= + + (5)

 2
/ /1() 1483.5 0.873377 0.000006G GR t λ λ= + + (6)

B. Response Time for Stage 2
For stage 2, single queue is divided into 2 queues, one each

for the two job pooling server. The balance diagram to
evaluate the equation is mentioned in Fig. 3

Fig. 3. Balance diagram for M/M/2 queue model

In order to calculate the response time, we need to first

72

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

estimate the balance equations of Fig. 3. It must be also noted
that since there are 2 job pooling servers, to evade any
bottleneck in the queue, assume that ࣆ=2ࣆ=1ࣆ.

(0, 0) (1, 0) (0,1) p p pλ μ μ= + (7)
() (1, 0) (1,1) (0 , 0)p p pλ μ μ λ+ = + (8)

() (0,1) (1,1) p pλ μ μ+ = (9)

(2) (1,1) (2) (2,1) (0,1) (1,0) p p p pλ μ μ λ λ+ = + + (10)

(2) (,1) (2) (1,1) (1,1) (1,0) 1p n p n p n p n nλ μ μ λ λ+ = + + − + − ∀ >
(11)

Traffic intensity for the system is =
2
λδ
μ

From the equation (11), we get

(,1) (1,1) 1
2

p n p n nλ
μ

= − ∀ > (12)

Clarifying equation (12), the generic form of the equation
can be stated as:

1(,1) (1,1) (1 ,1) 1np n p n p nδ δ −= − = ∀ > (13)

From equations (7)-(11), we get be elimination

2

(0 , 1) (0 , 0)
1 2
1(1 , 0) (0 , 0)

1 2
()(1 , 1) (0 , 0)

1 2

p p

p p

p p

δ λ
λ μ

δ λ
δ μ

δ λ λ μ
λ μ

=
+
+=

+
+=

+

Now, observing that

1

(,1) (0 ,1) (1, 0) (0 , 0) 1
n

p n p p p
≥

⎡ ⎤ + + + =⎢ ⎥⎣ ⎦
∑

Thus, we get

1

1(,1) (1,1) (0 , 0) 1 1
1 2 1n

p n p p δ λ δ λ
δ μ δ μ≥

⎡ ⎤+⎛ ⎞ + + + =⎜ ⎟ ⎢ ⎥+ −⎝ ⎠ ⎣ ⎦
∑

or,

2

1 () 1(0,0) (0,0) 1 1
1 1 2 1 2 1

p pδ λ λ μ δ λ δ λ
δ δ μ δ μ δ μ

⎡ ⎤+ ++ + + =⎢ ⎥− + + −⎣ ⎦

From the above-mentioned equation, we get
1

2

()(0, 0) 1
(1 2)(1)

p λ λ μ
μ δ δ

−
⎡ ⎤+= +⎢ ⎥+ −⎣ ⎦

 (14)

The average number of requests at the Job pooling server is
computed by observing the number of requests in the system
in state (n1, n2) is n1+n2. Thus, the average number of requests
is:

0 0

1

1 1

1

1

2

(, 0) (1) (,1)

(1, 0) (0 ,1) (1) (,1)

(1, 0) (0 ,1) (1) (,1)

1 - (0 , 0) + (1,1)

(1,1)1 (0 , 0)
(1)

k k

k

k k

k

k

kp k k p k

p p k p k

p p k k p k

p p kp

pp
δ

≥ ≥

≥

≥ ≥

∞
−

=

= + +

= + + +

= + + + +

=

= − +
−

∑ ∑

∑

∑ ∑

∑

Thus, the average number of requests is

2

1
(1)A δ−

 (15)

where
2 (1 2) 1
() 1

A μ δ
λ λ μ δ

⎡ ⎤+= +⎢ ⎥+ −⎣ ⎦

So, the average response time at stage 2 using little’s
formula is Average number of requests/ࣅ.
Thus,

2 2

1()
(1) .StageR t

A δ λ
=

−
 (16)

Solving equation for the worst case, 1+ࣅ=ࣆ and
substituting it in equation (16), the final equation for response
time at stage is depicted in equation (17).

2

2 2

2 3 1()
2 4 1StageR t λ λ

λ λ
⎡ ⎤+ += ⎢ ⎥+ +⎣ ⎦

 (17)

C. Response Time for Stage 3
As indicated in Fig. 2, at stage 3 the two queues from Job

Pooling Servers are merged together, which makes it a
typical case of M/M/m queuing model. The generic state
diagram for the system is depicted in Fig. 4. It must be noted
that in the figure, k illustrates the number of stages, which is 2
in the case of B2C EC architecture.

Fig. 4. State diagram for M/M/m queue model

According to [6], the balance equation for M/M/m queue is

dependent upon the linear homogenous equation of the form:

0 i ij j j
i j

p q p q
≠

= −∑ (18)

where pi and pj are the transition probabilities wrt the
transition rates qij and qj.
Using equation (17), following set of equations are observed:

() 1 1 1 10 k k k k k k kp p pλ μ λ μ− − + += − + + + (19)

0 0 1 10 p pλ μ= − + (20)

Rearranging equation (18),

1 1 1 1 0 0 1 1.......k k k k k k k kp p p p p pλ μ λ μ λ μ+ + − −− = − = = − But

from equation (19), 0 0 1 1 0p pλ μ− = . It follows that

1 1 0k k k kp pλ μ− − − = . Rearranging,

1
1 1k

k k
k

p p kλ
μ

−
−= ∀ ≥

Thus,

1
0 1 1

0 0
01 2 1

.......... 1
..........

k
k i

k
ik i

p p p kλ λ λ λ
μ μ μ μ

−
−

= +

⎛ ⎞
= = ∀ ≥⎜ ⎟

⎝ ⎠
∏ (21)

Using equation (20), the steady state probabilities for the
Application Server can be evaluated as

()
1

0
0

1

k

k
i

p p
i

λ
μ

−

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠

∏

73

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

0
1

!

k

p k m
k

λ
μ

⎛ ⎞= ∀ ≥⎜ ⎟
⎝ ⎠

 (where m is the number of

servers)

()
1 1

0
0

1

m k

k
i j m

p p
i m

λ λ
μ μ

− −

= =

⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠

∏ ∏ (22)

0

1=
!

k

k mp k m
m m

λ
μ −

⎛ ⎞ ∀ ≥⎜ ⎟
⎝ ⎠

 Defining
m
λδ
μ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, the condition for the stability is

given by 1δ < . The expression for 0δ is obtained using

equation (21) and the fact that
0

1k
k

p
∞

=

=∑ .

() ()
1

1

0
0

1
! ! 1

k mm

k

m m
p

k m
δ δ

δ

−
−

=

⎡ ⎤
= +⎢ ⎥

−⎢ ⎥⎣ ⎦
∑ (23)

Thus, the average number of requests at the Application
Server is given by the equation (23) as stated below:

()
()

()
()

()

()()

()()
()

0
2

0

2
0

2

12

0

2

2 2
3

2 2 2

2 2

! 1

2 2
2

2! 1

2

2 11 2
2! 1

1 1
1 1 2 2 1

2 11 22 2
1 11 1

4
4

1

m

k
k

m pkp m
m

p

p

δ
δ δ

δ

δ
δ

δ
λδ
μ

δ
δ

δ

δ δ
δ δ δ δ

δ δ δδ δδ δ
δ δδ δ

μ
μ λ

μ λ

≥

−

= +
−

+
−

=

⎡ ⎤
= + +⎢ ⎥

−⎢ ⎥⎣ ⎦
− −= =

− + + +

− +−+ = =
− −+ −

=
−

= +

∑

Since, the two queues are merged for the Application
Server to generate the business logic, the value of m=2.

()
()

2
0

2

2 2
2

2 ! 1
pδ

δ
δ

+
−

where
2
λδ
μ

=

Using equation (22), following value of p0 is obtained:

()

()()

12

0

2

2 11 2
2 ! 1

1 1
1 1 2 2 1

p
δ

δ
δ

δ δ
δ δ δ δ

−
⎡ ⎤

= + +⎢ ⎥
−⎢ ⎥⎣ ⎦

− −= =
− + + +

Thus, the average number of requests at Application
Server becomes:

()()
()2 2

3
2 2 2

2 11 22 2
1 11 1

δ δ δδ δδ δ
δ δδ δ

− +−+ = =
− −+ −

The average response time at stage 3 using Little’s formula
is Average number of requests/ࣅ.

2 2

4
4

μ
μ λ

=
−

 (24)

Putting 1μ λ= + , we obtain

() ()
23

4 1
3 8 4S ta g e

R t
λ

λ λ
+⎡ ⎤

= ⎢ ⎥+ +⎣ ⎦
 (25)

D. Response Time for Stage 4
Response time for stage 4 is identical as specified for stage

1.

IV. COMPUTATION OF RESPONSE TIME FOR GANG
SCHEDULING ALGORITHM BASED ON QUEUING MODELS
Based on equation (1) and choice between M/G/1, G/M/1

and G/G/1 queuing models, the response time can be
If M/G/1 model is selected at stage 1 and 4, the total

response time would be

()2
2

2 2

4 12 3 1
2 1484.0 0.873200 0.000005

2 4 1 3 8 4
λλ λλ λ

λ λ λ λ
++ +

× + + + +
+ + + +

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦
 (26)

If G/M/1 model is selected at stage 1 and 4, the total
response time would be

 ()2
2

2 2

4 12 3 1
2 1484.5 0.873201 0.0000051

2 4 1 3 8 4

λλ λ
λ λ

λ λ λ λ
++ +

× + + + +
+ + + +

⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

(27)

And if, G/G/1 model is selected at stage 1 and 4, the total
response time would be

()2
2

2 2

4 12 3 1
2 1483.5 0.873377 0.000006

2 4 1 3 8 4

λλ λ
λ λ

λ λ λ λ
++ +

× + + + +
+ + + +

⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

(28)

The experiment conducted using Java using JDK 7.0
shows the simulated results for the three models are given in
Table III as under: The representation of the results is
depicted in Fig. 5.

TABLE III: COMPUTATION OF RESPONSE TIME W.R.T QUEUING
MODELs

Number
of

requests

Response
time
–G/M/1
model

Response
time
–M/G/1
model

Response
time
–G/G/1
model

10000 21433 21454.02 21635.54
15000 31415 31461.03 31869.31
20000 41897 41978.04 42703.08
25000 52879 53005.05 54136.85
30000 64361 64542.06 66170.62
35000 76343 76589.07 78804.39
40000 88825 89146.08 92038.16
45000 101807 102213.1 105871.9
50000 115289 115790.1 120305.7
55000 129271 129877.1 135339.5
60000 143753 144474.1 150973.2
65000 158735 159581.1 167207
70000 174217 175198.1 184040.8
75000 190199 191325.2 201474.6
80000 206681 207962.2 219508.3
85000 223663 225109.2 238142.1
90000 241145 242766.2 257375.9
95000 259127 260933.2 277209.6
100000 277609 279610.2 297643.4

74

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

Fig. 5. Results of gang scheduling algorithm implemented using queuing models

V. CONCLUSIONS AND RECOMMENDATIONS
The study steered recommends that M/G/1 queuing model

is best matched for instigating the gang scheduling algorithm
in cloud computing environment, followed by G/M/1 and
G/G/1 respectively. Simulated results also depicts that there
is exact less variance between the response time, when the
number of requests are less and the difference upsurges when
the requests are more. So, while employing the model for
fewer numbers of requests, one can select any one of the
models, and when the numbers of requests are more, M/G/1
model is best matched for implementing gang scheduling
algorithm in public cloud.

REFERENCES
[1] K. Aida, “Effect of Job Size Characteristics onJob Scheduling

Performance,” Job Scheduling Strategies for Parallel Processing,
Lecture Notes in Computer Science, Springer-Verlang, Berlin,
Germany, vol. 1911. pp. 1-10, 2000.

[2] D. G. Feitelson and L. Rudolph, “Evaluation ofDesign Choices for
Gang Scheduling Using Distributed Hierarchical Control,” Journal of
Parallel and Distributed Computing, Academic Press, New York,
USA, vol. 35, pp. 18-34, 1996.

[3] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, and M. Miller, “Rotation,
scale, and translation resilient public watermarking for images,” IEEE
Trans. Image Process, vol. 10, no. 5, pp. 767-782, May 2001.

[4] D. G. Feitelsonand and M. A. Jette, “Improved Utilisation and
Responsiveness with Gang Scheduling,” Job Scheduling Strategies for

Parallel Processing, Lecture Notes in Computer Science,
Springer-Verlang, Berlin, Germany, vol. 1291, pp. 238-261.

[5] E. Frachtenberg, D. G. Feitelson, F. Petrini, and J. Fernandez,
“Adaptive Parallel Job Scheduling with Flexible Coscheduling,” IEEE
Transactions onParallel and Distributed Systems, IEEE Computer
Society, Los Alamitos, CA, USA, vol. 16, no. 11, pp. 1066-1077.

[6] H. Poor, An Introduction to Signal Detection and Estimation, New
York: Springer-Verlag, 1985.

[7] L. K. Singh and R. Srivastava, “Memory Estimation of Internet Server
using Queuing Theory: Comparative Study between M/G/1, G/M/1
and G/G/1 Queuing Models,” International Journal of Computer and
Information Science and Engineering, vol. 1, no. 2, pp. 125-129, 2007.

[8] K. S. Trivedi, “Probability and Statistics with Reliability, Queuing and
Computer Science Applications,” in Proc. of 12th Edition, PHI, pp.
363-364, 2001.

[9] R. Srivastava, “Estimation of Buffer Size of Internet Gateway Server
via G/M/1 Queuing Model,” International Journal of Applied Science,
Engineering and Technology, vol. 19, pp. 474-482, 2007.

[10] R. Srivastava et al, “Estimation of Buffer Size of Internet Gateway
Server via G/M/1 Queuing Model,” International Journal of Applied
Science, Engineering and Technology, vol. 4, no. 1, 2007.

Riktesh Srivastava is an Assistant Professor at
Skyline University College, Sharjah, UAE. He holds
Doctrate degree in Electronics, apart from MTech (IT),
MS (Electronics) and MBA. He is authored more than
30 papers for various international journals of repute
and is member of editorial board for 10+ international
journals of computer science, information systems.

75

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

