
  

  
Abstract—The rapid development of wireless technologies, 

such as Bluetooth, IEEE 802.11 and IEEE 802.15.4 protocol has 
allowed the deployment of wireless sensor networks with 
thousands of sensor devices in physical environments where the 
construction of a fixed infrastructure is inconvenient or 
impossible. System designers have been facing the challenges of 
using unreliable wireless channels and limited battery power to 
develop software and protocols for sensor networks. This work 
focuses on the issues of robustness and efficiency in the design 
and implementation of wireless sensor networks using Sun 
SPOTs device. Our implementations not only allow multiple 
sensor nodes to simultaneously connect to the basestation, but 
also improve the robustness by handling loss of connection (due 
to node movements or radio interference). To support flexible 
and efficient data collection, a sensor collects data during 
disconnected status, and automatically uploads the stored data 
when it is in the range of a basestation. The testbed is useful for 
researches on human mobility pattern, environmental 
monitoring, and health care, to name a few. 
 

Index Terms—Sensor networks, wireless networks, design 
and implementation  

I. INTRODUCTION 
Recent years have seen increasing application of sensor 

network technology to various domains such as habitat 
monitoring [16], wildlife monitoring [10], vehicle based 
sensor network [4], and SensorPlanet Project of Nokia [8]. A 
plethora of works have studied various aspects of sensor 
networks, including real deployed sensor networks projects. 
As illustrated in Fig. 1, a mobile sensor network is made up 
of base station nodes and sensor nodes. Basestation nodes are 
attached to host computers (PCs) and serve as gateways 
between mobile sensor network and Internet. The sensor 
nodes are either fixed at strategically chosen locations or 
carried by human beings and/or vehicles. Sensor nodes 
collect and store sensory data, and upload the data when they 
come within transmission range of base-station nodes. 

There has been a rich body of research works that develop 
hardware and software architecture for wireless sensor nodes. 
Among them, the mote series [1], [2], [6], [7] sensor 
platforms are the most popular platform among research 
community. Mote family provides different types of sensors 
with different memory size, processor types, and radio types 
and so on. However, the number of applications developed is 
still relatively small, partly due to the lack of adequate tools 
and languages to facilitate the fast prototyping of 
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applications. 
In an effort to develop next generation devices to simplify 

application development, Sun Microsystems Laboratories 
developed Sun Small Programmable Object Technology 
(Sun SPOT). Sun SPOT implements a small Java virtual 
machine that runs without an operating system. Software 
developing using Java, a managed runtime language, usually 
takes less time than using C/C++, a non-managed language, 
due to the garbage collection, pointer safety, exception 
handling that comes with Java. Therefore, Sun SPOT has 
become an ideal choice for carrying out quick experimental 
and pedagogic projects [18], [17], [13], [9].  

This paper presents the design and implementation of a 
mobile sensor network testbed using Sun SPOTs, as an 
experimental environment for future research in network 
routing and sensor data collection schemes. We identify the 
following design objectives. First, to support mobile sensor 
node, it is crucial that mobile sensor nodes collect and store 
data reliably. For this purpose, the disruptive connection to 
basestation must be handled, and the battery power of the 
node should be monitored to avoid data loss due to battery 
depletion. Secondly, we focus on efficiency issue. In order to 
support high sampling rate, sensor nodes need to collect, 
store and transmit data efficiently, in terms of battery power, 
memory space, and processing cycles. The application at the 
basestation side also needs to handle the incoming sensory 
data efficiently to support high sampling rate. 

The remainder of this paper is structured as follows. In 
Section II, we present background information about SUN 
SPOT platform. In Section III, we present the design of the 
basestation and sensor application. In Section IV, we discuss 
how we tackle several challenges. An experimental study is 
presented in Section V. We conclude the paper in Section VI. 

 

II. SUN SPOT SYSTEM 

 
Fig. 1. A mobile sensor network testbed 

 
We provide an overview of the hardware, software and 

networking protocol stack of Sun SPOT device in this 
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section.  
Sun SPOT stands for Sun Small Programmable Object 

Technology. A detailed description of the SPOT hardware 
platform is provided in [14]. Here, we describe the main 
features but leave out technical details. 

There are two types of SPOT node configurations: sensor 
and basestation node. A sensor node (or eSPOT node) 
contains the eSPOT main board, a rechargeable battery and 
the eDemo board. A basestation, on the other hand, only has 
an eSPOT main board. The basestation node serves as a radio 
gateway between SPOTS sensor nodes (and other 802.15.4 
devices) and the host workstation, and is powered by a USB 
connection to a host workstation. 

The eSPOT main board is a common component for 
basestation and sensor configurations. It contains an 
ARM920T core processor, a 4MByte Flash memory and a 
512 KB random access memory (RAM), power management 
circuit, 802.15.4 radio transceiver and antenna, battery 
connector, and daughterboard connector. The memory 
contents of RAM are maintained as long as there is power 
supply, even during periods of off or “deep-sleep”. The main 
board contains a timer chip, a USB interface and two LEDs. 
The timer provides timing service used for implementing 
periodic tasks. 

The sensor node comes with a battery board with a 
rechargeable battery which is recharged whenever the USB 
interface is connected to a PC or powered USB hub. 

Like the battery board, the eDemo board (i.e., sensor board) 
is only available on sensor nodes. It contains a processor, a 
flash memory, a light sensor, a temperature sensor, an 
accelerometer, eight tri-color LEDs and two pushbuttons. 
The LEDs and pushbuttons provide an interface through 
which end users interact with the sensor nodes. 

Sun SPOT is especially designed to facilitate 
implementation and deployment of new sensor applications 
[15]. It implements a Java Mobile Edition implementation, 
Squawk, supporting Connected Limited Device 
Configuration (CLDC) 1.1 and Mobile Information Device 
Profile (MIDP 1.0) which are key elements of J2ME. Squawk 
also implements operating system functionalities such as 
thread scheduling, interrupt handling and device driver 
support. 

Sun SPOT network stack follows the commonly used 
five-layered structure. The physical and MAC layer partially 
implements IEEE 802.15.4 [5], [12] standard. The 
networking layer implements the AODV [3] routing 
algorithm. Above MAC and networking layer, SPOT 
supports two communication services. The radiostream 
service provides TCP-like reliable, buffered, stream-based 
communication between two devices. The radiogram service 
provides UDP-like datagram-based communication between 
two devices. The radiogram protocol provides no guarantee 
about delivery or in-order delivery. Datagrams sent over 
more than one hop could be lost, delivered more than once, 
and delivered out of sequence. Due to the MAC layer 
acknowledgement and retransmission scheme, radiograms 
sent over a single hop do not experience above problems, but 
might be delivered more than once. 

SPOT also supports broadcast communication through 
broadcast datagrams, which is also an unreliable 

communication. 
 

III. BUILDING A MOBILE SENSOR NETWORK 
In this section, we first present the design objectives in 

Section III.A, and then present the system architecture in 
Section III.B. We illustrate the communication between 
sensor nodes and host application in Section III.C, and 
outline the main system components of the sensor and 
basestation applications in Section III.D. 

A. Design Objectives 
We identify our main design objectives as follows. First of 

all, the mobile sensor network needs to run continuously in 
various scenarios. It should support multiple simultaneous 
mobile sensor nodes, with each sensor node moving in and 
out of the range of basestation during the data collection 
process. Second, the limited memory space and battery 
power of the sensor node needs to be used efficiently to 
support higher sampling rate or increase network lifetime. 

B. System Overview 
We base our system on a telemetry demo program in SPOT 

SDK, which includes two applications, the basestation 
application and the client application that respectively run on 
the basestation node and sensor nodes as illustrated in Fig. 1. 
The basestation node is connected to a PC running Windows 
via an USB connection, and runs in a dedicated mode, 
meaning that it runs within the same Java virtual machine as 
the host application.  

The basestation application accepts data uploaded from 
sensor nodes, and provides GUI (as shown in Fig.2) through 
which the end user views the sensory data, issues commands 
to sensor nodes. The sensors panel on the left of the window 
displays the list of sensor nodes (the MAC addresses) that are 
connected to the basestation, using different colors to 
indicate their status. In the bottom, there is a control panel for 
the end user to issue commands to sensory nodes, e.g., to 
calibrate and configure the sensors, to adjust sensor sampling 
rate, and to start or pause data collection. For example, the 
“Battery” button for checking the battery status of the 
selected sensor. The data collected from the selected sensor is 
plotted in the main panel of the window in real time. 
Whenever a sensor node is disconnected (due to its moving 
out of transmission range or poor link quality), the 
basestation saves sensory data collected from the sensor node 
to a file. 

The sensor application runs on a sensor node. Upon startup, 
it broadcasts a connection request message and listens for 
basestation broadcast announcement. When a basestation is 
discovered, it connects to the basestation, i.e., builds a unicast 
connection with the basestation, and subsequently transmits 
sensory data to basestation. When it is disconnected from a 
basestation, it samples and stores sensory data to its local 
memory. The sensor application also monitors the battery 
level, and saves the sensory data and shuts down if the battery 
level is below a certain threshold. When in disconnected state, 
end user can use push button to start or to pause data 
collection. When the sensor connects to basestation, sensory 
data stored locally will be uploaded to the basestation. Fig 3 
illustrates the state diagram of a sensor. 
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Fig. 2. Basestation application GUI 

C. Communication between Basestation and Sensor 
As we currently focus on one-hop communications 

between one base-station and several sensor nodes, we use 
radiogram and turn off routing mechanism on all devices. 
Similarly, broadcast is configured to be transmitted over one 
hop only. We first describe how basestation and sensor node 
discover each other and set up a connection, and then 
describe their communication in connected state. We follow 
the communication mechanism of the telemetry demo, with 
some modifications to detect and handle lost connections. 

During device discovery, both sensor and basestation 
broadcast and listen for messages on the same broadcast 
channel. On receiving a broadcast message from the other 
device, the MAC address of the other device can be obtained 
and subsequently they can set up unicast radiogram 
connection. More specifically, after the sensor application 
starts up, it periodically sends out a broadcast message on 
port 42. When the basestation receives the broadcast message, 
it sends a broadcast message on the same port, sets up a 
unicast radiogram connection with the sensor on port 43, and 
starts to listen on the connection. When the sensor receives 
the reply from the basestation, it sets up a unicast radiogram 
connection with the basestation on port 43, and starts to listen 
on this connection for command messages from the host 
application. Once both sides set up the radiogram connection 
with each other, the sensor is said to be “connected” to the 
basestation.   

While in the connected states, the sensor listens on the 
radiogram connection for command messages from the 
basestation and replies with a message with command or 
sensor data in it. The basestation listens on the connection for 
data packets, and when the end user clicks on a control button 
in the GUI, it sends the corresponding command message to 
the sensor. 

As both communication mechanisms used (unicast 
datagram and broadcast) provides no acknowledgement, 
there needs another way for the sensor to monitor the status 
of the basestation and the connection. For this purpose, every 
10 seconds, the basestation sends out a broadcast message on 
port 43 as a “heartbeat” message. The sensor in connected 

state periodically listens for this heartbeat message on 
broadcast port 43. If the sensor does not receive the message 
for a certain amount of time (12 seconds), it infers that it is 
out of range of the basestation, or the server application has 
exited, and closes the unicast connection (and enter 
“disconnected” state), and starts LocateService to rediscover 
the basestation. 

 
Fig. 3. Sensor node state diagram 

D. System Components 
In this section, we describe the main system components 

(i.e. Java classes), and the interaction among them. 
The main components of the server application are 

SensorFrame, ListeningSpots, AccelerometerListener, 
SensorData and GraphView. On startup, SensorFrame is 
started, which initiates ListeningSpots and GraphView. 
ListeningSpots listens for broadcast messages from sensors, 
broadcast its information periodically, while GraphView 
plots sensory data in GUI window. For each connected 
sensor, an AccelerometerListener and SensorData 
component are created to communicate with the sensor and to 
save received sensory data respectively. 

The sensor application consists of SensorMain, 
LocateService, PacketReceiver, PacketTransmitter, 
AccelMonitor, and flashMem components. Upon starting up, 
SensorMain is started which initiates LocateService which 
sends and receives broadcast messages to discover nearby 
basestation nodes. When it connects to a basestation node, it 
starts PacketReceiver and PacketTransmitter to receive and 
transmit message.  
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When the data collection starts, AccelMonitor is started to 
collect sensory data periodically. In disconnected state, 
AccelMonitor passes data to flashMem which stores data in 
the Flash memory. In connected state, AccelMonitor stores 
the data in RAM until the amount of data exceeds a certain 
threshold, and then passes the data to PacketTransmitter to 
transmit to the basestation.  

 

 
Fig. 4. System components 

 

IV. ACHIEVING ROBUSTNESS, FLEXIBILITY AND EFFICIENCY 

A. Robust Connection Maintenance 
To handle multiple sensor nodes, the server keeps track of 

the status of its connection with each sensor. When a sensor 
disconnects from the server, the server closes the (radiogram) 
connection and stops related functions. Our experience 
suggests that a proper closing up is necessary for releasing up 
lower layer networking resource. Whenever the sensor loses 
connection with the basestation, it starts LocateService to 
rediscover the basestation. 

B. Flexible Sensor Data Collection 
We allow sensor to collect sensory data and store them in 

local memory when it is not connected. Due to the small size 
(512KB) and volatility of RAM, we use FLASH memory to 
save sensory data collected during period of disconnection. 
Unlike RAM, FLASH is permanent memory: even if the 
battery is depleted, the content of FLASH is preserved. 

The size of Flash memory is 4MB. Libraries and 
applications have taken a substantial amount of space, 
leaving approximately 524226 bytes for saving sensory data. 
Sun SPOT provides two ways to access Flash memory, 
Record Store Manager (RMS) and FlashFile. As FlashFile is 
a low-level mechanism, we choose the former for it is 
relatively simpler. The RMS manages the Flash memory in 
the unit of record, and uses record store to manage a set of 
records.   

Using different record size (i.e., how much data to store in 
each record) affects the total amount of accessible Flash 
memory. If we store only one sample (32 bytes) in a record, 
the maximum amount of data that can be stored is 40480 
bytes, due to the overhead in managing the Flash File 

Allocation Table. Currently, we store 6 samples in each 
record, which allows us to access up to 60480 bytes Flash 
memory. When the sensor application uses up the flash 
memory space, it deletes the oldest 3 records. 

 
(a) Accelerometer sensory data 

 
(b) Light sensory data 

 
(c) Temperature sensory data 

Fig. 5. Sensor data collected in experimental studies 
 

C. Efficient Data Collection and Uploading 
For different applications, the required sampling rate 

varies greatly. For example, if accelerometer sensory data are 
used for measuring the SPOT’s orientation or gesture 
recognition, a sample rate of 10-20 readings per second will 
suffice. Considering the various hardware and software 
components, the maximum sample rate is 320Hz [11], i.e., a 
reading every 3.125 milliseconds, a rate that can be sustained 
and still allow for other computation to be done.  

When running in connected state, the sensor stores data in 
RAM until a certain amount of data has been collected. It 
then packs multiple readings into one packet so that the 
communication overhead (of sending packet headers and 
lower level protocol overhead) is amortized over larger data 
payload. Each sensory reading, including accelerometer, 
light and temperature sensor reading, is 32 bytes long. 
Currently, the sensor waits until 6 samples have been 
collected. Then, it packetizes the data into 3 packets and 
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transmits them to the basestation. Each data packet carries 12 
byte sensor data header including the packet sequence 
number (1 byte), timestamp (8 byte), type of sensor data (1 
byte), and the number of samples in the packet (1 byte). 

D. Transmission Rate Control 
When a sensor first connects to basestation, it needs to 

uploaddata that have been gathered to the basestation. A 
naive solution of transiting all stored data in one batch leads 
to failure of the sensor application. First, the radiogram 
connection provides no rate control, and when a large 
number of packets are sent in a short duration of time, various 
components of networking stack experience failure such as 
buffer overflows. Second, if AccelMonitor thread transmits 
all stored data out in one batch, it prevents other threads such 
as PacketReceiver or some system threads from being 
scheduled, causing various problems.  

To solve this problem, we introduce simple rate control to 
the sensor application: AccelMonitor sends 9 packets in each 
round, i.e., each time it wakes up. As each time AccelMonitor 
wakes up, only one new sensory sample is collected while 9 
packets are sent, eventually all sensory data are uploaded. We 
currently perform data uploading from AccelMonitor thread, 
whose period is determined by the sampling rate. Using a 
separate thread to upload data collected disconnection allows 
more flexibility in data uploading rate, but leads to the 
overhead of having one more thread. 

 

V. EXPERIMENTAL RESULT 
We perform several experiments where the author carried 

a sensor node while commuting from his home to his office, 
during which sensory data were collected with a sampling 
rate of one reading per 2 second. Fig. 5 plots the 
accelerometer, light and temperature data collected. We 
interpret the collected data by relating it to the actual scenario 
under which the data was collected.  

During minute 0 to 10, the author left his house, walked to 
the subway station. The accelerometer data collected show a 
certain level of variations. From minutes 10 to 33, the author 
sat in a subway train, with the sensor node in his backpack. 
The values of accelerometer data vary little while the values 
of light sensory data stay near zero. The temperature readings 
gradually increased, as it measures the temperature of the 
chip which increases when the sensor node is on. Around 
minute 33, the author got off the train and walked to another 
platform, and transferred to another train at around minute 35. 
Accordingly, the accelerometer data show more variations. 
From minutes 35 to 57, he sat in the train, and took out the 
sensor node from the backpack from minutes 39 to 57. He 
held and swung the sensor from minutes 39 to 45, and we 
observe a larger variation in the accelerometer readings. At 
around minute 45, he put down the sensor on next seat. As a 
result, the accelerometer readings show a smaller variation, 
while the temperature readings decreased gradually as the 
sensor cooled down. At around minute 57, the author got off 
the train and started walking to his office, holding the device 
in hand, leading to a larger variation in the accelerometer data. 
Upon arriving at the office, the sensor node was turned off 
and restarted a few minutes later to upload data to the 
basestation. 

VI. CONCLUSIONS 
We designed and implemented a mobile sensor network 

testbed using Sun SPOTs, focusing on the issues of 
lightrobustness and efficiency. Our implementations support 
multiple sensor nodes simultaneously connecting to the 
basestation, and handle loss of connection and performing 
reconnection. To support flexible and efficient data 
collection, the sensor program collects sensory data during 
disconnected status, and automatically uploads the stored 
data when it is in the range of a basestation. When the sensor 
node disconnects from the basestation, the host application 
saves data uploaded from the sensor into a file. Possible 
future works include extension to fully support different 
routing schemes and sensor data aggregation schemes, and 
study of energy efficiency issue. 
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