

Abstract—The rapid development of wireless technologies,

such as Bluetooth, IEEE 802.11 and IEEE 802.15.4 protocol has
allowed the deployment of wireless sensor networks with
thousands of sensor devices in physical environments where the
construction of a fixed infrastructure is inconvenient or
impossible. System designers have been facing the challenges of
using unreliable wireless channels and limited battery power to
develop software and protocols for sensor networks. This work
focuses on the issues of robustness and efficiency in the design
and implementation of wireless sensor networks using Sun
SPOTs device. Our implementations not only allow multiple
sensor nodes to simultaneously connect to the basestation, but
also improve the robustness by handling loss of connection (due
to node movements or radio interference). To support flexible
and efficient data collection, a sensor collects data during
disconnected status, and automatically uploads the stored data
when it is in the range of a basestation. The testbed is useful for
researches on human mobility pattern, environmental
monitoring, and health care, to name a few.

Index Terms—Sensor networks, wireless networks, design
and implementation

I. INTRODUCTION
Recent years have seen increasing application of sensor

network technology to various domains such as habitat
monitoring [16], wildlife monitoring [10], vehicle based
sensor network [4], and SensorPlanet Project of Nokia [8]. A
plethora of works have studied various aspects of sensor
networks, including real deployed sensor networks projects.
As illustrated in Fig. 1, a mobile sensor network is made up
of base station nodes and sensor nodes. Basestation nodes are
attached to host computers (PCs) and serve as gateways
between mobile sensor network and Internet. The sensor
nodes are either fixed at strategically chosen locations or
carried by human beings and/or vehicles. Sensor nodes
collect and store sensory data, and upload the data when they
come within transmission range of base-station nodes.

There has been a rich body of research works that develop
hardware and software architecture for wireless sensor nodes.
Among them, the mote series [1], [2], [6], [7] sensor
platforms are the most popular platform among research
community. Mote family provides different types of sensors
with different memory size, processor types, and radio types
and so on. However, the number of applications developed is
still relatively small, partly due to the lack of adequate tools
and languages to facilitate the fast prototyping of

Manuscript received September 18, 2012; revised October 25, 2012.
The authors are with the Dept. of Computer and Information Science,

Fordham University, Bronx, NY, USA (email: hondatp@gmail.com,
xzhang@fordham.edu, dsl.wei01@gmail.com, snaik@utaterloo.ca,
crching@cyut.edu.tw).

applications.
In an effort to develop next generation devices to simplify

application development, Sun Microsystems Laboratories
developed Sun Small Programmable Object Technology
(Sun SPOT). Sun SPOT implements a small Java virtual
machine that runs without an operating system. Software
developing using Java, a managed runtime language, usually
takes less time than using C/C++, a non-managed language,
due to the garbage collection, pointer safety, exception
handling that comes with Java. Therefore, Sun SPOT has
become an ideal choice for carrying out quick experimental
and pedagogic projects [18], [17], [13], [9].

This paper presents the design and implementation of a
mobile sensor network testbed using Sun SPOTs, as an
experimental environment for future research in network
routing and sensor data collection schemes. We identify the
following design objectives. First, to support mobile sensor
node, it is crucial that mobile sensor nodes collect and store
data reliably. For this purpose, the disruptive connection to
basestation must be handled, and the battery power of the
node should be monitored to avoid data loss due to battery
depletion. Secondly, we focus on efficiency issue. In order to
support high sampling rate, sensor nodes need to collect,
store and transmit data efficiently, in terms of battery power,
memory space, and processing cycles. The application at the
basestation side also needs to handle the incoming sensory
data efficiently to support high sampling rate.

The remainder of this paper is structured as follows. In
Section II, we present background information about SUN
SPOT platform. In Section III, we present the design of the
basestation and sensor application. In Section IV, we discuss
how we tackle several challenges. An experimental study is
presented in Section V. We conclude the paper in Section VI.

II. SUN SPOT SYSTEM

Fig. 1. A mobile sensor network testbed

We provide an overview of the hardware, software and

networking protocol stack of Sun SPOT device in this

Design and Implementation of a Mobile Sensor Network

Hung-Da Shih, Xiaolan Zhang, David S. L. Wei, Kshirasagar Naik, and Rung Ching Chen

Testbed Using SUN SPOTs

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

DOI: 10.7763/IJFCC.2013.V2.133 115

section.
Sun SPOT stands for Sun Small Programmable Object

Technology. A detailed description of the SPOT hardware
platform is provided in [14]. Here, we describe the main
features but leave out technical details.

There are two types of SPOT node configurations: sensor
and basestation node. A sensor node (or eSPOT node)
contains the eSPOT main board, a rechargeable battery and
the eDemo board. A basestation, on the other hand, only has
an eSPOT main board. The basestation node serves as a radio
gateway between SPOTS sensor nodes (and other 802.15.4
devices) and the host workstation, and is powered by a USB
connection to a host workstation.

The eSPOT main board is a common component for
basestation and sensor configurations. It contains an
ARM920T core processor, a 4MByte Flash memory and a
512 KB random access memory (RAM), power management
circuit, 802.15.4 radio transceiver and antenna, battery
connector, and daughterboard connector. The memory
contents of RAM are maintained as long as there is power
supply, even during periods of off or “deep-sleep”. The main
board contains a timer chip, a USB interface and two LEDs.
The timer provides timing service used for implementing
periodic tasks.

The sensor node comes with a battery board with a
rechargeable battery which is recharged whenever the USB
interface is connected to a PC or powered USB hub.

Like the battery board, the eDemo board (i.e., sensor board)
is only available on sensor nodes. It contains a processor, a
flash memory, a light sensor, a temperature sensor, an
accelerometer, eight tri-color LEDs and two pushbuttons.
The LEDs and pushbuttons provide an interface through
which end users interact with the sensor nodes.

Sun SPOT is especially designed to facilitate
implementation and deployment of new sensor applications
[15]. It implements a Java Mobile Edition implementation,
Squawk, supporting Connected Limited Device
Configuration (CLDC) 1.1 and Mobile Information Device
Profile (MIDP 1.0) which are key elements of J2ME. Squawk
also implements operating system functionalities such as
thread scheduling, interrupt handling and device driver
support.

Sun SPOT network stack follows the commonly used
five-layered structure. The physical and MAC layer partially
implements IEEE 802.15.4 [5], [12] standard. The
networking layer implements the AODV [3] routing
algorithm. Above MAC and networking layer, SPOT
supports two communication services. The radiostream
service provides TCP-like reliable, buffered, stream-based
communication between two devices. The radiogram service
provides UDP-like datagram-based communication between
two devices. The radiogram protocol provides no guarantee
about delivery or in-order delivery. Datagrams sent over
more than one hop could be lost, delivered more than once,
and delivered out of sequence. Due to the MAC layer
acknowledgement and retransmission scheme, radiograms
sent over a single hop do not experience above problems, but
might be delivered more than once.

SPOT also supports broadcast communication through
broadcast datagrams, which is also an unreliable

communication.

III. BUILDING A MOBILE SENSOR NETWORK
In this section, we first present the design objectives in

Section III.A, and then present the system architecture in
Section III.B. We illustrate the communication between
sensor nodes and host application in Section III.C, and
outline the main system components of the sensor and
basestation applications in Section III.D.

A. Design Objectives
We identify our main design objectives as follows. First of

all, the mobile sensor network needs to run continuously in
various scenarios. It should support multiple simultaneous
mobile sensor nodes, with each sensor node moving in and
out of the range of basestation during the data collection
process. Second, the limited memory space and battery
power of the sensor node needs to be used efficiently to
support higher sampling rate or increase network lifetime.

B. System Overview
We base our system on a telemetry demo program in SPOT

SDK, which includes two applications, the basestation
application and the client application that respectively run on
the basestation node and sensor nodes as illustrated in Fig. 1.
The basestation node is connected to a PC running Windows
via an USB connection, and runs in a dedicated mode,
meaning that it runs within the same Java virtual machine as
the host application.

The basestation application accepts data uploaded from
sensor nodes, and provides GUI (as shown in Fig.2) through
which the end user views the sensory data, issues commands
to sensor nodes. The sensors panel on the left of the window
displays the list of sensor nodes (the MAC addresses) that are
connected to the basestation, using different colors to
indicate their status. In the bottom, there is a control panel for
the end user to issue commands to sensory nodes, e.g., to
calibrate and configure the sensors, to adjust sensor sampling
rate, and to start or pause data collection. For example, the
“Battery” button for checking the battery status of the
selected sensor. The data collected from the selected sensor is
plotted in the main panel of the window in real time.
Whenever a sensor node is disconnected (due to its moving
out of transmission range or poor link quality), the
basestation saves sensory data collected from the sensor node
to a file.

The sensor application runs on a sensor node. Upon startup,
it broadcasts a connection request message and listens for
basestation broadcast announcement. When a basestation is
discovered, it connects to the basestation, i.e., builds a unicast
connection with the basestation, and subsequently transmits
sensory data to basestation. When it is disconnected from a
basestation, it samples and stores sensory data to its local
memory. The sensor application also monitors the battery
level, and saves the sensory data and shuts down if the battery
level is below a certain threshold. When in disconnected state,
end user can use push button to start or to pause data
collection. When the sensor connects to basestation, sensory
data stored locally will be uploaded to the basestation. Fig 3
illustrates the state diagram of a sensor.

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

116

Fig. 2. Basestation application GUI

C. Communication between Basestation and Sensor
As we currently focus on one-hop communications

between one base-station and several sensor nodes, we use
radiogram and turn off routing mechanism on all devices.
Similarly, broadcast is configured to be transmitted over one
hop only. We first describe how basestation and sensor node
discover each other and set up a connection, and then
describe their communication in connected state. We follow
the communication mechanism of the telemetry demo, with
some modifications to detect and handle lost connections.

During device discovery, both sensor and basestation
broadcast and listen for messages on the same broadcast
channel. On receiving a broadcast message from the other
device, the MAC address of the other device can be obtained
and subsequently they can set up unicast radiogram
connection. More specifically, after the sensor application
starts up, it periodically sends out a broadcast message on
port 42. When the basestation receives the broadcast message,
it sends a broadcast message on the same port, sets up a
unicast radiogram connection with the sensor on port 43, and
starts to listen on the connection. When the sensor receives
the reply from the basestation, it sets up a unicast radiogram
connection with the basestation on port 43, and starts to listen
on this connection for command messages from the host
application. Once both sides set up the radiogram connection
with each other, the sensor is said to be “connected” to the
basestation.

While in the connected states, the sensor listens on the
radiogram connection for command messages from the
basestation and replies with a message with command or
sensor data in it. The basestation listens on the connection for
data packets, and when the end user clicks on a control button
in the GUI, it sends the corresponding command message to
the sensor.

As both communication mechanisms used (unicast
datagram and broadcast) provides no acknowledgement,
there needs another way for the sensor to monitor the status
of the basestation and the connection. For this purpose, every
10 seconds, the basestation sends out a broadcast message on
port 43 as a “heartbeat” message. The sensor in connected

state periodically listens for this heartbeat message on
broadcast port 43. If the sensor does not receive the message
for a certain amount of time (12 seconds), it infers that it is
out of range of the basestation, or the server application has
exited, and closes the unicast connection (and enter
“disconnected” state), and starts LocateService to rediscover
the basestation.

Fig. 3. Sensor node state diagram

D. System Components
In this section, we describe the main system components

(i.e. Java classes), and the interaction among them.
The main components of the server application are

SensorFrame, ListeningSpots, AccelerometerListener,
SensorData and GraphView. On startup, SensorFrame is
started, which initiates ListeningSpots and GraphView.
ListeningSpots listens for broadcast messages from sensors,
broadcast its information periodically, while GraphView
plots sensory data in GUI window. For each connected
sensor, an AccelerometerListener and SensorData
component are created to communicate with the sensor and to
save received sensory data respectively.

The sensor application consists of SensorMain,
LocateService, PacketReceiver, PacketTransmitter,
AccelMonitor, and flashMem components. Upon starting up,
SensorMain is started which initiates LocateService which
sends and receives broadcast messages to discover nearby
basestation nodes. When it connects to a basestation node, it
starts PacketReceiver and PacketTransmitter to receive and
transmit message.

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

117

When the data collection starts, AccelMonitor is started to
collect sensory data periodically. In disconnected state,
AccelMonitor passes data to flashMem which stores data in
the Flash memory. In connected state, AccelMonitor stores
the data in RAM until the amount of data exceeds a certain
threshold, and then passes the data to PacketTransmitter to
transmit to the basestation.

Fig. 4. System components

IV. ACHIEVING ROBUSTNESS, FLEXIBILITY AND EFFICIENCY

A. Robust Connection Maintenance
To handle multiple sensor nodes, the server keeps track of

the status of its connection with each sensor. When a sensor
disconnects from the server, the server closes the (radiogram)
connection and stops related functions. Our experience
suggests that a proper closing up is necessary for releasing up
lower layer networking resource. Whenever the sensor loses
connection with the basestation, it starts LocateService to
rediscover the basestation.

B. Flexible Sensor Data Collection
We allow sensor to collect sensory data and store them in

local memory when it is not connected. Due to the small size
(512KB) and volatility of RAM, we use FLASH memory to
save sensory data collected during period of disconnection.
Unlike RAM, FLASH is permanent memory: even if the
battery is depleted, the content of FLASH is preserved.

The size of Flash memory is 4MB. Libraries and
applications have taken a substantial amount of space,
leaving approximately 524226 bytes for saving sensory data.
Sun SPOT provides two ways to access Flash memory,
Record Store Manager (RMS) and FlashFile. As FlashFile is
a low-level mechanism, we choose the former for it is
relatively simpler. The RMS manages the Flash memory in
the unit of record, and uses record store to manage a set of
records.

Using different record size (i.e., how much data to store in
each record) affects the total amount of accessible Flash
memory. If we store only one sample (32 bytes) in a record,
the maximum amount of data that can be stored is 40480
bytes, due to the overhead in managing the Flash File

Allocation Table. Currently, we store 6 samples in each
record, which allows us to access up to 60480 bytes Flash
memory. When the sensor application uses up the flash
memory space, it deletes the oldest 3 records.

(a) Accelerometer sensory data

(b) Light sensory data

(c) Temperature sensory data

Fig. 5. Sensor data collected in experimental studies

C. Efficient Data Collection and Uploading
For different applications, the required sampling rate

varies greatly. For example, if accelerometer sensory data are
used for measuring the SPOT’s orientation or gesture
recognition, a sample rate of 10-20 readings per second will
suffice. Considering the various hardware and software
components, the maximum sample rate is 320Hz [11], i.e., a
reading every 3.125 milliseconds, a rate that can be sustained
and still allow for other computation to be done.

When running in connected state, the sensor stores data in
RAM until a certain amount of data has been collected. It
then packs multiple readings into one packet so that the
communication overhead (of sending packet headers and
lower level protocol overhead) is amortized over larger data
payload. Each sensory reading, including accelerometer,
light and temperature sensor reading, is 32 bytes long.
Currently, the sensor waits until 6 samples have been
collected. Then, it packetizes the data into 3 packets and

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

118

transmits them to the basestation. Each data packet carries 12
byte sensor data header including the packet sequence
number (1 byte), timestamp (8 byte), type of sensor data (1
byte), and the number of samples in the packet (1 byte).

D. Transmission Rate Control
When a sensor first connects to basestation, it needs to

uploaddata that have been gathered to the basestation. A
naive solution of transiting all stored data in one batch leads
to failure of the sensor application. First, the radiogram
connection provides no rate control, and when a large
number of packets are sent in a short duration of time, various
components of networking stack experience failure such as
buffer overflows. Second, if AccelMonitor thread transmits
all stored data out in one batch, it prevents other threads such
as PacketReceiver or some system threads from being
scheduled, causing various problems.

To solve this problem, we introduce simple rate control to
the sensor application: AccelMonitor sends 9 packets in each
round, i.e., each time it wakes up. As each time AccelMonitor
wakes up, only one new sensory sample is collected while 9
packets are sent, eventually all sensory data are uploaded. We
currently perform data uploading from AccelMonitor thread,
whose period is determined by the sampling rate. Using a
separate thread to upload data collected disconnection allows
more flexibility in data uploading rate, but leads to the
overhead of having one more thread.

V. EXPERIMENTAL RESULT
We perform several experiments where the author carried

a sensor node while commuting from his home to his office,
during which sensory data were collected with a sampling
rate of one reading per 2 second. Fig. 5 plots the
accelerometer, light and temperature data collected. We
interpret the collected data by relating it to the actual scenario
under which the data was collected.

During minute 0 to 10, the author left his house, walked to
the subway station. The accelerometer data collected show a
certain level of variations. From minutes 10 to 33, the author
sat in a subway train, with the sensor node in his backpack.
The values of accelerometer data vary little while the values
of light sensory data stay near zero. The temperature readings
gradually increased, as it measures the temperature of the
chip which increases when the sensor node is on. Around
minute 33, the author got off the train and walked to another
platform, and transferred to another train at around minute 35.
Accordingly, the accelerometer data show more variations.
From minutes 35 to 57, he sat in the train, and took out the
sensor node from the backpack from minutes 39 to 57. He
held and swung the sensor from minutes 39 to 45, and we
observe a larger variation in the accelerometer readings. At
around minute 45, he put down the sensor on next seat. As a
result, the accelerometer readings show a smaller variation,
while the temperature readings decreased gradually as the
sensor cooled down. At around minute 57, the author got off
the train and started walking to his office, holding the device
in hand, leading to a larger variation in the accelerometer data.
Upon arriving at the office, the sensor node was turned off
and restarted a few minutes later to upload data to the
basestation.

VI. CONCLUSIONS
We designed and implemented a mobile sensor network

testbed using Sun SPOTs, focusing on the issues of
lightrobustness and efficiency. Our implementations support
multiple sensor nodes simultaneously connecting to the
basestation, and handle loss of connection and performing
reconnection. To support flexible and efficient data
collection, the sensor program collects sensory data during
disconnected status, and automatically uploads the stored
data when it is in the range of a basestation. When the sensor
node disconnects from the basestation, the host application
saves data uploaded from the sensor into a file. Possible
future works include extension to fully support different
routing schemes and sensor data aggregation schemes, and
study of energy efficiency issue.

REFERENCES
[1] Crossbow Technology. [Online]. Available:

http://www.xbow.com/Products/wproductsoverview.aspx.
[2] Intel imote. [Online]. Available: http://www.ee.ucla.edu/

mbs/ipsn05/demo/11_RKling.pdf.
[3] C. Perkins, E. B. Royer, and S. Das, “Ad hoc On-Demand Distance

Vector (AODV) Routing,” IETF. RFC, 2003.
[4] B. Hull, “CarTel: A Distributed Mobile Sensor Computing System,” in

SenSys, 2006.
[5] J. A. Gutierrez, M. Naeve, E. Callaway, M. Bourgeois, V. Mitter, and B.

Heile, “A Developing Standard for Low-Power Low-Cost Wireless
Personal Area Networks,” in IEEE Network, 2001, vol. 15, no. 5, pp.
12-19.

[6] J. Hill, “System architecture for wireless sensor networks,” University
of California at Berkeley, 2003.

[7] J. Hill, “System architecture directions for networked sensors,” in Proc.
of ASPLOS-IX Conference.

[8] Nokia Sensor Planet project. [Online]. Available:
http://www.sensorplanet.org.

[9] Y. Iwasaki, K. Naito, K. Mori, and H. Kobayashi, “Implementation of
Energy Saving Mechanisms for Sensor Networks with SunSPOT
Devices,” in ICMU, 2012.

[10] P. Juang, M. M. L. S. P. H. Oki, Y. Wang, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: Design tradeoffs
and early experiences with Zebranet,” in Proc. of ASPLOS-X
Conference, 2002.

[11] R. Goldman. Using the lis3l02aq accelerometer. A sun spot application.
[Online]. Available:
http://www.sunspotworld.com/docs/AppNotes/AccelerometerAppNot
e.pd

[12] S. C. Ergen. Zigbee/IEEE 802.15.4 summary. a preprint. [Online].
Available: http://www.sinemergen.com/zigbee.pdf.

[13] Corona. A distributed query processor for sunspot wireless sensor
network platform. [Online]. Available:
http://sydney.edu.au/engineering/it/wsn/corona/?corona.

[14] Sun Labs. Sun SPOT Theory of Operation. [Online]. Available:
http://www.sunspotworld.com/docs/Red/SunSPOTTheoryOfOperatio
n.pdf.

[15] Sun SPOT Developer’s Guide. [Online]. Available:
http://www.sunspotworld.com/docs/Yellow/SunSPOTProgrammers-
Manual.pdf.

[16] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons from
a sensor network expedition,” EWSN, 2004.

[17] D. Tyman, N. Bulusu, and J. Mache, “An Activity-Based Sensor
Networks Course for Undergraduates with Sun SPOT Devices,”
SIGCSE, 2009.

[18] D. V. D. Akker, B. Braem, and C. Blondia, “adapting the Sun SPOT
architecture for MAC development,” Annual Symposium of the
IEEE/CVT, 2009.

Hung-Da Shih received the Bachelor of Business Administration in the
Department of Computer and Information Science from the Soochow
University in 2004. From September 2007 to present, he has been with the
Department of Computer and Information Sciences, Fordham University, as
a graduate student pursuing his Master degree in Computer Science.

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

119

Xiaolan Zhang holds a Ph.D. in Computer Science
from University of Massachusetts Amherst. She
received her B.Sc. degree from the Beijing University in
China, and her M.Sc. degree from University of
Massachusetts Amherst. She is currently an assistant
professor in the Computer and Information Science
Department at Fordham University in New York, NY,
USA. Her research interests include mobile wireless

networks, mobility modeling and Disruption Tolerant Networks.

David S. L. Wei received his Ph.D. degree in Computer
and Information Science from the University of
Pennsylvania in 1991. Dr. Wei has authored and
co-authored more than 80 technical papers in the areas of
distributed and parallel processing, wireless networks
and mobile computing, optical networks, peer-to-peer
communications, and cognitive radio networks in various
archival journals and conference proceedings. He is a

lead guest editor of IEEE Journal on Selected Areas in Communications
(J-SAC) for the special issue on Networking Challenges in Cloud Computing
Systems and Applications. He was a lead guest editor of IEEE J-SAC for the
special issue on Mobile Computing and Networking, and was a guest editor
of IEEE J-SAC for the special issue on Peer-to-Peer Communications and
Applications. Currently, Dr. Wei focuses his research efforts on wireless

sensor networks, cognitive radio networks, cloud computing, and intelligent
transportation system.

Kashirasagar Naik is an associate professor in the Dept.
of Electrial and Computer Engineering at the University
of Waterloo, Ontario, Canada. Previously, he was a
software development engineer for Wipro Technologies
in Bangalore, India. Dr. Naik has contributed to
numerous journals and conference publications in the
area of software testing.

Rung-Ching Chen received the B.S. degree from
department of electrical engineering in 1987, and the M.
S. degree from the institute of computer engineering in
1990, both from National Taiwan University of Science
and Technology, Taipei, Taiwan. In 1998, he received
the Ph.D. degree from the department of applied
mathematics in computer science

sessions, National Chung Tsing University. He is now a professor at the
Department of Information Management and a Dean at college informatics in
Chaoyang University of Technology, Taichung, Taiwan. He has been a
Fellow of IET since July, 2011. His research interests include web
technology, domain ontology, pattern recognition and knowledge
engineering.

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

120

