

Abstract—Classification is most challenging and innovative

problem in data mining. Classification techniques had been
focus of research since years. Logic, perception, instance and
statistical concepts based classifiers are available to resolve the
classification problem. This work is about the logic based
classifiers known as decision tree classifiers because these use
logic based algorithms to classify data on the basis of feature
values. A splitting criterion on attributes is used to generate the
tree. A classifier can be implemented serially or in parallel
depending upon the size of data set. Some of the classifiers such
as SLIQ, SPRINT, CLOUDS, BOAT and Rainforest have the
capability of parallel implementation. IDE 3, CART, C4.5 and
C5.0 are serial classifiers. Building phase has more importance
in some classifiers to improve the scalability along with quality
of the classifier. This study will provide an overview of different
logic based classifiers and will compare these against our
pre-defined criteria. We conclude that SLIQ and SPRINT are
suitable for larger data sets whereas C4.5 and C5.0 are best
suited for smaller data sets.

Index Terms—Classification, data mining, decision trees,
logic based classifiers.

I. INTRODUCTION
There is an ardent need to automate data mining techniques

due to recent advances in storage and data collection methods.
Tremendous increase in data received from current
information systems used for weather forecasting, market
sales, daily stocks trade and others has increased the need to
find proactive and highly efficient data mining techniques to
cope with these advances. Various techniques based on logic,
perception or statistical algorithms are available. Decision
trees use logic based algorithms to describe, classify and
generalize data. Some of the applications of decision trees in
various knowledge areas are pattern recognition, expert
systems, signal processing, decision theory, machine learning,
and artificial neural networks and statistics [1], [2].

This study is concerned with the analytical review and
criticism of logic based classifiers. A comparison is given in
Table I.

II. DECISION TREE ALGORITHMS
Concept learning system (CLS) presented by Hunt in 1966

was the beginning of decision tree classifiers. The objective
of CLS was to reduce the cost of classifying objects which
can be either misclassification cost or finding the value of
object or both. IDE 3.0 (Iterative Dichotomizer 3 is successor

Manuscript received September 19, 2012; revised October 14, 2012.
Aftab Ali Haider is with Center for Software Dependability, Muhammad

Ali Jinnah University (MAJU), Islamabad, Pakistan (email:
aftab775@yahoo.com).

Sohail Asghar is with Centre for Research in Data Engineering (CORD),
Muhammad Ali Jinnah University (MAJU) Islamabad, Pakistan (email:
sohail.asghar@jinnah.edu.pk).

of CLS but it focused on the induction task. Induction is
basically to derive such classification rules from attributes of
objects for which classifiers are equally successful for both
training as well as test data set. IDE 3.0 suggested to build all
possible decision trees and finally select the simplest one was
the optimal result. However, limitation of IDE 3.0 can be
more explicitly found for larger databases, where
construction of all possible chains of decision trees is not an
easy task. Second drawback is evident from the fact that this
algorithm selects the simplest decision tree as the result. The
optimal or accurate decision tree may or may not be the
simplest tree in the chain of possible decision trees. Only
ordered values of attributes can be handled in IDE 3.0 and
there is no method to deal with continuous values. Selection
best attribute at root node is found through information gain
method. Due to inability of IDE 3.0 to deal with noisy data,
lot of pre-processing is required for accurate results [4], [5].

C 4.5 is successor of IDE 3.0 and is based on Hunt’s tree
construction method. It can be rightly said that C 4.5 is an
improved version of IDE 3.0. In C 4.5, the inherent
drawbacks of IDE 3.0 are removed to make the algorithm
more accurate for noisy data and with rich information. C 4.5
can handle both ordered and unordered vales, however, is less
accurate for continuous attributes [6]. This problem was later
addressed [10]. In order to avoid over-fitting problem,
pruning method has been enhanced. The selection of best
attribute is done through gain ratio impurity method.
Instability problem of decision trees has also been considered
in C 4.5. C 5.0 has combined boosting algorithm Adaboost
and C 4.5 as a software package [9].

CART (Classification and Regression Trees) builds both
regression and classification trees. In CART, data is taken in
raw form and it has the capability to handle both continuous
and discrete attributes. CART uses binary recursive
partitioning procedure. A sequence of nested pruned trees is
obtained in CART. Pruning in CART is done on a portion of
training set. Unlike C 4.5, predictive performance of optimal
decision tree is obtained on independent data set rather than
internal performance measure used in C 4.5 for tree selection.
This is the basic deviation from other decision tree algorithms
that use training data set to identify the best tree. Another
distinct feature of CART is that it has automatic tree
balancing and missing values handling mechanism. Missing
variables are not dropped and “surrogate” variables with
similar information contained in the primary splitter are
substituted. Automatic learning makes it simpler than other
multivariate modeling methods. Gini index is used to select
the best attribute at root. However, it has the capability to use
other single variable such as symgini or multi-variable
splitting criteria e.g. linear combinations to determine the
best split point. Each and every node is tested for best split
based on these criterions. Regression tree building is another
distinct feature which is not found in C 4.5 and IDE 3.0 [11],
[12].

A Survey of Logic Based Classifiers

Aftab Ali Haider and Sohail Asghar

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

DOI: 10.7763/IJFCC.2013.V2.135 126

TABLE I: A COMPARISON OF LOGIC BASED CLASSIFIERS

SLIQ and SPRINT are based on Shafer’s tree construction
method that uses breadth first approach. Another distinct
feature of these algorithms is that these are not memory
resident and are highly suitable for large data sets. SLIQ
(Supervised Learning In Quest) can handle both numeric and
categorical attributes. To reduce the cost of evaluating
numeric attributes, pre sorting techniques are used in tree
growth phase. Pre sorting replaces the sorting at nodes with
one time sort and uses list data to find the best split point. List
data structure is memory resident and is a constraint on SLIQ
to handle larger data sets. Pruning is based on Minimum
Description Length (MDL) principle which is an inexpensive
and accurate method. These characteristics make SLIQ
capable to handle large data sets with ease and lesser time
complexity [7]. SLIQ uses gini index to find the best attribute
to reside at root node. However, drawbacks in suing gini are
addressed in [13].

Other advantages of SLIQ are its ability to handle disk
resident data sets that cannot be handled by previously
discussed algorithms. However, this algorithm uses training
data set for classification as compared to CART [7].

Unlike SLIQ, SPRINT (Scalable Parallelizable Induction
of decision Tree algorithm) can also be used both as parallel as
well as serial decision tree algorithm. It is definitely an
extension of SLIQ algorithm. SPRINT is also based on
breadth first technique presented by Shafer for tree
construction. SPRINT is also fast and highly scalable like

SLIQ. Unlike SLIQ, where data list structure is memory
resident, in SPRINT attribute list is not memory resident.
Hence, there is no storage constraint on larger data sets in
SPRINT. Memory resident attribute list is useful for smaller
data sets because there is no need to rewrite the list for each
split. For larger data sets, disk resident attribute list of
SPRINT is better than SLIQ [3].

PUBLIC classifier is distinct from previously discussed
algorithms as it integrates pruning and building phases
together. Growing a decision tree without pruning may need
extra effort, which can be reduced if pruning is done in
parallel. PUBLIC uses entropy to select the best split at root
node. Results deduced in indicate that PUBLIC performs
better than SPRINT [8].

CLOUDS (Classification for Large or OUt of core Data
Sets) is an enhancement to SPRINT. It has lower complexity
and lesser input / output requirements as compared to
SPRINT for real data sets. CLOUDS is based on shafer’s
breadth first methodology. Sampling the splitting points (SS)
and sampling the splitting point with estimation (SSE) are
used to build the tree from randomly small subset of training
data [14].

RainForest framework provides a tree induction schema
that can be applied to all known algorithms. This framework
separates the quality and scalability concerns. A group of
attributes at each nodes is evaluated which are later used to
find the best split criteria. The algorithms based on this

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

127

framework have lower computational complexity with better
performance as compared to SPRINT [15].

Bootstrapped Optimistic Algorithm for Tree construction
(BOAT) further improves the computational efficiency by
building decision trees at faster speeds than other tree building
algorithms and performs fewer database scans. An added
feature of BOAT is its ability to dynamically update the tree
for any modification including insertion and deletion without
the need to re-construct it. BOAT exploits bootstrapping
technique to select the splitting criteria and a small subset of
the training dataset for which tree is constructed. This tree is
built on a small subset of training dataset but it reflects the
properties of entire training data set. In case there is some
error or difference, the tree can be reconstructed for the
affected portion with nominal cost [16]. Brief comparison is
given in Table 1.

III. EVALUATION AND ANALYSIS OF CLASSIFIERS
Major Logic based classifiers are evaluated as under;

A. IDE 3.0
IDE 3.0 was an initial work by Quinlan which was based

on Hunt’s tree construction. Some of the shortcomings as
compared to other algorithms are;

 Simplest tree selected out of the chain of possible trees
may or may not be the optimal tree.

 This algorithm was unable to handle numeric attribute.
 This algorithm has low accuracy of classification for

large data sets and was not scalable as well.
 There was need of pre processing to improve the

accuracy of IDE 3.0 in information rich and noisy data
set.

B. C 4.5 and C 5.0
C 4.5 was the successor of IDE 3.0 and C 4.0. This

algorithm was able to handle both numeric and discrete data
sets. But later work found that C 4.5 has low accuracy in
dealing with numeric attributes. A new version with
modifications to cater for the numeric attribute in better way
was released. Even then the accuracy of classification of C
4.5 was not comparable to other statistics based classifiers.
Later boosting and bagging on C 4.5 helped to improve the
performance of C 4.5. In some cases, C 4.5 is far better than
ANN.
Some of the shortcomings are listed below

 The pruning method of C 4.5 is biased to under-pruning
 Tree selection in C 4.5 is based on training data set,

whereas same task in CART is done on test data set.
 C 4.5 is based on classical statistics and requires skill

for better understanding.
 C 4.5 lacks the means to partial automatic learning as

are found in CART.
 Missing values are dropped in C 4.5 whereas there is a

mechanism to deal with missing values in CART.
 C 4.5 is memory dependant and is not successful for

very large data sets.
 C 4.5 is not speedy and fast as SLIQ and SPRINT
 C 4.5 cannot use multivariate methods for attribute

selection at root node.
Despite these shortcomings, C 4.5 is preferred in data

mining due to familiarity and ease to use.

C. CART
CART is also based on Hunt’s tree construction

methodology. This algorithm is competitor of C 4.5. Most of
the drawbacks of C 4.5 are resolved in CART. However,
some of the shortcomings of CART are as follow;

 CART is memory resident and is not suitable for large
data sets.

 CART performs sorting at each and every node, which
is not found in SLIQ and SPRINT

 CART is simpler and does not require prior knowledge
of statistics. CART is new concept of tree building and
is not based on classical statistics.

 Statisticians are not much familiar with CART and this
is not accepted by them as other algorithms like C 4.5
and SLIQ or SPRINT are accepted.

 Due to deviation from basics of classical statistics there
are only few who are familiar with it. This factor
reduces its applicability because there is none to help
you out in case of any difficultly to implement it.

D. SLIQ
SLIQ is fast and speedy algorithm and is highly suitable

for large data sets. This algorithm uses attribute list for
sorting the best attribute for splits. However, there are some
of the shortcomings of the SLIQ as discussed below;

 Attribute list of SLIQ is memory resident, which puts a
memory constraint on the classifier.

 SLIQ is successful for serial implementations only and
cannot be applied on parallel machines.

Although there are some drawbacks of the SLIQ, but still it
is best algorithm for those data sets for which memory is not
an issue. However, it is not preferable to use for very large
data sets.

E. SPRINT
SPRINT is an extension of SLIQ. The purpose to devise

this classifier was to resolve the shortcomings of SLIQ. This
algorithm has the ability to be implemented for serial as well
as parallel applications. Secondly, attribute list and histogram
in SPRINT are disk resident and there is no memory
constraint. This algorithm makes the size of data set
independent of main memory and can be rightly said a
scalable algorithm with lesser time complexity [15].

Main drawbacks of this classifier are that attribute list
needs to be re written and re sorted for each split, which is not
a preferred thing. Some of these drawbacks are later
addressed in RainForest framework.

F. PUBLIC
PUBLIC improves the accuracy of classification by

integrating pruning and tree building in a single phase. The
main difference between the PUBLIC and other classifiers is
that this algorithm concentrates on pruning instead of tree
building phase to improve the performance. Possibility of
integrating pruning with tree building phase has been
exploited in this algorithm.

G. CLOUDS
In pre processing phase of SPRINT data set is partitioned

into attribute list which requires one read and one write

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

128

operation whereas external sorting requires two read and two
write operations. However, in this algorithm selection of a
random sample reduces the computational cost and input
output requirements. There are certain shortcomings of the
CLOUDS which include;

 A small subset of the training data set is selected to
build the classifier through SS and SSE. Any loss of
data may affect the accuracy of classification

 Secondly, it has been assumed that entire subset fits in
the main memory that may not be true always.

H. RainForest
In SPRINT, there is a need to re-write and sort the attribute

list at each node. Re-writing the list undesirably increases the
size of database and sorting increase computational cost.
Both of these factors are highly undesirable and have room
for improvements.

Rainforest has introduced Attribute-Value, Class label
(AVC) group for each node instead of generating attribute list.
The size of the AVC group is much smaller than attribute lists
because attribute list is proportional to the number of records
in the data partition. Distinct values in columns of data
partition determine the size of AVC group. RainForest
framework is applicable to all known decision tree
algorithms and performs faster and has better performance
than SPRINT [15].

I. BOAT
RainForest requires a portion of main memory for AVC
group at each node which has been eliminated in BOAT.
BOAT is faster and allows for dynamic insertion and deletion
of records. Some of the shortcomings of BOAT are;

 It strongly depends upon the small subset of dataset to
train the classifier. This factor may lead to reduce
accuracy of performance in certain cases.

 It allows dynamic insertion and deletion which requires
thorough and rigorous studies to ensure that built tree is
similar to the re-constructed tree.

However, BOAT has provided certain improvements
which can be used to achieve better performance and
accuracy of classification [16].

IV. CONCLUSION
Selection of a classifier for certain data set is a difficult

task. However, if basic features of these classifiers are known
it is quite easier to select most relevant classifier that can
provide better results. This perception can be strengthened by
the fact that SLIQ is quite useful for smaller data sets and

provides better results than SPRINT for such a dataset but
when SLIQ is implemented for larger data set, the SPRINT
outperforms SLIQ. Similarly IDE 3.0 has better accuracy
than CART in certain cases. A careful understanding of a
classifier helps to more accurately classify the training data
set. There are two different implementations of classifiers i.e.
serial and parallel. A parallel implementation improves the
computation complexity and is mandatory for larger data sets.
In such a case SPRINT, CLOUDS, BOAT or Rainforest are
preferable. Whenever there is a smaller data set, the main
contender to be best classifiers can be IDE 3.0, C 4.5, CART
or SLIQ. A more quantified comparison of these classifiers
can be done by implementing these classifiers in weka for a
considerably large data set.

REFERENCES
[1] S. K. Murthy, “Automatic Construction of Decision Trees from Data:

A Multi-Disciplinary Survey,” Data Mining and Knowledge Discovery,
vol. 2, 1998, pp. 345–389.

[2] S. B. Kotsiantis, “Supervised Machine Learning: A Review of
Classification Techniques,” Informatica, vol. 31, 2007, pp. 249-268.

[3] J. Shafer, R. Agrawal, and M. Mehta, “A scalable parallel classifier for
data mining,” in proceedings of the 22nd international conference on
very large data base. Mumbai (Bombay), 1996.

[4] J. R. Quinlan, “Induction of decision trees,” Machine Leaning, vol. 1,
1986, pp. 81-106.

[5] J. R. Quinlan, “Simplifying decision trees,” International Journal of
Mach ine Studies, vol. 27, 1987, pp. 221-234.

[6] J. R. Quinlan, “C45: Programs for Machine Learning,” Morgan
Kaufmann, San Mateo, CA, 1993.

[7] M. Mehta and R. Agrawal, and J. Rissanen, “SLIQ: A fast scalable
classifier for data mining,” In EDBT 96, Avignon, France

[8] R. Rajeev and S. Kyuseok, “PUBLIC: A decision tree classifiers that
integrates building and pruning,” in Proceedings of the 24th VLDB
conference, New York, USA, 1998.

[9] Y. Freund and M. Llew, “The alternating decision tree algorithms,” in
Proceedings of the 16th International Conference on Machine
Learning, pp. 124-133, 1999.

[10] J. R. Quinlan, “Improved use of continuous attributes in C 4.5,”
Journal of Artificial Intelligence Research, vol. 4, 1996, pp. 77-90

[11] D. Steinberg, “The top ten algorithms in data mining,” Ch 10, Taylor
and Francis Group, LLC, 2009.

[12] J. L. Roger, “An Introduction to Classification and Regression Tree
(CART) Analysis,” in Proc. of Annual Meeting of the Society for
Academic Emergency Medicine in San Francisco, California 2000.

[13] B. Chandra, “Elegant Decision Tree Algorithm for Classification in
Data Mining,” in Proc. of Third International Conference on Web
Information Systems Engineering (Workshops), 2002.

[14] K. Alsabti, S. Ranka, and V. Singh, “CLOUDS: A decision tree
classifier for large datasets,” in Proc. of 4th Intl. Conf. on Knowledge
Discovery and Data Mining, Aug 1998.

[15] J. Gehrke, V. Ganti, and R. Ramakrishnan, “RainForest - A
Framework for Fast Decision Tree Construction of Large Datasets,” in
Proc. of the 24th VLDB Conference New York, USA, 1998.

[16] J. Gehrke, V. Ganti, R. Ramakrishnan, and W. Loh, “BOAT–
optimistic decision tree construction,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, June
1999.

129

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

