
  

  
Abstract—Classification is most challenging and innovative 

problem in data mining. Classification techniques had been 
focus of research since years.  Logic, perception, instance and 
statistical concepts based classifiers are available to resolve the 
classification problem. This work is about the logic based 
classifiers known as decision tree classifiers because these use 
logic based algorithms to classify data on the basis of feature 
values. A splitting criterion on attributes is used to generate the 
tree.  A classifier can be implemented serially or in parallel 
depending upon the size of data set. Some of the classifiers such 
as SLIQ, SPRINT, CLOUDS, BOAT and Rainforest have the 
capability of parallel implementation. IDE 3, CART, C4.5 and 
C5.0 are serial classifiers. Building phase has more importance 
in some classifiers to improve the scalability along with quality 
of the classifier. This study will provide an overview of different 
logic based classifiers and will compare these against our 
pre-defined criteria. We conclude that SLIQ and SPRINT are 
suitable for larger data sets whereas C4.5 and C5.0 are best 
suited for smaller data sets. 
 

Index Terms—Classification, data mining, decision trees, 
logic based classifiers. 
 

I. INTRODUCTION 
There is an ardent need to automate data mining techniques 

due to recent advances in storage and data collection methods.  
Tremendous increase in data received from current 
information systems used for weather forecasting, market 
sales, daily stocks trade and others has increased the need to 
find proactive and highly efficient data mining techniques to 
cope with these advances. Various techniques based on logic, 
perception or statistical algorithms are available. Decision 
trees use logic based algorithms to describe, classify and 
generalize data. Some of the applications of decision trees in 
various knowledge areas are pattern recognition, expert 
systems, signal processing, decision theory, machine learning, 
and artificial neural networks and statistics [1], [2].  

This study is concerned with the analytical review and 
criticism of logic based classifiers.  A comparison is given in 
Table I. 

 

II. DECISION TREE ALGORITHMS 
Concept learning system (CLS) presented by Hunt in 1966 

was the beginning of decision tree classifiers. The objective 
of CLS was to reduce the cost of classifying objects which 
can be either misclassification cost or finding the value of 
object or both.  IDE 3.0 (Iterative Dichotomizer 3 is successor 
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of CLS but it focused on the induction task. Induction is 
basically to derive such classification rules from attributes of 
objects for which classifiers are equally successful for both 
training as well as test data set. IDE 3.0 suggested to build all 
possible decision trees and finally select the simplest one was 
the optimal result. However, limitation of IDE 3.0 can be 
more explicitly found for larger databases, where 
construction of all possible chains of decision trees is not an 
easy task. Second drawback is evident from the fact that this 
algorithm selects the simplest decision tree as the result. The 
optimal or accurate decision tree may or may not be the 
simplest tree in the chain of possible decision trees. Only 
ordered values of attributes can be handled in IDE 3.0 and 
there is no method to deal with continuous values. Selection 
best attribute at root node is found through information gain 
method. Due to inability of IDE 3.0 to deal with noisy data, 
lot of pre-processing is required for accurate results [4], [5]. 

C 4.5 is successor of IDE 3.0 and is based on Hunt’s tree 
construction method.  It can be rightly said that C 4.5 is an 
improved version of IDE 3.0. In C 4.5, the inherent 
drawbacks of IDE 3.0 are removed to make the algorithm 
more accurate for noisy data and with rich information. C 4.5 
can handle both ordered and unordered vales, however, is less 
accurate for continuous attributes [6]. This problem was later 
addressed [10]. In order to avoid over-fitting problem, 
pruning method has been enhanced.  The selection of best 
attribute is done through gain ratio impurity method. 
Instability problem of decision trees has also been considered 
in C 4.5.  C 5.0 has combined boosting algorithm Adaboost 
and C 4.5 as a software package [9].  

CART (Classification and Regression Trees) builds both 
regression and classification trees. In CART, data is taken in 
raw form and it has the capability to handle both continuous 
and discrete attributes. CART uses binary recursive 
partitioning procedure. A sequence of nested pruned trees is 
obtained in CART. Pruning in CART is done on a portion of 
training set. Unlike C 4.5, predictive performance of optimal 
decision tree is obtained on independent data set rather than 
internal performance measure used in C 4.5 for tree selection. 
This is the basic deviation from other decision tree algorithms 
that use training data set to identify the best tree. Another 
distinct feature of CART is that it has automatic tree 
balancing and missing values handling mechanism. Missing 
variables are not dropped and “surrogate” variables with 
similar information contained in the primary splitter are 
substituted.  Automatic learning makes it simpler than other 
multivariate modeling methods. Gini index is used to select 
the best attribute at root. However, it has the capability to use 
other single variable such as symgini or multi-variable 
splitting criteria e.g. linear combinations to determine the 
best split point. Each and every node is tested for best split 
based on these criterions. Regression tree building is another 
distinct feature which is not found in C 4.5 and IDE 3.0 [11], 
[12]. 
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TABLE I: A COMPARISON OF LOGIC BASED CLASSIFIERS 

SLIQ and SPRINT are based on Shafer’s tree construction 
method that uses breadth first approach. Another distinct 
feature of these algorithms is that these are not memory 
resident and are highly suitable for large data sets. SLIQ 
(Supervised Learning In Quest) can handle both numeric and 
categorical attributes. To reduce the cost of evaluating 
numeric attributes, pre sorting techniques are used in tree 
growth phase.  Pre sorting replaces the sorting at nodes with 
one time sort and uses list data to find the best split point. List 
data structure is memory resident and is a constraint on SLIQ 
to handle larger data sets.  Pruning is based on Minimum 
Description Length (MDL) principle which is an inexpensive 
and accurate method. These characteristics make SLIQ 
capable to handle large data sets with ease and lesser time 
complexity [7]. SLIQ uses gini index to find the best attribute 
to reside at root node. However, drawbacks in suing gini are 
addressed in [13].  

Other advantages of SLIQ are its ability to handle disk 
resident data sets that cannot be handled by previously 
discussed algorithms. However, this algorithm uses training 
data set for classification as compared to CART [7]. 

Unlike SLIQ, SPRINT (Scalable Parallelizable Induction 
of decision Tree algorithm) can also be used both as parallel as 
well as serial decision tree algorithm. It is definitely an 
extension of SLIQ algorithm. SPRINT is also based on 
breadth first technique presented by Shafer for tree 
construction. SPRINT is also fast and highly scalable like 

SLIQ. Unlike SLIQ, where data list structure is memory 
resident, in SPRINT attribute list is not memory resident. 
Hence, there is no storage constraint on larger data sets in 
SPRINT. Memory resident attribute list is useful for smaller 
data sets because there is no need to rewrite the list for each 
split. For larger data sets, disk resident attribute list of 
SPRINT is better than SLIQ [3]. 

PUBLIC classifier is distinct from previously discussed 
algorithms as it integrates pruning and building phases 
together. Growing a decision tree without pruning may need 
extra effort, which can be reduced if pruning is done in 
parallel. PUBLIC uses entropy to select the best split at root 
node. Results deduced in indicate that PUBLIC performs 
better than SPRINT [8]. 

CLOUDS (Classification for Large or OUt of core Data 
Sets) is an enhancement to SPRINT. It has lower complexity 
and lesser input / output requirements as compared to 
SPRINT for real data sets. CLOUDS is based on shafer’s 
breadth first methodology.   Sampling the splitting points (SS) 
and sampling the splitting point with estimation (SSE) are 
used to build the tree from randomly small subset of training 
data [14]. 

RainForest framework provides a tree induction schema 
that can be applied to all known algorithms. This framework 
separates the quality and scalability concerns.  A group of 
attributes at each nodes is evaluated which are later used to 
find the best split criteria. The algorithms based on this 
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framework have lower computational complexity with better 
performance as compared to SPRINT [15]. 

Bootstrapped Optimistic Algorithm for Tree construction 
(BOAT) further improves the computational efficiency by 
building decision trees at faster speeds than other tree building 
algorithms and performs fewer database scans. An added 
feature of BOAT is its ability to dynamically update the tree 
for any modification including insertion and deletion without 
the need to re-construct it. BOAT exploits bootstrapping 
technique to select the splitting criteria and a small subset of 
the training dataset for which tree is constructed.  This tree is 
built on a small subset of training dataset but it reflects the 
properties of entire training data set. In case there is some 
error or difference, the tree can be reconstructed for the 
affected portion with nominal cost [16]. Brief comparison is 
given in Table 1. 

 

III. EVALUATION AND ANALYSIS OF CLASSIFIERS 
Major Logic based classifiers are evaluated as under; 

A. IDE 3.0 
IDE 3.0 was an initial work by Quinlan which was based 

on Hunt’s tree construction. Some of the shortcomings as 
compared to other algorithms are; 

 Simplest tree selected out of the chain of possible trees 
may or may not be the optimal tree. 

 This algorithm was unable to handle numeric attribute. 
 This algorithm has low accuracy of classification for 

large data sets and was not scalable as well. 
 There was need of pre processing to improve the 

accuracy of IDE 3.0 in information rich and noisy data 
set.  

B. C 4.5 and C 5.0 
C 4.5 was the successor of IDE 3.0 and C 4.0. This 

algorithm was able to handle both numeric and discrete data 
sets. But later work found that C 4.5 has low accuracy in 
dealing with numeric attributes. A new version with 
modifications to cater for the numeric attribute in better way 
was released. Even then the accuracy of classification of C 
4.5 was not comparable to other statistics based classifiers. 
Later boosting and bagging on C 4.5 helped to improve the 
performance of C 4.5. In some cases, C 4.5 is far better than 
ANN. 
Some of the shortcomings are listed below 

 The pruning method of C 4.5 is biased to under-pruning 
 Tree selection in C 4.5 is based on training data set, 

whereas same task in CART is done on test data set.  
 C 4.5 is based on classical statistics and requires skill 

for better understanding. 
  C 4.5 lacks the means to partial automatic learning as 

are found in CART. 
 Missing values are dropped in C 4.5 whereas there is a 

mechanism to deal with missing values in CART. 
 C 4.5 is memory dependant and is not successful for 

very large data sets. 
 C 4.5 is not speedy and fast as SLIQ and SPRINT 
 C 4.5 cannot use multivariate methods for attribute 

selection at root node. 
Despite these shortcomings, C 4.5 is preferred in data 

mining due to familiarity and ease to use. 

C. CART 
CART is also based on Hunt’s tree construction 

methodology. This algorithm is competitor of C 4.5. Most of 
the drawbacks of C 4.5 are resolved in CART. However, 
some of the shortcomings of CART are as follow; 

 CART is memory resident and is not suitable for large 
data sets. 

 CART performs sorting at each and every node, which 
is not found in SLIQ and SPRINT 

 CART is simpler and does not require prior knowledge 
of statistics. CART is new concept of tree building and 
is not based on classical statistics. 

 Statisticians are not much familiar with CART and this 
is not accepted by them as other algorithms like C 4.5 
and SLIQ or SPRINT are accepted. 

 Due to deviation from basics of classical statistics there 
are only few who are familiar with it. This factor 
reduces its applicability because there is none to help 
you out in case of any difficultly to implement it. 

D. SLIQ 
SLIQ is fast and speedy algorithm and is highly suitable 

for large data sets. This algorithm uses attribute list for 
sorting the best attribute for splits. However, there are some 
of the shortcomings of the SLIQ as discussed below; 

 Attribute list of SLIQ is memory resident, which puts a 
memory constraint on the classifier. 

 SLIQ is successful for serial implementations only and 
cannot be applied on parallel machines. 

Although there are some drawbacks of the SLIQ, but still it 
is best algorithm for those data sets for which memory is not 
an issue. However, it is not preferable to use for very large 
data sets. 

E. SPRINT 
SPRINT is an extension of SLIQ. The purpose to devise 

this classifier was to resolve the shortcomings of SLIQ. This 
algorithm has the ability to be implemented for serial as well 
as parallel applications. Secondly, attribute list and histogram 
in SPRINT are disk resident and there is no memory 
constraint. This algorithm makes the size of data set 
independent of main memory and can be rightly said a 
scalable algorithm with lesser time complexity [15]. 

Main drawbacks of this classifier are that attribute list 
needs to be re written and re sorted for each split, which is not 
a preferred thing. Some of these drawbacks are later 
addressed in RainForest framework.  

F. PUBLIC 
PUBLIC improves the accuracy of classification by 

integrating pruning and tree building in a single phase.  The 
main difference between the PUBLIC and other classifiers is 
that this algorithm concentrates on pruning instead of tree 
building phase to improve the performance. Possibility of 
integrating pruning with tree building phase has been 
exploited in this algorithm. 

G. CLOUDS 
In pre processing phase of SPRINT data set is partitioned 

into attribute list which requires one read and one write 
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operation whereas external sorting requires two read and two 
write operations. However, in this algorithm selection of a 
random sample reduces the computational cost and input 
output requirements. There are certain shortcomings of the 
CLOUDS which include; 

 A small subset of the training data set is selected to 
build the classifier through SS and SSE. Any loss of 
data may affect the accuracy of classification 

 Secondly, it has been assumed that entire subset fits in 
the main memory that may not be true always. 

H. RainForest 
In SPRINT, there is a need to re-write and sort the attribute 

list at each node. Re-writing the list undesirably increases the 
size of database and sorting increase computational cost. 
Both of these factors are highly undesirable and have room 
for improvements. 

Rainforest has introduced Attribute-Value, Class label 
(AVC) group for each node instead of generating attribute list. 
The size of the AVC group is much smaller than attribute lists 
because attribute list is proportional to the number of records 
in the data partition. Distinct values in columns of data 
partition determine the size of AVC group. RainForest 
framework is applicable to all known decision tree 
algorithms and performs faster and has better performance 
than SPRINT [15]. 

I. BOAT 
RainForest requires a portion of main memory for AVC 
group at each node which has been eliminated in BOAT. 
BOAT is faster and allows for dynamic insertion and deletion 
of records. Some of the shortcomings of BOAT are; 

 It strongly depends upon the small subset of dataset to 
train the classifier. This factor may lead to reduce 
accuracy of performance in certain cases. 

 It allows dynamic insertion and deletion which requires 
thorough and rigorous studies to ensure that built tree is 
similar to the re-constructed tree. 

However, BOAT has provided certain improvements 
which can be used to achieve better performance and 
accuracy of classification [16]. 

 

IV. CONCLUSION 
Selection of a classifier for certain data set is a difficult 

task. However, if basic features of these classifiers are known 
it is quite easier to select most relevant classifier that can 
provide better results. This perception can be strengthened by 
the fact that SLIQ is quite useful for smaller data sets and 

provides better results than SPRINT for such a dataset but 
when SLIQ is implemented for larger data set, the SPRINT 
outperforms SLIQ. Similarly IDE 3.0 has better accuracy 
than CART in certain cases.  A careful understanding of a 
classifier helps to more accurately classify the training data 
set.  There are two different implementations of classifiers i.e. 
serial and parallel. A parallel implementation improves the 
computation complexity and is mandatory for larger data sets. 
In such a case SPRINT, CLOUDS, BOAT or Rainforest are 
preferable. Whenever there is a smaller data set, the main 
contender to be best classifiers can be IDE 3.0, C 4.5, CART 
or SLIQ. A more quantified comparison of these classifiers 
can be done by implementing these classifiers in weka for a 
considerably large data set.  
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