

Abstract—Virtualization can provide substantial benefits to

cloud infrastructure services, also known as Infrastructure as a
Service (IaaS), by facilitating dynamic resource management.
We proposed an integrated architecture to extend the cloud
infrastructure services with live resource scaling and migration
of virtual machines to achieve cost-effective computing in IaaS.
A prototype of the proposed architecture for memory scaling of
the KVM virtual machines with the promising results is also
implemented in Eucalyptus open-source private cloud platform.

Index Terms—Dynamic resource management, virtual
machine scaling, migration, IaaS.

I. INTRODUCTION
Today, millions of web sites and services are hosted on

virtual machines which are usually referred to as virtual
private servers (VPS) by internet hosting service providers. A
budget 384 MB VPS could handle 1000’s of concurrent users
[4] by means of operating system-level virtualization i.e. a
virtualization technique which virtualizes servers by sharing
resources of a physical server between several operating
systems.

Cloud infrastructure services, also known as infrastructure
as a service (IaaS), deliver hardware
infrastructure—typically a virtual server—as a service and
make employing servers more convenient and cost-effective
as the definition of cloud computing by NIST is “a
pay-per-use model for enabling available, convenient and
on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications, services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction.”

A public cloud e.g. Amazon Elastic Compute Cloud (EC2)
provides IaaS available to the general public over internet,
while a private cloud provides such services for a single
organization and usually is managed internally. Hence, the
cloud infrastructure must not be very different. The
schematic of such cloud with infrastructure services is
depicted in Fig. 1. Most of today's clouds with IaaS have
almost the same organization [5] and they solely feature
creating and removing instances of virtual machines to
handle users’ on-demand computing resources. Although
most current hypervisors have online resource scaling
capabilities, users can only determine resources bound to
each virtual machine on instance creation time usually with
the exception of disk and I/O resources. Hence, in the
following, the term “resource” refers to all computing

Manuscript received August 20, 2012; revised November 18, 2012.
The authors are with Computer Engineering Department, University of

Isfahan (e-mail: razavi@eng.ui.ac.ir, zamanifar@eng.ui.ac.ir).

resources (e.g. memory, CPU and network bandwidth) with
the exception of I/O resources.

In the scheme illustrated in Fig. 1, each user has to
determine his maximum resource requirements in a certain
period of time and calls the proper web service of the cloud to
create a new virtual machine to satisfy his requirements.
Hence, if a computing task like most web services requires
availability for a long period of time, although they might use
the maximum resource capacity for a short period, the
maximum required resources has to be requested for the
entire time. Therefore, the challenge is providing better
resource scaling features for the cloud infrastructure with an
effective resource management mechanism.

The rest of this paper is organized as follows. After
introducing related works in section II the proposed
architecture to extend IaaS resource scaling capabilities is
described in section III while section IV illustrates our
experiments with Eucalyptus private cloud. Finally, in
section V our conclusions are presented.

II. RELATED WORKS
SnowFlock [1] address infrastructure resource

management problems by providing VM fork. As
Lagar-Cavilla et al. describe, lack of a general resource
management mechanism forces users of cloud computing
into ad hoc practices to manage application states for their
resource scaling requirements. VM fork is the cloning of a
virtual machine into multiple replicas running on different
hosts. Hence users, instead of creating a new instance of the
virtual machine and restoring it to the proper state, could
rapidly clone an already existing VM.

Fig. 1. Cloud IaaS schematic

Jong-Guen Park et al. [2] describe challenges that come

with server virtualization as increasing resource utilization
while satisfying the service level objectives of software
services running on them. To achieve an effective resource
management of virtual servers they suggest either online
resource scaling or migrating virtual machines from a host

Cost-Effective Computing in the Cloud Infrastructure

Mohammad Razavi and Kamran Zamanifar

International Journal of Future Computer and Communication, Vol. 2, No. 3, June 2013

184

physical machine to another. Finally, they propose an
optimization model based on linear programming for virtual
machine migration in a self-managing virtualized server
environment.

Merwe et al. [3] consider cloudbursting and
follow-the-sun use cases in cloud environment and they
conclude that the real challenge in cloud infrastructure is
finding a service abstraction with a balance between user
complexity and cloud provider complexity when managing
resources with a holistic architecture.

III. THE PROPOSED ARCHITECTURE
Our proposed architecture extends cloud platform

capabilities by adding a dynamic resource scaling module to
its cluster controller. Each physical machine in the cluster has
limited resources, thus to be able to scale its VMs resources it
has to leave some of its resources unutilized. Another
problem is that there is no way to guarantee a fixed amount of
resources the cluster controller can allocate to each VM on a
particular node and reserving resources usually will have
more cost for IaaS provider than allocating it in the first
place.

Despite all these difficulties, considering all the computing
resources in the cluster as a whole, online resource scaling of
VMs in IaaS is an obvious benefit both for the cloud provider
and the end user, and it completely follows cloud pay-per-use
model.

The only way to enable a VM to utilize recourses on the
other physical nodes of the cluster is to migrate it to a node
with underutilized recourses within the cluster. By leveraging
virtual machine migration in the cloud infrastructure, it is
possible to regard the cluster as a pool of resources and find
an optimum mapping between physical and virtualized
resources.

The proposed cloud infrastructure control architecture also
addresses how these extended cloud services should be
presented to the user and what the trade-offs are between the
user and the cloud provider.

A. Parameters
A typical self-managed cluster controller in the cloud

infrastructure usually has to consider several parameters to
manage resources:

• I, the index set of virtual machines
• K, the index set of physical machines
• Ck, maximum number of virtual cores the hypervisor on

physical machine k can allocate to virtual machines
• Ci, virtual CPU cores allocated to virtual machine i
• Mk, maximum amount of memory that the hypervisor on

physical machine k is able to allocate to virtual machines
• mi, memory allocated to virtual machine i
• Ti, migration cost of virtual machine i to a hypervisor on

another physical machine. Usually this parameter vastly
depends on mi (Only cluster controllers that support
virtual machine migration, use this parameter)

To be able to generalize, we use variable R to indicate all
kinds of resources, i.e. CPU virtual cores, memory, network
bandwidth or any other resources a hypervisor on a physical

machine is able to utilize. Variable r also indicates the
corresponding resource on the virtual machine.

Fig. 2. Dynamic Resource Management in a cluster of the cloud

Our proposed architecture also introduces a couple of new

parameters to manage scaling of resources:

• rmin,i, minimum resource requirements for virtual
machine i

• rmax,i, maximum resource requirements for virtual
machine i

• rcur,i, current resource requirements for virtual machine i
• τmin,r,i, minimum allocation time of resource r to virtual

machine i
• τr,i, allocation time of resource r to virtual machine i
• Usually it is safe to set rmax,i to Rk, in which k is the

corresponding physical machine for the virtual machine
i hypervisor, because in absence of other virtual
machines on that hypervisor, virtual machine i could
utilize up to Rk amount of physical machine k resources.

B. System Behavior
Each virtual machine in this architecture could be in either

of these two modes:

• resource guaranteed mode: in this mode, cloud
infrastructure guarantees scaling of resources up to
rmax,i for virtual machine i

• resource unguaranteed mode: in this mode, cloud
infrastructure only guarantees rmin,j amount of the
resource for virtual machine j

The hypervisor on each node of the cluster could have
virtual machines in both resource guaranteed and
unguaranteed modes. Therefore, to distinguish them, we use
r to imply the amount of resource in guaranteed mode,
while r implies unguaranteed mode. Also, we use I as the
index set of virtual machines in resource guaranteed mode
while J indicates the index set of virtual machines in
unguaranteed mode.

The minimum requirement of a resource on a cluster to
make the cloud provider able to guarantee its corresponding
service level agreement (SLA) is given by:

∑∑∑
∈∈∈

<+
Kk

k
Jj

j
Ii

i Rrr min,max, (1)

Although cloud infrastructure does not guarantee more
than rmin,j for virtual machine j in resource unguaranteed

International Journal of Future Computer and Communication, Vol. 2, No. 3, June 2013

185

mode it is beneficial for both cloud provider and the end user
to scale up the resource when it is necessary if the cloud has
enough unutilized resources. Therefore, a factor α could
indicate the ability of the cluster to fulfill the resource scaling
requirements of the virtual machines of the cluster in the
resource unguaranteed mode.

∑∑∑
∈∈∈

+=
Jj

j
Ii

i
Kk

k rrR max,max, α (2)

Equation (2) indicates the total amount of available
resources in the cluster with respect to α factor. Using a
bigger value for α increases the cost of virtual machines in the
cluster.

It is possible to use a similar cost factor for virtual
machines in the resource guaranteed mode, although
choosing values less than 1 could cause infringing the service
level agreements.

The cluster controller has to allocate resources to virtual
machines in the resource unguaranteed mode, so that (3) will
always be feasible:

∑∑
∈∈

≥
Jj

jcur
Jj

j rr ,max,α (3)

The cloud provider has to choose the cost factor to
determine service level agreement boundaries according to:

1
max,

min,

<<
∑
∑

∈

∈ α

Jj
j

Jj
j

r

r
 (4)

It is important to choose the appropriate α for different
resources, e.g. the value of α for memory and virtual CPU
cores could be completely different.

C. Cloud Control Architecture
After extending the cloud infrastructure cluster controller

with resource scaling and VM migration capabilities, the first
question that the cloud infrastructure control architecture has
to answer is how these features should be accessed.
Essentially, according to the cloud model, it is better to
implement these features as a couple of cloud services; hence
the IaaS capabilities will be extended according to the basic
cloud model.

Implementing these features as a set of user-accessible
services has its own problems. In a typical implementation of
IaaS, end users seldom are aware of the infrastructure and its
computing resources. In fact, in a public cloud, because of
location transparency, usually the users only have the
information about their virtual machine region. Each region
in the cloud could contain several clusters and the users could
have no information about available resources in neither its
physical machines nor other machines in the cluster.

Of course, technically in a private cloud, the cloud
provider and the end user could be the same person, but the
same location transparency rules apply. Hence, the end user
could not be responsible for inner-cluster VM migration
without infringing basic IaaS transparency rules.

Online resource scaling usually requires revealing the
same information to the user, but fortunately, considering the
cluster as a pool of resources, the cloud and its clusters have
virtually an infinite amount of resources. Therefore, the cloud

could honor user resource scaling requests with full location
transparency only if it has a self-managed VM migration unit.

Fig. 2 depicts the transactions between different
components of the cloud according to this model. Different
clusters of the cloud should have the same components but
they could operate independently. As fig. 2 illustrates, a
virtual machine could send a resource scale up/down request
to the dynamic resource manager in the cloud. Next, the
resource scaling manager decides whether to honor this
request or not, according to VM mode and available
resources in the cluster. The owner of the virtual machine
could also send resource scaling requests.

In contrast, VM migration commands could only be
generated by cloud infrastructure control architecture. VM
migration manger as illustrated in Fig. 2 is responsible for
deciding when the VM migration should take place, and
where to. The exact mechanism of this module is highly
dependant on cloud provider strategies (e.g. lowering the
costs or reducing energy consumption) and beyond the scope
of this paper, but we will discuss different parameters that
VM migration manager should consider before sending the
related commands.

In this architecture, dynamic resource manager is a part of
the cluster controller that processes requests from the cloud
controller, i.e. indirectly from both the users and their virtual
machines in the cluster, and works as follows:

Resource scaling manager: This module processes
requests indirectly from the users and their virtual machines
on the cluster. Resource scale down requests usually will be
accepted unconditionally and proceed instantly.

If the virtual machine is in resource guaranteed mode and
the demand is not larger that rmax, the scale up requests will
also be accepted unconditionally and without regard to τr. If
the related node, has enough available unutilized resource,
the respective scale up command will be sent to the node
instantly. Otherwise, the new configuration will be sent to the
VM migration manager for further processing.

If the virtual machine is in resource unguaranteed mode,
the request will only be processed if it will not jeopardize
future resource guaranteed mode virtual machine requests,
although the cloud provider cost policies is not irrelevant.
Having enough available unutilized resources on the related
node, or the lack thereof, and the migration cost Ti could play
a major role in processing requests from virtual machines in
resource unguaranteed mode.

VM migration manager: virtual machine migration in a
cluster could be necessary in the presence of a new
configuration both when creating a new VM instance and
when a scale up request from an already running instance is
on the schedule. VM migration manager has to find a new
mapping between VMs and physical nodes while imposing
minimum costs according to the cloud provider policies. The
respective parameters are, but not limited to:

• Migration cost of virtual machines in guaranteed
mode (Ti for i∈I)

• Migration cost of virtual machines in unguaranteed
mode (Tj for j∈J)

• Current allocation of resources on each node
(∑

∈ NIi
icurr , and ∑

∈ NJj
jcurr ,

where IN and JN are the sets

of virtual machines on the respective node N)

International Journal of Future Computer and Communication, Vol. 2, No. 3, June 2013

186

• Maximum allocation of resources on each node
(∑

∈ NIi
ir max, and ∑

∈ NJj
jrmax,

where IN and JN are the sets

of virtual machines on the respective node N)
• Unutilized resources in each node

IV. EXPERIMENTAL RESULTS

A. Implementation
As an open source infrastructure as a service cloud

computing platform, Eucalyptus is an exceptional tool to
experiment novel ideas in such an environment. Eucalyptus
provides a private cloud with almost identical features and
interfaces to Amazon public cloud computing platform, EC2,
as well as Amazon storage services, S3.

Eucalyptus implements EC2 compatible web services by
leveraging Apache Axis2 web service core engine.
Expanding these web services has enabled us to experiment
with our new proposed architecture in an experimental
private cloud. Creating a new instance of a virtual server is a
straightforward task in eucalyptus and with the extended
version of the web services, migrating and resource scaling
of these instances is also quite straightforward.

In the following experiments a set of memory bound
dynamic web services is employed on an Apache web server
in each instance of the virtual servers. The web server is also
expanded with resource monitoring capabilities. Hence the
server could ask the cloud for more resources when it is
necessary. Eucalyptus supports different virtual machine
hypervisors, although the KVM hypervisor is employed in
this experiment.

B. Experiment
The resource usage of virtual machines each hosting the

exact same set of dynamic web services is analyzed with the
same set of requests, but in different resource management
schemes. We focus on memory usage as the main resource of
the virtual machines and the response time of the web
services in these sets of experiments.

Fig. 3 illustrates the response time of different request
blocks for two servers in fixed resource scheme. The server
with 1024 MBs of memory is able to respond to all requests
within seconds but the response time for the other server with
512 MBs of memory is in the range of 0.2 seconds to 276.1
seconds. This huge difference is the result of increasing the
number of operating system swap in/out memory pages in the
machines with low amounts of memory.

The response time for the same input for servers in
resource guaranteed mode and resource unguaranteed mode
(rmin = 512 MB and rmax = 1024 MB) are depicted in Fig. 4.
The response times for both cases are noticeably better than
the 512 MB fixed memory scheme. In resource guaranteed
mode the response time is only 0.4 seconds less than in fixed
1024 MB memory scheme.

Changing dynamic resource manager parameters could
change resource usage and service response time
dramatically. Hence it is important to tune them up in
different conditions. As an example, Fig. 5 illustrates
response times of two servers with the same resource
management mode but with different allocation times.

Table I sums up the experimental results. Better response
time is proportional to better quality of service and lesser
resource usage is proportional to lesser virtual server costs.

V. CONCLUSION
A challenge in the management of cloud infrastructure

resources is finding a service abstraction with a balance
between user complexity and cloud provider complexity. The
proposed resource management scheme has enabled the users
to leverage the cloud pay-per-use model further by
demanding different amount of resources for each virtual
server in an infrastructure as a service environment. The
solution enables cloud providers to make better use of their
resources, lowering overall costs.

Although our experiment was focused on memory usage
as the main source of the costs and quality of service in
virtual server environments, it is possible to apply the same
scheme to other cloud resources, too. How the proper values
for different resource manager parameters have to be chosen
remains as an open problem, however.

REFERENCES
[1] H. A. L. Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.

Rumble, E. Lara, M. Brudno, and M. Satyanarayanan, “Snowflock:
Rapid virtual machine cloning for cloud computing,” in Proceeding of
the 4th ACM European Conference on Computer Systems, ACM, 2009,
pp. 1-12.

[2] J. G. Park, J. M. Kim, H. Choi, and Y. C. Woo, "Virtual machine
migration in self-managing virtualized server environments," in Proc.
of 11th International Conference on Advanced Communication
Technology, 2009. pp. 2077-2083.

[3] J. Houle, H. A. L. Cavilla, and J. Mulligan, "Towards a ubiquitous
cloud computing infrastructure," in Proc. of 17th IEEE Workshop on
Local and Metropolitan Area Networks, 2010, pp. 1-6.

[4] How to handle 1000′s of concurrent users on a 360MB VPS. [Online].
Available:http://markmaunder.com/2009/12/01/how-to-handle-1000s-
of-concurrent-users-on-a-360mb-vps/

[5] J. Peng, X. Zhang, Z. Lei, B. Zhang, W. Zhang, and Q. Li,"Comparison
of Several Cloud Computing Platforms," Information Science and
Engineering (ISISE), 2009.

Mohammad Razavi is currently pursuing the M.A.
degree in the School of Computer Engineering,
University of Isfahan, Iran. He has also received his
B.A. degree in Software Engineering from University of
Isfahan in 2009. His current research interests include
Infrastructure as a Service, cloud computing and
network security. He is currently a member of
International Association of Computer Science and

Information Technology (IACSIT).

Kamran Zamanifar Kamran Zamanifar received
the B.Sc. and M.Sc degree in Electrical and
Electronic Engineering from Faculty of Engineering
at University of Tehran (1976-1985), and the Ph.D.
degree in Computer Science (Parallel and
Distributed Systems) from School of Computer
Studies, University of Leeds, England in 1996.
Currently, he is associate professor at Engineering

Department of University of Isfahan. He is a member of Computer Society
of Iran and a senior member of Iranian Association of Electrical and
Electronic Engineers. His research interests include parallel and
distributed systems, pervasive computing and cloud computing. Prof.
Zamanifar has published diverse papers including Time Scheduling and
Resource allocation in Computational Systems and Agent-Based Parallel
Solution for Job Shop Scheduling Problem Using Genetic Algorithms.

International Journal of Future Computer and Communication, Vol. 2, No. 3, June 2013

187

