

Abstract—Video traffic represents a large fraction of Internet

traffic. For efficient service provisioning and controlling traffic
based on various policies, measuring detailed user behaviors,
such as when, at what rate, how much, and between whom video
data are transmitted, is critical. To collect such information,
this paper deals with video stream identification, since source or
destination address in a packet header may not be reliable for
identifyingtrue source and destination. An unsupervised
learning algorithm is proposed to perform stream identification.
The algorithm overcomes two shortcomings of the existing
clusterers. Experimental results show that the rate of correctly
grouped classes achieved by the algorithm is 94%.

Index Terms—Stream identification, video traffic, decay rate,
unsupervised learning

Video traffic represents a large fraction of Internet traffic

and will be increasingly prevalent on the Internet [1].
Measuring detailed user behaviors, such as when, at what rate,
how much, and between whom video data are transmitted, is
critical for efficient service provisioning, estimating capacity
demand, and controlling traffic based on various policies. For
example, this fine-grained information is used to detect the
proliferation of video traffic within a social network, or to
control traffic such that the net throughput is maximized, the
inter-domain traffic is reduced, or the bandwidth is fairly
shared among flows, users, or organizations.

IP addresses in packet headers are essential information to
identify source and destination. Nowadays, however, there
are cases where using IP addresses is not a reliable way for
the following two reasons. First, the source and destination IP
addresses in the packet header may be replaced by proxy
servers [2], NAT devices [3], VPN technologies [4], etc.
Second, the IP address of a host may be reassigned frequently.
For example, every time remote PCs access private networks
through remote-access VPNs, their IP addresses are
reassigned [5]. Furthermore, since the Internet is composed
of numbers of networks managed by various organizations,
behaviors in a network, such as how IP addresses are
replaced/reassigned, are basically invisible from other
networks.

Let us consider stream identification, where two streams
are identical if their source and destination hosts and
streaming parameters are the same. Even if true source or
destination IP address is unknown, an algorithm proposed in
this paper shows that it is possible, with a high probability, to
detect whether two streams are the same or not through traffic

Manuscript received August 3, 2012; revised September 5, 2012.
The authors are with the Department of Computer Science and

Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-Higashi,
Higashi-ku, Fukuoka, 811-0295 Japan (e-mail: oida@fit.ac.jp).

features. Then we can collect the information on when, at
what rate, and how much video data are delivered between a
certain source and destination pair. In other words, the stream
identification is an alternative approach when source or
destination address in a header is not reliable.

Currently, there are efficient traffic classification
technologies that associate traffic flows with their
applications [6], [7]. This paper assumes that the stream
identification is performed after the application of a flow is
classified as video streaming. Stream attributes for stream
identification are different from those for application
classification. In [8], end hosts are classified with a high true
positive rate by using existing supervised learning algorithms,
which uses the decay rates as stream attributes. This paper
proposes an unsupervised learning algorithm, which uses the
packet arrival rate, variance, and decay rates as stream
attributes.

This paper is organized as follows: Section II summarizes
the related work. Section III explains the method of
measuring the decay rate. Section IV calculates the stream
attribute set (the packet arrival rate, variance, and decay rates)
and discusses the uniqueness and time invariance of the set.
Section V proposes an unsupervised learning algorithm that
overcomes two shortcomings of existing clusterers. Section
VI evaluates performance of the algorithm from various
points of view. Finally, Section VII presents the conclusions.

II. RELATED WORK
Traffic classification associates traffic flows with

applications that generated them [6],[7]. It is necessary to
classify traffic for service differentiation, blocking malicious
attacks, traffic engineering, etc. To infer Internet applications,
deep packet inspection, which identifies byte strings
associated with an application, are considered. Some
approaches focus on extracting application signatures from
payload content automatically [9]–[11]. This approach may
not always be feasible since packets may be encrypted or
encapsulated, privacy policy may prohibit payload inspection
[12], or inspecting all packets flowing over high-bandwidth
links may be computationally expensive.

Recently, many works have performed traffic
classification based on flow parameters. This is because
many Internet applications generate traffic with specific
characteristics amenable to classification using
machine-learning algorithms. In [13], the authors classify
traffic flows by using the 5-tuple (source and destination IP
addresses, source and destination ports and protocol) and
flow duration and size. In [14], the authors use a Bayesian
method to classify traffic flows by using measurements such
as flow duration, flow bandwidth, and statistics on packet
sizes and interarrival times. In [15], the authors classify flows
by looking only at the lengths of the first packets in a flow.

Video Stream Identification for Traffic Engineering

Kazumasa Oida and Naoto Nakayama

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

275

I. INTRODUCTION

DOI: 10.7763/IJFCC.2013.V2.167

Traffic classification for automated QoS management is
discussed in [16].

III. DECAY RATE
This section briefly introduces the decay rate [8] used for

stream identification. Let ሼܺሽ be a time series, where ܺ
denotes the number of arriving packets during the ݇-th time
interval of length ߜ. The ݉ aggregated series of ሼܺሽଵஸஸே, ሼܺሺሻሽ, are obtained by dividing ሼܺሽ into blocks of length ݉ and averaging the series over each block as

 ܺℓሺሻ ൌ 1݉ ܺℓ
ୀℓିାଵ , ℓ ൌ 1,2, … , ,ۂ݉/ܰہ (1)

where ݉ is a positive integer, ܰ is the size of series ሼܺሽ, and ۂݔہ is the largest integer that does not exceed ݔ . The
aggregated variance ܸሺሻ is the sample variance of ሼܺሺሻሽ;
i.e.,

 ܸሺሻ ൌ ۂ݉/ܰہ1 െ 1 ሺہே/ۂ
ୀଵ ܺሺሻ െ ሜܺ ሻଶ, (2)

where ሜܺ ൌ ଵே ∑ ܺேୀଵ . Hereafter, we assume that ݉ሺ 1ሻ is a
real number. Let us consider the decay rate ߚሺ݉ሻ, the amount
of change in log ܸሺہۂሻ, defined by

ሺ݉ሻߚ ൌ logଵ ܸሺہଵۂሻ െ logଵ ܸሺہۂሻ. (3)

In (3), Δ is a positive constant satisfying Δ ൌ logሺ ݉ାଵሻ െlogሺ ݉ሻ for all ݅, where ݉ is the ݅-th smallest level used for
calculating decay rates. For simplicity, ߚሺ݉ሻ is also
described as ߚ. In general, ߚ fluctuates around െΔ.

Decay rate ߚሺ݉ሻ is influenced by various factors such as
behaviors of users, protocols, computer software and
hardware, communication devices, and resource (processors,
bandwidth, etc.) competition among streams, etc. [17].
Computer hardware and communication devices in general
have an impact on small timescale behavior of ߚሺ݉ሻ. Human
users and protocols implemented by software affect larger
timescale behavior of ߚሺ݉ሻ. Resource competition typically
affects its small timescale behavior. However, heavy
congestion may cause larger timecscale behavior in
conjunction with the TCP congestion control mechanism.
From the perspective of stream identification, resource
competition is a factor that adds noise to stream attributes.
This paper assumes that human users do not affect video
streams. That is, they do not change/interrupt streams while
collecting traffic data.

IV. MEASUREMENTS
This paper uses arrival rate ሜܺ , variance ܸሺଵሻ, and decay

rates ሼߚሽଵஸஸெ as stream attributes. Fig. 1 depicts ten
samples of attribute set ሼ ሜܺ , ܸሺଵሻ, ,ଵߚ … , .ଶሽ for two streamsߚ
In the figure, െ300 ൈ ሜܺ and െ60 ൈ ܸሺଵሻ are depicted at logሺ ݉ሻ ൌ െ0.6 and െ0.3 , respectively. For successful
identification, each stream must have a unique and
time-invariant attribute set. The time-invariance requires that
ten samples should be almost the same. Fig. 1(a) shows ten

attribute samples of a typical video stream. As shown in the
figure, packet arrival rate ሜܺ and variance ܸሺଵሻ are
approximately constant. Furthermore, all decay rates ߚ
except for ߚଵଽ and ߚଶ are also roughly constant. Decay rates ߚሺ݉ሻ at large ݉, such as ߚଵଽ and ߚଶ, are mostly unstable
since from (2), ܸሺሻ is calculated with ۂ݉/ܰہ samples.

Fig. 1. Ten samples of attribute setሼ ሜܺ , ,ሺଵሻࢂ ,ଵࢼ … , ଶሽare depicted for twoࢼ
streams (a) and (b). െ300 ൈ ሜܺ and െ60 ൈ ሺܗܔ ሺଵሻ are shown atࢂ ݉ሻ ൌെ0.6 andെ0.3, respectively. ܗܔሺ ሻ ൌ ݅ઢ and ઢ ൎ 0.24.

Fig. 2. Variance ࢂሺሻ is positively correlated with arrival rate ࢄሜ .

Meanwhile, Fig. 1(b) shows the case of variable packet

arrival rate ሜܺ . By looking closely at all points of ሜܺ and ܸሺଵሻ
in the figure, it can be seen that ܸሺଵሻ increases with ሜܺ . In
other words, ሜܺ and ܸሺଵሻ are highly correlated. Fig. 2 explains

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

276

their relationship obtained with 1000 samples of ሜܺ and ܸሺଵሻ.
The correlation coefficient is 0.81 in this case. Whereas, ߚ is
approximately uncorrelated with ሜܺ or ܸሺଵሻ. From Fig. 1(b),
ten samples of ߚ are not largely different if ݅ 16 .
Therefore, from the viewpoint of identification, either ሜܺ or ܸሺଵሻ may be dispensable, but ߚ provides effective
information that is different from that provided by ሜܺ and ܸሺଵሻ.

Fig. 3 compares attribute sets of two streams flowing from
the same TV site to different clients connected to the same
switching hub. Traffic data are collected at the same point in
the network. Let us focus on stable attributes ሜܺ , ܸሺଵሻ, and ሼߚሽଵஸஸଵ. It can be seen that Figs. 3(a) and 3(b) exhibit very
similar attribute sets (which implies that stream identification
is not easy). There is a slight difference in ߚଵ to ߚଷ between
(a) and (b). Compared with the difference between Figs. 1(a)
and 1(b), the difference between Figs. 3(a) and 3(b) is far
smaller for two reasons. First, a client affects decay rates only
through the way it sends acknowledges (e.g., TCP ACKs).
Second, two streams from a server to two clients in Fig. 3
flow along the same path since clients are connected to the
same hub. Whereas, two streams in Fig. 1 do not take the
same path since they are not located closely to each other.

Fig. 3. The same TV channel is accessed by two clients: (a) Dell PC
(Windows 7) and (b) Mac mini (MacOSX ver. 10.5).

V. UNSUPERVISED LEARNING

A. Datasets
TV channels provided by content delivery networks, Web

hosting companies, live streaming video platforms, etc. are

accessed with Flash Player, Windows Media Player, or
Silverlight. Any two streams do not originate from the same
server. All video streams use the TCP protocol and most of
them flow at constant rates. All packets are captured with
WinDump [18]. Packets are collected at the same point in the
network with the same personal computer (PC) (since decay
rates especially at small aggregation levels are sensitive to
changes in the collecting point and the collecting PC). Unless
otherwise mentioned, attributes ሜܺ , ܸሺଵሻ, ,ଵߚ … , ெߚ are
computed with parameter values in Table I.

TABLE I: DEFAULT PARAMETER VALUES.
Symbol Value

interval ߜ (s) 10ିହ
size of ሼ ܺሽܰ 6 ൈ 10
size of ሼߚሽ5 ܯ

interval Δ logሺܰ/50ሻܯ 1

level ݉ଵ 10
level ݉ெ 10ெ

B. Clusterers
This subsection performs unsupervised learning with three

best performed clusterers in Weka [19]: farthest first (FF)
[20], expectation maximization (EM) [21], and
single-linkage clustering in the hierarchical clusterer (HC)
[22]. The evaluation criterion is the rate of correctly grouped
classes (CGR), where a correctly grouped class (CGC) is
defined as follows. Class x is correctly grouped if and only if
all samples that belong to class x are grouped into one class.
A class corresponds to a video stream in this paper. In this
subsection, there are two samples for each class.

Table II shows CGRs achieved by three clusterers. When
executing three clusterers, they require the number of classes
(the EM algorithm can work without the number, and if the
number is not given, it groups all samples into two classes for
all cases in Table II). From the table, the CGR tends to
decrease with the number of classes, and all CGRs at 30
classes are less than 80%. Meanwhile, their computation
times sharply rise with the number of classes. In the table,
clusterer HC takes 2.8 hours to obtain the CGR at 35 classes.

TABLE II: THE CGR (%) AS A FUNCTION OF THE NUMBER OF CLASSES.

COMPUTATION TIMES ARE SHOWN IN PARENTHESES. SYMBOL ""
INDICATES "MORE THAN."

 10 20 30 35
FF 85 78.5 70.3 (2.0 h) (25 h)
EM 88 85.0 76.3 (19.6 m) (25 h)
HC 89 75.5 64.3 (12.8 m) 68.6 (2.8 h)

C. Proposed Algorithm
The unsupervised learning algorithm proposed in this

paper overcomes two shortcomings of the existing clusterers:
the necessity of specifying the number of classes and long
computation times. Furthermore, the algorithm can handle a
large amount of input data by dividing the input data into
multiple parts and processing all parts one by one. Note that
three clusterers in the previous subsection do not have this
capability.

The proposed algorithm is described in Algorithm 1. The
input dataset of the algorithm is different from that of the
three clusterers. Instead of calculating one sample ሼ ሜܺ , ܸሺଵሻ, ሽߚ from a time series ሼܺሽ ሺܮ , 1ሻ samples are
obtained by dividing ሼܺሽଵஸஸே into ܮ blocks of length

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

277

ܥ and computing one sample per block. Let ۂܮ/ܰہ be the
class of the ݅-th time series ሼܺሽଵஸஸே, and let ܣ be the set of ܮ samples derived from the ݅ -th time series (therefore, |ܣ| ൌ ,ܥThe input dataset is ሼ .(ܮ ሽܥሽ, where values of ሼܣ
are assigned such that ܥ ് for all ݅ and ݆. The algorithmܥ
judges that ܥ is equal to ܥ if there are many similar pairs ݏଵ
and ݏଶ, where ݏଵ א ଶݏ andܣ א . The algorithm performsܣ
clustering by repeatedly merging two sets ܣ and ܣ whose
classes ܥ and ܥ are judged to be the same.

In Algorithm 1, the agreement of two classes is measured

as follows. A classifier performs the cross-validation test
(described below) to obtain the confusion matrix ܿ݉ሺ݅, ݆ሻ,
which indicates how many times class ܥ is classified as class ܥ . Diagonal element ܿ݉ሺ݅, ݅ሻ is the number of correctly
classified class ܥ samples and ∑ ܿℓ ݉ሺ݅, ℓሻ ൌ | (see theܣ|
cross-validation test description). If݅ ് ݆, ܿ݉ሺ݅, ݆ሻ indicates
the number of times class ܥ is misclassified as class ܥ .
However, if ܥ and ܥ are originally the same,
misclassification should occur numbers of times. Therefore,
the algorithm determines that ܥ ൌ ܥ if ܿ݉ሺ݅, ݆ሻ ܿ݉ሺ݆, ݅ሻ
exceeds a threshold. Normalized ܿ݉ሺ݅, ݆ሻ ܿ݉ሺ݆, ݅ሻ is
compared with threshold ܶ since it increases with |ܣ| |ܣ|.

In Algorithm 1, a classifier is invoked to perform the
following cross-validation test.

Cross-validation: The input dataset is randomly
partitioned into ten subsets. A single subset of the ten subsets
is retained as the validation data for testing the algorithm, and
the remaining nine subsets are used as training data. The
cross-validation process is repeated ten times, with each of
the ten subsets used exactly once as the validation data. The
ten results are averaged to produce a single estimation.

Note that all samples are used for both training and
validation, and each sample is used for validation exactly
once.

VI. EXPERIMENTS
In the experiments, the number of classes is 100 (a client

accesses 100 servers) and ܮ (the size of sample set |ܣ|) is 10,
unless otherwise mentioned. We use two datasets ሼܥ, ሽଵஸஸଵܣ and ሼܥ, ሽଵଵஸஸଶܣ measured in two
different periods of time, where ܣ and ܣାଵ are sample
sets of the same class. For performance evaluations, values of ሼܥሽ are assigned such that ܥ ് ାଵܥ for all ݅ , and ሼܥ, ሽଵஸஸଶܣ is used as input of the proposed algorithm.
Unless stated otherwise, classifier naive Bayes [23] computes
the confusion matrix. We use the term type I error to indicate
an error that occurs when two sample sets belonging to
different classes are judged to be the same class. In this case,
there are two incorrectly grouped classes (IGCs). This section
measures the correctly grouped class rate (CGR) and the
incorrectly grouped class rate (IGR).

A. Sample Size
Fig. 4 demonstrates performance of the proposed

algorithm for three sample sizes ܰ (the sampling periods are ܰߜ ൌ 50, 100, 200 s). In the figure, there is no type I errors at ܶ ൌ 0.35 and all CGRs exceed 60%. As ܶ decreases,
however, type I errors change CGCs into IGCs. One type I
error creates two IGCs if they have not been IGCs and at the
same time reduces the number of CGCs by two if they have
been CGCs. Therefore, when the sample size and the
threshold are both small (ܰ ൌ 5 ൈ 10 and ܶ ൌ 0.1 or 0.15
in the figure), many type I errors create many IGCs and
reduce the CGR significantly. If the sample size is large, the
type I errors seldom occur. When ܰ ൌ 10 or 2 ൈ 10, the
CGR is greater than or equal to 90% at 0.15, 0.2, or 0.25.

Fig. 4. The CGR and IGR for ࡺ ൌ ൈ 0, 0ૠ, or ൈ 0ૠ.

B. Sample Set Size
Let us consider the effect of ܮ (the size of sample set ܣ).

Fig. 5 shows the results when ܰ is fixed to ܰ ൌ 5 ൈ 10 and ܮ changes. Since the naive Bayes algorithm does not work
well when ܮ is small, classifier k-nearest neighbor (݇ ൌ 1)
[24] is used at ܮ ൌ 3. From the figure, the largest CGR is
almost the same for all ܮ. By selecting ܮ ൌ 5, the CGR is
approximately 80% over a wide range of ܶ.

C. Number of Clients
If multiple clients are used, as shown in Fig. 3, each client

leaves its signature in the stream attributes. A classifier uses
this signature to improve classification correctness. Fig. 6
shows the CGR when the number of clients is 1, 2, or 3. The
same 100 TV channels are used for the three cases. In the

Algorithm 1: Merging sample sets of the same class.
1. input: ܶ, ሼܥ, ሽଵஸஸܣ
2. ݇ ՚ ݊
3. while ݇ 2do
4. Derive ሼܿ݉ሺ݅, ݆ሻሽଵஸ,ஸ from ሼܥ, ሽଵஸஸܣ
5. Select randomly a pair ሺ, ሻݍ א arg maxሼሺ,ሻ|ழ,ஷ,ೕஷሽ ሺ,ሻାሺ,ሻ||ା|ೕ|

6. if ሺ,ሻାሺ,ሻ||ା|| ܶthen

7. ݇ ՚ ݇ െ 1
ܣ .8 ՚ ܣ ܣ
ܣ .9 ՚
10. else
11. ݇ ՚ 1
12. end if
13. end while
14. returnሼܥ, ሽଵஸஸܣ

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

278

case of two (resp. three) clients, the numbers of channels
accessed by each client are 33 and 67 (resp. 31, 33, and 35).
Three clients are on the same LAN, so that each
sample ሼ ሜܺ , ܸሺଵሻ, ሽߚ varies very slightly by changing the
number of clients. As shown in Fig. 6(a), the CGR rises
substantially by increasing the number from one to two.
However, the increase rate at ܶ א ሾ0,15,0.3ሿ shrinks when
the number further enlarges. Meanwhile, the CGR in Fig. 6(b)
is already high over the range of ሾ0,15,0.25ሿ when the
number of client is one. In this case, the CGR somewhat
increases at some ܶ values, but the largest CGR is unchanged.

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
G

R
, I

G
R

 (
%

)

Threshold Th

CGR, L=3
IGR, L=3

CGR, L=5
IGR, L=5

CGR, L=10
IGR, L=10

Fig. 5. The CGR and IGR for ࡸ =3,5, or 10. ࡺ ൌ ൈ 0.

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
G

R
 (

%
)

Threshold Th

(a)

3 clinets
2 clients
1 client

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
G

R
 (

%
)

Threshold Th

(b)

3 clients
2 clients
1 client

Fig. 6. The CGR when the number of clients varies. (a) ࡺ ൌ ൈ 0 and (b) ࡺ ൌ 0ૠ.

D. Iterative Processing
When the input data are divided into multiple parts, the

proposed algorithm can process all parts one by one. This is
useful when the amount of input data is large or when new
data are periodically given. In this experiment, instead of

processing dataset ሼܥ, ሽଵஸஸଶܣ all at once (batch
processing), the dataset is divided in two and then processed
such that the input for the first execution of the algorithm is ሼܥ, ܬ , whereאሽܣ ؿ ܫ ሼ1,2, … ,200ሽ, and the input for the
second execution is ሼܥሚ, ሚሽܣ ሼܥ, ךூאሽܣ , where ሼܥሚ, ሚሽܣ
isthe output of the first execution.

TABLE III: THE CGR AND IGR (CGR/IGR) FOR TWO PROCESSING SCHEMES

AS FUNCTIONS OF ܶ (OR ܶଶ). ܰ ൌ 10.
 0.2 0.25 0.3 0.35

Batch 94/4 94/2 86/2 82/0
Iterative, ܬଵ 91/10 90/2 87/2 80/2

Iterative, ܬଶ 90/10 93/4 88/4 85/0 ܬଵ, ܶଵ ൌ ଶ, ܶଵܬ 80/0 87/2 92/2 95/4 0.4 ൌ 0.4 95/4 94/2 88/0 81/0

In Table III, set ܫ is divided in two ways: ܬ ൌ ,ଶܬ ଵ andܬ
where ܬଵ ൌ ሼ1, … ,50ሽ ሼ100, … ,150ሽ and ܬଶ ൌ ሼ1, … ,150ሽ.
The table shows the CGR and IGR for two processing
schemes. The table demonstrates that the batch processing
slightly outperforms the iterative processing ("Iterative, ܬଵ"
and "Iterative, ܬଶ " in the table). The iterative processing
yields a larger IGR, whereby the CGR reduces. Let ܶ be the
threshold used in the ݅-th execution of the algorithm. Since
the type I errors occur mostly in the first execution, ܶଵ should
be greater than ܶଶ. The table shows that the IGR decreases by
using ܶଵ ൌ 0.4.

E. Computation Time
The proposed algorithm is implemented in C and bash

script. The bash script invokes a classifier in Weka to
calculate a confusion matrix. The computation time of the
proposed algorithm is governed by ܰ (the number of
non-empty sets ܣ in the dataset) and ܰ (the number of
while-loop repetitions in Algorithm 1, or equivalently the
number of times two sample sets are merged). We use ܰ and ܰ to indicate ܰ and ܰ at the ݅ -th execution of the
algorithm, respectively.

TABLE IV: COMPUTATION TIMES (S) OF THE PROPOSED ALGORITHM AT ܶ ൌ 0.2 (OR ܶଶ ൌ 0.2) AND ܰ ൌ 10. NUMBER ܰ (OR ܰ) IS SHOWN IN

PARENTHESES.
Conditions Computation time

 First Second
Batch, ሼܥ, ሽଵஸஸଵ 5 (5)ܣ
Batch, ሼܥ, ଵ, ܶଵܬ ሽଵஸஸଶ 163 (100)ܣ ൌ ଶ, ܶଵܬ (62) 92 (39) 31 0.4 ൌ 0.4 48 (38) 94 (63)

Table IV shows computation times of the proposed

algorithm. In the case of batch processing with input ሼܥ, ሽଵஸஸଵ, merging any two sample sets results in a typeܣ
I error. The computation time is short in this case since ܰሺൌ 5ሻ is small. Compared with the batch processing with ሼܥ, ଶ reducesܬ ଵ orܬ ሽଵஸஸଶ, the iterative processing withܣ
the computation time by 25% or 13%, respectively. The
reduction is due to the numbers ܰ , ܰଵ , and ܰଶ since ܰଵ ܰଶ ሺൌ 101ሻ for ܬଵ and ܬଶ is almost the same as ܰሺൌ 100ሻfor the batch processing. Whereas, ܰ ൌ 200 in
the batch processing, ܰଵ ൌ 100 and ܰଶ ൌ 161 for ܬଵ , and ܰଵ ൌ 150 and ܰଶ ൌ 162 for ܬଶ . Note that the number of
matrix elements the algorithm must compute is ሺ ܰሻଶ or

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

279

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

280

ሺ ܰሻଶ.

VII. CONCLUSIONS
To identify pairs of source and destination hosts correctly,

this paper proposed an unsupervised learning algorithm that
performs stream identification by using the packet arrival rate,
variance, and decay rates. The performance of the algorithm
was evaluated by executing the algorithm under various
conditions. The evaluation criterion was the rate of correctly
grouped classes (CGR). The experimental results are
summarized as follows:
1) The proposed algorithm overcame two shortcomings of

the existing clusterers: the necessity of specifying the
number of classes and long computation times. The
computation time of the existing clusterers rose sharply
with the number of classes, so that it was difficult to
obtain the CGR at 35 classes or more. Whereas, the
proposed algorithm calculated the CGR at 100 classes
within three minutes when the sampling period ܰߜ was 100 s. In this case, the CGR was 94%.

2) The CGR generally rose with an increase in the sample
size ܰ or in the number of clients, but the increase rate
dropped quickly as ܰ or the number of clients enlarges.

3) The algorithm could process input dataset all at once
(batch processing) or one by one after dividing the
dataset into multiple parts (iterative processing). The two
processing schemes achieved roughly the same CGR,
but the computation time of the iterative processing was
shorter than that of the batch processing.

REFERENCES
[1] Cisco Visual Networking Index, Forecast and Methodology,

2010–2015, June 2011.
[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. B. Lee, "Hypertext transfer protocol – HTTP/1.1," RFC 2616, June
1999.

[3] P. Srisuresh and K. Egevang, "Traditional IP Network Address
Translator (Traditional NAT)," RFC 3022, 2001.

[4] J. C. Snader, VPNs Illustrated: Tunnels, VPNs, and IPsec,
Addison-Wesley, 2005.

[5] S. Kelly and S. Ramamoorthi, "Requirements for IPsec Remote Access
Scenarios," RFC 3457, January 2003.

[6] A. C. Callado, C. A. Kamienski, G. Szabo, B. P. Gero, J. Kelner, S. F. L.
Fernandes, and D. F. H. Sadok, "A Survey on Internet Traffic
Identification," IEEE Communications Surveys and Tutorials, pp.
37-52, 2009.

[7] A. Dainotti, A. Pescape, and K. C. Claffy, "Issues and future directions
in traffic classification," IEEE Network, pp. 35-40, 2012.

[8] K. Oida and K. Yamashita, Video Traffic Attributes for End Host
Identification, appeared in ICICT 2012.

[9] P. Haffner, S. Sen, O. Spatscheck, and D. Wang, "ACAS: automated
construction of application signatures," in Proc. of Mine Net, pp.
197-202, 2005.

[10] H. Kim and B. Karp, "Autograph: Toward Automated, Distributed
Worm Signature Detection," in Proc. of USENIX Security Symposium,
pp. 271-286, 2004.

[11] Z. Li, M. Sanghi, Y. Chen, M. Kao, and B. Chavez, "Hamsa: Fast
Signature Generation for Zero-day Polymorphic Worms with Provable
Attack Resilience," in Proc. of IEEE Symposium on Security and
Privacy, pp. 32-47, 2006.

[12] D. C. Sicker, P. Ohm, and D. Grunwald, "Legal issues surrounding
monitoring during network research," in Proc. of Internet
Measurement Conference, pp. 141-148, 2007.

[13] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, "BLINC:
multilevel traffic classification in the dark," in Proc. of SIGCOMM, pp.
229-240, 2005.

[14] A. W. Moore and D. Zuev, "Internet traffic classification using
bayesian analysis techniques," in Proc. of SIGMETRICS, pp. 50-60,
2005.

[15] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian,
"Traffic classification on the fly," Computer Communication Review,
pp. 23-26, 2006.

[16] T. T. T. Nguyen, G. Armitage, P. Branch, and S. Zander, “Timely and
Continuous Machine-Learning-Based Classification for Interactive IP
Traffic,” IEEE/ACM Transactions on Networking.

[17] K. Park and W. Willinger, Self-Similar Network Traffic and
Performance Evaluation, Wiley-Interscience Published, 2000.

[18] Software WinDump. [Online]. Available:
http://www.winpcap.org/windump/

[19] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, "The WEKA data mining software: an update," SIGKDD
Explorations, pp. 10-18, 2009.

[20] D. S. Hochbaum and D. B. Shmoys, "A best possible heuristic for the
k-center problem," Mathematics of Operations Research, vol. 10, no.2,
pp. 180-184, 1985.

[21] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum Likelihood
from Incomplete Data via the EM Algorithm," Journal of the Royal
Statistical Society, vol. 39, no. 1, pp.1-38, 1977.

[22] S. C. Johnson, "Hierarchical Clustering Schemes," Psychometrical, vol.
32, pp. 241-254, 1967.

[23] G. H. John and P. Langley, "Estimating Continuous Distributions in
Bayesian Classifiers," in Proc. of UAI, pp.338-345, 1995.

[24] D. W. Aha, D. F. Kibler, and M. K. Albert, "Instance-Based Learning
Algorithms," Machine Learning, pp. 37-66, 1991.

