
  

  
Abstract—Video traffic represents a large fraction of Internet 

traffic. For efficient service provisioning and controlling traffic 
based on various policies, measuring detailed user behaviors, 
such as when, at what rate, how much, and between whom video 
data are transmitted, is critical. To collect such information, 
this paper deals with video stream identification, since source or 
destination address in a packet header may not be reliable for 
identifyingtrue source and destination. An unsupervised 
learning algorithm is proposed to perform stream identification. 
The algorithm overcomes two shortcomings of the existing 
clusterers. Experimental results show that the rate of correctly 
grouped classes achieved by the algorithm is 94%. 
 

Index Terms—Stream identification, video traffic, decay rate, 
unsupervised learning 
 

  
Video traffic represents a large fraction of Internet traffic 

and will be increasingly prevalent on the Internet [1]. 
Measuring detailed user behaviors, such as when, at what rate, 
how much, and between whom video data are transmitted, is 
critical for efficient service provisioning, estimating capacity 
demand, and controlling traffic based on various policies. For 
example, this fine-grained information is used to detect the 
proliferation of video traffic within a social network, or to 
control traffic such that the net throughput is maximized, the 
inter-domain traffic is reduced, or the bandwidth is fairly 
shared among flows, users, or organizations. 

IP addresses in packet headers are essential information to 
identify source and destination. Nowadays, however, there 
are cases where using IP addresses is not a reliable way for 
the following two reasons. First, the source and destination IP 
addresses in the packet header may be replaced by proxy 
servers [2], NAT devices [3], VPN technologies [4], etc. 
Second, the IP address of a host may be reassigned frequently. 
For example, every time remote PCs access private networks 
through remote-access VPNs, their IP addresses are 
reassigned [5]. Furthermore, since the Internet is composed 
of numbers of networks managed by various organizations, 
behaviors in a network, such as how IP addresses are 
replaced/reassigned, are basically invisible from other 
networks. 

Let us consider stream identification, where two streams 
are identical if their source and destination hosts and 
streaming parameters are the same. Even if true source or 
destination IP address is unknown, an algorithm proposed in 
this paper shows that it is possible, with a high probability, to 
detect whether two streams are the same or not through traffic 
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features. Then we can collect the information on when, at 
what rate, and how much video data are delivered between a 
certain source and destination pair. In other words, the stream 
identification is an alternative approach when source or 
destination address in a header is not reliable. 

Currently, there are efficient traffic classification 
technologies that associate traffic flows with their 
applications [6], [7]. This paper assumes that the stream 
identification is performed after the application of a flow is 
classified as video streaming. Stream attributes for stream 
identification are different from those for application 
classification. In [8], end hosts are classified with a high true 
positive rate by using existing supervised learning algorithms, 
which uses the decay rates as stream attributes. This paper 
proposes an unsupervised learning algorithm, which uses the 
packet arrival rate, variance, and decay rates as stream 
attributes. 

This paper is organized as follows: Section II summarizes 
the related work. Section III explains the method of 
measuring the decay rate. Section IV calculates the stream 
attribute set (the packet arrival rate, variance, and decay rates) 
and discusses the uniqueness and time invariance of the set. 
Section V proposes an unsupervised learning algorithm that 
overcomes two shortcomings of existing clusterers. Section 
VI evaluates performance of the algorithm from various 
points of view. Finally, Section VII presents the conclusions. 
 

II. RELATED WORK 
Traffic classification associates traffic flows with 

applications that generated them [6],[7]. It is necessary to 
classify traffic for service differentiation, blocking malicious 
attacks, traffic engineering, etc. To infer Internet applications, 
deep packet inspection, which identifies byte strings 
associated with an application, are considered. Some 
approaches focus on extracting application signatures from 
payload content automatically [9]–[11]. This approach may 
not always be feasible since packets may be encrypted or 
encapsulated, privacy policy may prohibit payload inspection 
[12], or inspecting all packets flowing over high-bandwidth 
links may be computationally expensive.  

Recently, many works have performed traffic 
classification based on flow parameters. This is because 
many Internet applications generate traffic with specific 
characteristics amenable to classification using 
machine-learning algorithms. In [13], the authors classify 
traffic flows by using the 5-tuple (source and destination IP 
addresses, source and destination ports and protocol) and 
flow duration and size. In [14], the authors use a Bayesian 
method to classify traffic flows by using measurements such 
as flow duration, flow bandwidth, and statistics on packet 
sizes and interarrival times. In [15], the authors classify flows 
by looking only at the lengths of the first packets in a flow. 
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Traffic classification for automated QoS management is 
discussed in [16]. 
 

III. DECAY RATE 
This section briefly introduces the decay rate [8] used for 

stream identification. Let ሼܺሽ be a time series, where ܺ 
denotes the number of arriving packets during the ݇-th time 
interval of length ߜ. The ݉ aggregated series of ሼܺሽଵஸஸே, ሼܺሺሻሽ, are obtained by dividing ሼܺሽ into blocks of length ݉ and averaging the series over each block as  

 ܺℓሺሻ ൌ 1݉  ܺℓ
ୀℓିାଵ ,   ℓ ൌ 1,2, … , ,ۂ݉/ܰہ (1)

where ݉ is a positive integer, ܰ is the size of series ሼܺሽ, and ۂݔہ  is the largest integer that does not exceed ݔ . The 
aggregated variance ܸሺሻ is the sample variance of ሼܺሺሻሽ; 
i.e.,  

 ܸሺሻ ൌ ۂ݉/ܰہ1 െ 1  ሺہே/ۂ
ୀଵ ܺሺሻ െ ሜܺ ሻଶ, (2)

where ሜܺ ൌ ଵே ∑ ܺேୀଵ . Hereafter, we assume that ݉ሺ 1ሻ is a 
real number. Let us consider the decay rate ߚሺ݉ሻ, the amount 
of change in log ܸሺہۂሻ, defined by  

ሺ݉ሻߚ  ൌ logଵ ܸሺہଵۂሻ െ logଵ ܸሺہۂሻ. (3)

In (3), Δ is a positive constant satisfying Δ ൌ logሺ ݉ାଵሻ െlogሺ ݉ሻ for all ݅, where ݉ is the ݅-th smallest level used for 
calculating decay rates. For simplicity, ߚሺ݉ሻ  is also 
described as ߚ. In general, ߚ fluctuates around െΔ.  

Decay rate ߚሺ݉ሻ is influenced by various factors such as 
behaviors of users, protocols, computer software and 
hardware, communication devices, and resource (processors, 
bandwidth, etc.) competition among streams, etc. [17]. 
Computer hardware and communication devices in general 
have an impact on small timescale behavior of ߚሺ݉ሻ. Human 
users and protocols implemented by software affect larger 
timescale behavior of ߚሺ݉ሻ. Resource competition typically 
affects its small timescale behavior. However, heavy 
congestion may cause larger timecscale behavior in 
conjunction with the TCP congestion control mechanism. 
From the perspective of stream identification, resource 
competition is a factor that adds noise to stream attributes. 
This paper assumes that human users do not affect video 
streams. That is, they do not change/interrupt streams while 
collecting traffic data.  

 

IV. MEASUREMENTS 
This paper uses arrival rate ሜܺ , variance ܸሺଵሻ, and decay 

rates ሼߚሽଵஸஸெ  as stream attributes. Fig. 1 depicts ten 
samples of attribute set ሼ ሜܺ , ܸሺଵሻ, ,ଵߚ … ,  .ଶሽ for two streamsߚ
In the figure, െ300 ൈ ሜܺ  and െ60 ൈ ܸሺଵሻ  are depicted at logሺ ݉ሻ ൌ െ0.6  and െ0.3 , respectively. For successful 
identification, each stream must have a unique and 
time-invariant attribute set. The time-invariance requires that 
ten samples should be almost the same. Fig. 1(a) shows ten 

attribute samples of a typical video stream. As shown in the 
figure, packet arrival rate ሜܺ  and variance ܸሺଵሻ  are 
approximately constant. Furthermore, all decay rates ߚ 
except for ߚଵଽ and ߚଶ are also roughly constant. Decay rates ߚሺ݉ሻ at large ݉, such as ߚଵଽ and ߚଶ, are mostly unstable 
since from (2), ܸሺሻ is calculated with ۂ݉/ܰہ samples. 

 

 
 

Fig. 1. Ten samples of attribute setሼ ሜܺ , ,ሺଵሻࢂ ,ଵࢼ … ,  ଶሽare depicted for twoࢼ
streams (a) and (b). െ300 ൈ ሜܺ and െ60 ൈ ሺܗܔ ሺଵሻ are shown atࢂ ݉ሻ ൌെ0.6 andെ0.3, respectively. ܗܔሺ ሻ ൌ ݅ઢ and ઢ ൎ 0.24.  
 

 
 

Fig. 2. Variance ࢂሺሻ is positively correlated with arrival rate ࢄሜ . 
 
Meanwhile, Fig. 1(b) shows the case of variable packet 

arrival rate ሜܺ . By looking closely at all points of ሜܺ  and ܸሺଵሻ 
in the figure, it can be seen that ܸሺଵሻ increases with ሜܺ . In 
other words, ሜܺ  and ܸሺଵሻ are highly correlated. Fig. 2 explains 
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their relationship obtained with 1000 samples of ሜܺ  and ܸሺଵሻ. 
The correlation coefficient is 0.81 in this case. Whereas, ߚ is 
approximately uncorrelated with ሜܺ  or ܸሺଵሻ. From Fig. 1(b), 
ten samples of ߚ  are not largely different if ݅  16 . 
Therefore, from the viewpoint of identification, either ሜܺ  or ܸሺଵሻ  may be dispensable, but ߚ  provides effective 
information that is different from that provided by ሜܺ  and ܸሺଵሻ.  

Fig. 3 compares attribute sets of two streams flowing from 
the same TV site to different clients connected to the same 
switching hub. Traffic data are collected at the same point in 
the network. Let us focus on stable attributes ሜܺ , ܸሺଵሻ, and ሼߚሽଵஸஸଵ. It can be seen that Figs. 3(a) and 3(b) exhibit very 
similar attribute sets (which implies that stream identification 
is not easy). There is a slight difference in ߚଵ to ߚଷ between 
(a) and (b). Compared with the difference between Figs. 1(a) 
and 1(b), the difference between Figs. 3(a) and 3(b) is far 
smaller for two reasons. First, a client affects decay rates only 
through the way it sends acknowledges (e.g., TCP ACKs). 
Second, two streams from a server to two clients in Fig. 3 
flow along the same path since clients are connected to the 
same hub. Whereas, two streams in Fig. 1 do not take the 
same path since they are not located closely to each other. 

 

 
 

Fig. 3. The same TV channel is accessed by two clients: (a) Dell PC 
(Windows 7) and (b) Mac mini (MacOSX ver. 10.5). 

 

V. UNSUPERVISED LEARNING 

A. Datasets 
TV channels provided by content delivery networks, Web 

hosting companies, live streaming video platforms, etc. are 

accessed with Flash Player, Windows Media Player, or 
Silverlight. Any two streams do not originate from the same 
server. All video streams use the TCP protocol and most of 
them flow at constant rates. All packets are captured with 
WinDump [18]. Packets are collected at the same point in the 
network with the same personal computer (PC) (since decay 
rates especially at small aggregation levels are sensitive to 
changes in the collecting point and the collecting PC). Unless 
otherwise mentioned, attributes ሜܺ , ܸሺଵሻ, ,ଵߚ … , ெߚ  are 
computed with parameter values in Table I.  
 

TABLE I: DEFAULT PARAMETER VALUES. 
Symbol Value 

interval ߜ (s) 10ିହ 
size of ሼ ܺሽܰ 6 ൈ 10 
size of ሼߚሽ5 ܯ 

interval Δ logሺܰ/50ሻܯ  1  

level ݉ଵ 10 
level ݉ெ 10ெ 

B. Clusterers 
This subsection performs unsupervised learning with three 

best performed clusterers in Weka [19]: farthest first (FF) 
[20], expectation maximization (EM) [21], and 
single-linkage clustering in the hierarchical clusterer (HC) 
[22]. The evaluation criterion is the rate of correctly grouped 
classes (CGR), where a correctly grouped class (CGC) is 
defined as follows. Class x is correctly grouped if and only if 
all samples that belong to class x are grouped into one class. 
A class corresponds to a video stream in this paper. In this 
subsection, there are two samples for each class.  

Table II shows CGRs achieved by three clusterers. When 
executing three clusterers, they require the number of classes 
(the EM algorithm can work without the number, and if the 
number is not given, it groups all samples into two classes for 
all cases in Table II). From the table, the CGR tends to 
decrease with the number of classes, and all CGRs at 30 
classes are less than 80%. Meanwhile, their computation 
times sharply rise with the number of classes. In the table, 
clusterer HC takes 2.8 hours to obtain the CGR at 35 classes. 

 
TABLE II: THE CGR (%) AS A FUNCTION OF THE NUMBER OF CLASSES. 

COMPUTATION TIMES ARE SHOWN IN PARENTHESES. SYMBOL "" 
INDICATES "MORE THAN." 

 10 20 30 35 
FF 85 78.5 70.3 (2.0 h) ( 25 h) 
EM 88 85.0 76.3 (19.6 m) ( 25 h) 
HC 89 75.5 64.3 (12.8 m) 68.6 (2.8 h)

C. Proposed Algorithm 
The unsupervised learning algorithm proposed in this 

paper overcomes two shortcomings of the existing clusterers: 
the necessity of specifying the number of classes and long 
computation times. Furthermore, the algorithm can handle a 
large amount of input data by dividing the input data into 
multiple parts and processing all parts one by one. Note that 
three clusterers in the previous subsection do not have this 
capability. 

The proposed algorithm is described in Algorithm 1. The 
input dataset of the algorithm is different from that of the 
three clusterers. Instead of calculating one sample ሼ ሜܺ , ܸሺଵሻ, ሽߚ  from a time series ሼܺሽ ሺܮ , 1ሻ  samples are 
obtained by dividing ሼܺሽଵஸஸே  into ܮ  blocks of length 
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ܥ and computing one sample per block. Let ۂܮ/ܰہ  be the 
class of the ݅-th time series ሼܺሽଵஸஸே, and let ܣ be the set of ܮ  samples derived from the ݅ -th time series (therefore, |ܣ| ൌ ,ܥThe input dataset is ሼ .(ܮ  ሽܥሽ, where values of ሼܣ
are assigned such that ܥ ്   for all ݅ and ݆. The algorithmܥ
judges that ܥ is equal to ܥ if there are many similar pairs ݏଵ 
and ݏଶ, where ݏଵ א ଶݏ  andܣ א  . The algorithm performsܣ
clustering by repeatedly merging two sets ܣ and ܣ whose 
classes ܥ and ܥ are judged to be the same.  
 

 
In Algorithm 1, the agreement of two classes is measured 

as follows. A classifier performs the cross-validation test 
(described below) to obtain the confusion matrix ܿ݉ሺ݅, ݆ሻ, 
which indicates how many times class ܥ is classified as class ܥ . Diagonal element ܿ݉ሺ݅, ݅ሻ  is the number of correctly 
classified class ܥ  samples and ∑ ܿℓ ݉ሺ݅, ℓሻ ൌ  | (see theܣ|
cross-validation test description). If݅ ് ݆, ܿ݉ሺ݅, ݆ሻ indicates 
the number of times class ܥ  is misclassified as class ܥ . 
However, if ܥ  and ܥ  are originally the same, 
misclassification should occur numbers of times. Therefore, 
the algorithm determines that ܥ ൌ ܥ  if ܿ݉ሺ݅, ݆ሻ  ܿ݉ሺ݆, ݅ሻ 
exceeds a threshold. Normalized ܿ݉ሺ݅, ݆ሻ  ܿ݉ሺ݆, ݅ሻ  is 
compared with threshold ܶ  since it increases with |ܣ| |ܣ|.  

In Algorithm 1, a classifier is invoked to perform the 
following cross-validation test. 

Cross-validation:  The input dataset is randomly 
partitioned into ten subsets. A single subset of the ten subsets 
is retained as the validation data for testing the algorithm, and 
the remaining nine subsets are used as training data. The 
cross-validation process is repeated ten times, with each of 
the ten subsets used exactly once as the validation data. The 
ten results are averaged to produce a single estimation.  

Note that all samples are used for both training and 
validation, and each sample is used for validation exactly 
once.  

 

VI. EXPERIMENTS 
In the experiments, the number of classes is 100 (a client 

accesses 100 servers) and ܮ (the size of sample set |ܣ|) is 10, 
unless otherwise mentioned. We use two datasets ሼܥ, ሽଵஸஸଵܣ  and ሼܥ, ሽଵଵஸஸଶܣ  measured in two 
different periods of time, where ܣ  and ܣାଵ  are sample 
sets of the same class. For performance evaluations, values of ሼܥሽ  are assigned such that ܥ ് ାଵܥ  for all ݅ , and ሼܥ, ሽଵஸஸଶܣ  is used as input of the proposed algorithm. 
Unless stated otherwise, classifier naive Bayes [23] computes 
the confusion matrix. We use the term type I error to indicate 
an error that occurs when two sample sets belonging to 
different classes are judged to be the same class. In this case, 
there are two incorrectly grouped classes (IGCs). This section 
measures the correctly grouped class rate (CGR) and the 
incorrectly grouped class rate (IGR).  

A. Sample Size 
Fig. 4 demonstrates performance of the proposed 

algorithm for three sample sizes ܰ (the sampling periods are ܰߜ ൌ 50, 100, 200 s). In the figure, there is no type I errors at ܶ ൌ 0.35  and all CGRs exceed 60%. As ܶ  decreases, 
however, type I errors change CGCs into IGCs. One type I 
error creates two IGCs if they have not been IGCs and at the 
same time reduces the number of CGCs by two if they have 
been CGCs. Therefore, when the sample size and the 
threshold are both small (ܰ ൌ 5 ൈ 10 and ܶ ൌ 0.1 or 0.15 
in the figure), many type I errors create many IGCs and 
reduce the CGR significantly. If the sample size is large, the 
type I errors seldom occur. When ܰ ൌ 10 or 2 ൈ 10, the 
CGR is greater than or equal to 90% at 0.15, 0.2, or 0.25.  

 

 
 

Fig. 4. The CGR and IGR for ࡺ ൌ  ൈ 0, 0ૠ, or  ൈ 0ૠ. 

B. Sample Set Size 
Let us consider the effect of ܮ (the size of sample set ܣ). 

Fig. 5 shows the results when ܰ is fixed to ܰ ൌ 5 ൈ 10 and ܮ changes. Since the naive Bayes algorithm does not work 
well when ܮ is small, classifier k-nearest neighbor (݇ ൌ 1) 
[24] is used at ܮ ൌ 3. From the figure, the largest CGR is 
almost the same for all ܮ. By selecting ܮ ൌ 5, the CGR is 
approximately 80% over a wide range of ܶ. 

C. Number of Clients 
If multiple clients are used, as shown in Fig. 3, each client 

leaves its signature in the stream attributes. A classifier uses 
this signature to improve classification correctness. Fig. 6 
shows the CGR when the number of clients is 1, 2, or 3. The 
same 100 TV channels are used for the three cases. In the 

Algorithm 1: Merging sample sets of the same class. 
1. input: ܶ, ሼܥ,  ሽଵஸஸܣ
2. ݇ ՚ ݊ 
3. while ݇  2do 
4. Derive ሼܿ݉ሺ݅, ݆ሻሽଵஸ,ஸ from ሼܥ,  ሽଵஸஸܣ
5. Select randomly a pair ሺ, ሻݍ א arg maxሼሺ,ሻ|ழ,ஷ,ೕஷሽ ሺ,ሻାሺ,ሻ||ା|ೕ|  

6.     if ሺ,ሻାሺ,ሻ||ା||  ܶthen 

7. ݇ ՚ ݇ െ 1 
ܣ .8 ՚ ܣ   ܣ
ܣ .9 ՚  
10.     else  
11. ݇ ՚ 1 
12.     end if 
13. end while 
14. returnሼܥ,  ሽଵஸஸܣ
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case of two (resp. three) clients, the numbers of channels 
accessed by each client are 33 and 67 (resp. 31, 33, and 35). 
Three clients are on the same LAN, so that each 
sample ሼ ሜܺ , ܸሺଵሻ, ሽߚ  varies very slightly by changing the 
number of clients. As shown in Fig. 6(a), the CGR rises 
substantially by increasing the number from one to two. 
However, the increase rate at ܶ א ሾ0,15,0.3ሿ shrinks when 
the number further enlarges. Meanwhile, the CGR in Fig. 6(b) 
is already high over the range of ሾ0,15,0.25ሿ  when the 
number of client is one. In this case, the CGR somewhat 
increases at some ܶ values, but the largest CGR is unchanged. 
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Fig. 5. The CGR and IGR for ࡸ =3,5, or 10. ࡺ ൌ  ൈ 0. 
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Fig. 6. The CGR when the number of clients varies. (a) ࡺ ൌ  ൈ 0 and (b) ࡺ ൌ 0ૠ. 

D. Iterative Processing 
When the input data are divided into multiple parts, the 

proposed algorithm can process all parts one by one. This is 
useful when the amount of input data is large or when new 
data are periodically given. In this experiment, instead of 

processing dataset ሼܥ, ሽଵஸஸଶܣ  all at once (batch 
processing), the dataset is divided in two and then processed 
such that the input for the first execution of the algorithm is ሼܥ, ܬ , whereאሽܣ ؿ ܫ  ሼ1,2, … ,200ሽ, and the input for the 
second execution is ሼܥሚ, ሚሽܣ  ሼܥ, ךூאሽܣ , where ሼܥሚ,  ሚሽܣ
isthe output of the first execution. 

 
TABLE III: THE CGR AND IGR (CGR/IGR) FOR TWO PROCESSING SCHEMES 

AS FUNCTIONS OF ܶ  (OR ܶଶ). ܰ ൌ 10. 
 0.2  0.25  0.3  0.35  

Batch  94/4  94/2  86/2  82/0  
Iterative, ܬଵ 91/10  90/2  87/2  80/2  

Iterative, ܬଶ 90/10  93/4  88/4  85/0  ܬଵ, ܶଵ ൌ ଶ, ܶଵܬ  80/0  87/2  92/2  95/4 0.4 ൌ 0.4 95/4  94/2  88/0  81/0  
 

In Table III, set ܫ is divided in two ways: ܬ ൌ  ,ଶܬ ଵ andܬ
where ܬଵ ൌ ሼ1, … ,50ሽ  ሼ100, … ,150ሽ and ܬଶ ൌ ሼ1, … ,150ሽ. 
The table shows the CGR and IGR for two processing 
schemes. The table demonstrates that the batch processing 
slightly outperforms the iterative processing ("Iterative, ܬଵ" 
and "Iterative, ܬଶ " in the table). The iterative processing 
yields a larger IGR, whereby the CGR reduces. Let ܶ  be the 
threshold used in the ݅-th execution of the algorithm. Since 
the type I errors occur mostly in the first execution, ܶଵ should 
be greater than ܶଶ. The table shows that the IGR decreases by 
using ܶଵ ൌ 0.4. 

E. Computation Time 
The proposed algorithm is implemented in C and bash 

script. The bash script invokes a classifier in Weka to 
calculate a confusion matrix. The computation time of the 
proposed algorithm is governed by ܰ  (the number of 
non-empty sets ܣ  in the dataset) and ܰ  (the number of 
while-loop repetitions in Algorithm 1, or equivalently the 
number of times two sample sets are merged). We use ܰ  and ܰ  to indicate ܰ  and ܰ  at the ݅ -th execution of the 
algorithm, respectively.  

 
TABLE IV: COMPUTATION TIMES (S) OF THE PROPOSED ALGORITHM AT ܶ ൌ 0.2 (OR ܶଶ ൌ 0.2) AND ܰ ൌ 10. NUMBER ܰ (OR ܰ ) IS SHOWN IN 

PARENTHESES. 
Conditions  Computation time   

 First Second  
Batch, ሼܥ,    ሽଵஸஸଵ 5 (5)ܣ
Batch, ሼܥ, ଵ, ܶଵܬ   ሽଵஸஸଶ 163 (100)ܣ ൌ ଶ, ܶଵܬ  (62) 92  (39) 31 0.4 ൌ 0.4 48 (38)  94 (63)  

 
Table IV shows computation times of the proposed 

algorithm. In the case of batch processing with input ሼܥ,  ሽଵஸஸଵ, merging any two sample sets results in a typeܣ
I error. The computation time is short in this case since ܰሺൌ 5ሻ is small. Compared with the batch processing with ሼܥ,  ଶ reducesܬ ଵ orܬ ሽଵஸஸଶ, the iterative processing withܣ
the computation time by 25% or 13%, respectively. The 
reduction is due to the numbers ܰ , ܰଵ , and ܰଶ since ܰଵ  ܰଶ ሺൌ 101ሻ  for ܬଵ  and ܬଶ  is almost the same as ܰሺൌ 100ሻfor the batch processing. Whereas, ܰ ൌ 200 in 
the batch processing, ܰଵ ൌ 100 and ܰଶ ൌ 161 for ܬଵ , and ܰଵ ൌ 150  and ܰଶ ൌ 162  for ܬଶ . Note that the number of 
matrix elements the algorithm must compute is ሺ ܰሻଶ  or 
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ሺ ܰሻଶ.  

VII. CONCLUSIONS 
To identify pairs of source and destination hosts correctly, 

this paper proposed an unsupervised learning algorithm that 
performs stream identification by using the packet arrival rate, 
variance, and decay rates. The performance of the algorithm 
was evaluated by executing the algorithm under various 
conditions. The evaluation criterion was the rate of correctly 
grouped classes (CGR). The experimental results are 
summarized as follows:  
1) The proposed algorithm overcame two shortcomings of 

the existing clusterers: the necessity of specifying the 
number of classes and long computation times. The 
computation time of the existing clusterers rose sharply 
with the number of classes, so that it was difficult to 
obtain the CGR at 35 classes or more. Whereas, the 
proposed algorithm calculated the CGR at 100 classes 
within three minutes when the sampling period ܰߜ was 100 s. In this case, the CGR was 94%.  

2) The CGR generally rose with an increase in the sample 
size ܰ or in the number of clients, but the increase rate 
dropped quickly as ܰ or the number of clients enlarges.  

3) The algorithm could process input dataset all at once 
(batch processing) or one by one after dividing the 
dataset into multiple parts (iterative processing). The two 
processing schemes achieved roughly the same CGR, 
but the computation time of the iterative processing was 
shorter than that of the batch processing. 
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