
  

  
Abstract—This paper deals with a masking matrix design 

method of algebraically constructed quasi-cyclic (QC) LDPC 
codes for high-speed optical communications.  The structure of 
masking matrix of QC-LDPC codes influences not only code 
rate, but also cycle and trapping sets distributions, so that it 
decides the code performance to a great extent, especially in 
error floor region. With the proposed method, masking matrix 
is carefully designed to have dual-diagonal and cyclic-shift 
structure, so as to improve implementation complexity. At the 
same time, the code rate can be flexibly adjusted and low 
storage memory is required. Simulation results show that the 
designed codes with high rate have excellent performance and 
error floor does not appear until bit error rate 10-8. 
 

Index Terms—High-speed, masking matrix, optical 
communications, quasi-cyclic LDPC codes.  
 

I. INTRODUCTION 
Modern fiber-optic communication systems have evolved 

at a rapid space. Demands for higher transport speed and 
higher spectral efficiencies inspire the applications of digital 
signal processing, new modulation and coding technique in 
optical communication systems. Among them, forward error 
correction (FEC) codes play a very important role to compact 
various kinds of impairments. 

FEC codes applied in optical communication systems have 
developed from Reed-Solomon (RS) code, concatenated 
BCH codes or RS codes, to iteratively decodable codes such 
as low density parity check (LDPC) codes and the net coding 
gain (NCG) has improved from 5.6dB, around 8dB to more 
than 10dB [1]-[2]. Recently, many attentions have been paid 
to works on new efficiency FEC codes such as product code 
or LDPC codes. 

Among different kinds of LDPC codes, algebraically 
constructed quasi-cyclic (QC) LDPC codes [3]-[5] is 
especially suitable for high speed optical communication 
systems benefiting from the low implementation complexity 
and its excellent error floor performance. The construction 
process of algebraically constructed QC-LDPC codes 
includes the designs of base matrix, masking matrix and 
matrix expansion to achieve the corresponding parity check 
matrix. The design of base matrix and matrix expansion for 
QC-LDPC codes have been extensively studied in [5], 
however the design of good masking matrix is still an open 
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problem, even though the structure of masking matrix 
influences not only the code rate, but also cycle and trapping 
sets distributions, so that it decides the code performance to a 
great extent, especially in error floor region. 

In this paper, a new masking matrix design method of 
QC-LDPC codes is presented with which the designed QC- 
LDPC codes give very low error floor performance with high 
code rate so that they are suitable for high-speed optical 
communication systems. Simulation results illustrate that 
NCG can achieve 10.13dB with code rate 0.9375 and code 
length 32640 at bit error rate (BER) 10-8. 

 

II. PRELIMINARIES 
An LDPC code can be characterized by its parity check 

matrix H with the i-th row and j-th column element hi,j. The 
construction process of LDPC codes can be looked on as the 
design process of the corresponding parity check matrix H. 
The encoding and decoding implementation can both be done 
with the parity check matrix H. For algebraically constructed 
QC-LDPC code, the construction of its parity check matrix H 
can be realized in three steps: the base matrix design, 
masking matrix design and matrix expansion to get the 
required parity check matrix H.  In the followings, these three 
steps are represented separately. 

A. Base Matrix 
Base matrix B can be denoted as 
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It has γ rows and ρ columns and each element bi,j i∈{0,1,…, 
γ-1},  j∈{0,1,…, ρ-1}, comes from finite field GF(qm) with q 
being a prime number and m a positive integer. All the 
elements of finite field GF(qm) can be denoted as{0, α0=1, α1, 
α2,…, 2mqα − } where α denotes a primitive element of GF(qm). 

Studies already show that, short cycles especially length-4 
cycles have greatly influence on the code performance. To 
ensure the designed LDPC codes have no length-4 cycles, 
α-multiplied RD-constrain must be satisfied for base matrix 
B. The detailed design rules and corresponding proofs can be 
referenced in [5]. 

B. Masking Matrix 
To obtain a sparse matrix as a foundation to generate 

sparse parity check matrix of QC-LDPC codes, some 
non-zero elements of base matrix B should be replaced by 
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zero elements, which can be realized by masking. Masking 
matrix Z has the same number of rows and columns as base 
matrix B, and it can be represented as follows:  
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where the value of zi,j i∈{0,1,…, γ-1},  j∈{0,1,…, ρ-1}, only 
can be 0 or 1. Then taking the following matrix product and 
getting matrix M: 

M=Z×B=[ zi,j× bi,j],        (3) 

where zi,j× bi,j= bi,j with zi,j=1 and zi,j× bi,j= 0 with zi,j=0. After 
above operation, it can be seen that the achieved matrix M is 
sparser than the original base matrix B. 

Actually by above masking operation, two advantages are 
obtained. On one side, masking results in a sparser matrix 
whose associated Tanner graph has fewer edges and hence 
fewer short cycles and probably a larger girth than that of the 
associated Tanner graph of the original base matrix B. On the 
other side, masking results in the change of row or column 
weight of the parity check matrix, so it can be used to adjust 
the row or column weight and code rate of the required codes. 

C. Matrix Expansion 
Finite field GF(qm) totally has qm elements{0, α0=1, α1, 

α2,…, 2mqα − } among which one is zero and the others qm-1 
elements is non-zero. If the following mapping is assumed: 

( ) , 0,1,..., 2t t mW t qα α→ = − ,    (4) 

where W(αi) is a (qm-1)× (qm-1) matrix with the following 
elements: 
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where wi,j  denotes the i-th row and j-th column element of 
matrix W(αi) and % denotes model 2 operation. 

By (4), non-zero elements in GF(qm) can be mapped to 
(qm-1)× (qm-1) matrices one by one and the zero element in 
GF(qm) can be mapped to (qm-1)× (qm-1) all-zero matrix. 

Apply above mapping to every element of matrix M, and 
then get the matrix H whose elements are 0 or 1. The matrix 
H is the parity check matrix of designed QC- LDPC codes. 
The code length of designed codes is ρ(qm-1). 

 

III. MASKING MATRIX DESIGN 
The main contribution of this paper is presented in this part 

that a masking matrix design method is proposed. With this 
method, the designed QC-LDPC codes not only have the 
dual-diagonal parity check matrix which facilitates the 
encoding implementation in a linear time complexity, but 
also present excellent code performance for high rate codes 
especially in error-floor region which is exactly suitable for 
high speed optical communication systems. 

A. Masking Matrix Design Process 
The generating process of proposed masking matrix Z is 

described as follows: 
Step 1: set the masking matrix Z being the dual-diagonal 

structure: 
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Step 2: let a=ρ/γ (Assume that ρ can be divided byγ.), then 
zi,j, i∈{0,1,…, γ-1}, j∈{0,1,…, ρ-γ-1} can be divided into a-1 
γ ×γ square matrix Zt, t∈{0,1,…, a-2}: 
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For every Zt, t∈{0,1,…, a-2}, randomly choose b positions 
from z0, tγ+j, j∈{0, 1,…, γ-1} and set the values of these 
positions 1 and the values of the other positions 0. 

Step 3: set the i-th i∈{1,…, γ-1} row of Zt, t∈{0,1,…, a-2} 
as follows: 

zi, tγ+j= zi-1, tγ+j-1, j∈{1, 2,…, γ-1} and zi, tγ= zi-1, tγ+γ-1.  (8) 

In other words, the elements of every row except the first 
row are right cyclic shift of its previous row. 

Step 4: set the i-th (i is odd and 0<i<γ) row of Zt, t∈{0,1,…, 
a-2} as follows: 

zi, tγ+j=(zi-1, tγ+j+1)%2, j∈{0, 1,…, γ-1}.   (9) 

After above four steps, the obtained masking matrix Z is 
just what we wanted. 

Masking matrix can determine the row and column weight 
of designed QC-LDPC codes. From above process, it can be 
known that the row weight is (a-1)b+2 or (a-1)(γ-b)+2 and 
column weight is γ /2 or 2. 

B. Characteristics of Designed Masking Matrix 
1) The dual-diagonal structure of above masking matrix 

can lead the designed parity check matrix to 
dual-diagonal structure which allows the encoding 
process can be implemented in linear time complexity.  

2) The number of zeros in masking matrix can be adjusted 
by parameter b, which determines the decreased number 
of the edges in associated Tanner graph and further the 
number of short cycles that influences the code 
performance. 

3) The designed LDPC code is irregular and the 
corresponding degree distributions of variable nodes or 
parity check nodes in associated Tanner graph can be 
adjusted by parameters γ  and b. 

 

IV. SIMULATION RESULTS 
The performance of algebraically constructed QC-LDPC 

codes with the proposed masking matrix is simulated by 
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computer in this part. 
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Fig. 1. Simulation results of QC-LDPC codes with proposed masking matrix 

design algorithm and comparisons with existed codes. 

A. Simulation Environment 
In the simulation of this paper, additive white Gaussian 

noise (AWGN) channel is assumed to approximate high 
speed optical channel, that is reasonable for the working 
region of signal-to-noise ratio in optical communications.  

Generally for the researchers of forward error correction, 
the code rate R and signal-to-noise ratio EbNo (dB) are used 
as a figure of merit of binary modulation schemes. However 
in optical communications, it is a common practice to use 
redundancy instead of code rate and the Q-factor (dB) instead 
of EbNo. The relationships between them are: redundancy 
refers to as (n-k)/k and code rate as n/k; Q= 
EbNo+10×log10(2×R), where n denotes code length and k 
denotes the number of information bits in a codeword. In our 
simulation, parameters R and EbNo are used and the 
corresponding redundancy and Q-factor can be obtained with 
above relationships between them. 

In our simulation, the adopted base matrix of QC-LDPC 
codes is in [5]. Masking matrix is designed with our proposed 
algorithm. Matrix expansion is done with the depiction in 
part II.C. The obtained QC-LDPC codes are simulated by 
sum-product decoding algorithm with iterative number 50 
and the iterative decoding process stops when 100 error 
frames occur or the total tested frames reach 107.  Assume 
all-zero codeword is transmitted and BER is made as a 
statistic merit in the Monte Carlo simulation process.  

The adopted code rate is carefully chosen for high speed 
optical communications. Current long-haul fiber-optic 
communication systems use FEC codes with 7% redundancy 
(code rate 0.9375), as recommended in ITU-T G.975 and its 
successor ITU-T G.975.1 [6]. As the speed of electronics 
increased, it became practical to consider more powerful FEC 
codes so that more redundancy is permitted now. The new 
FEC overhead (OH) limit is 20%, which is suggested by the 
OIF in [7]. Therefore, two code rates, 0.9375 and 0.833, are 
adopted in the following simulation results. 

B. Simulation Results 
Fig. 1 illustrates simulation results of our proposed 

QC-LDPC codes and their comparisons with the existed FEC 
schemes designed for high speed optical communication 
systems.  

Two simulation results of QC-LDPC codes with our 

proposed masking matrix design algorithm are presented in 
Fig. 1. The code rates are 0.9375 and 0.833 separately. 

The first code is QC-LDPC (32640, 30601), the curve 
marked with triangles. The parameters of its masking matrix 
are γ=8, ρ=128, a=16, b=4 and base matrix comes from 
GF(28). This code is compared with two orthogonally 
concatenated BCH super FEC code given in G.975.1 I.7 
section [6], the curve marked with diamonds in Fig. 1. It can 
be seen that our proposed code improves about 1.2dB in 
EbNo (3.93dB in Q-factor) than two orthogonally 
concatenated BCH super FEC code with the same code 
length 32640 and code rate 0.9375. NCG is 10.13dB in 
Q-factor at BER 10-8. The performances of RS (255, 239) 
code and un-coded system are also referenced in Fig. 1.  

The second code is QC-LDPC (12240, 10201), the curve 
marked with circles, whose masking matrix is set to γ=8, 
ρ=48, a=6, b=4. Compared to the QC-LDPC code in [4], 
which is the first report about FPGA-based verification of 
soft-LDPC codes proving transmission without error-floor 
down to BER of 10-15, about 0.1dB performance 
improvement is achieved for our designed code with the 
same code rate 0.833. It is worth noting that the code length 
of our code is smaller than that of the code in [4], which is the 
reason that the slope of our code performance curve is a little 
smaller than that of the code in [4]. 

 

V. CONCLUSIONS 
As the rapid development of optical transmission systems 

and the speed of electronics, advanced FEC codes are 
desirable and practical for high speed optical communication 
systems. In this paper, a new masking matrix design method 
is proposed for construction of QC-LDPC codes applied in 
optical communication systems. Simulation results show that 
the designed QC-LDPC codes present excellent 
performance. 
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