

Abstract—Mobile Ad Hoc Networks (MANETs) are

becoming more pervasive thanks to their advantages of being
infrastructureless and portable. However such networks suffer
from a variety of attacks due to several inherent factors such as
mobility, signal attenuation and interference, and limited
computation power and battery resources on mobile devices.
Secure light-weight routing for a reliable path consisting of
trustable nodes has not been an easy task. In this research, we
propose the Secure Last Acknowledged Packet Routing
Algorithm (SLAPRA),capable ofefficient and prompt attack
detection and malicious node isolation, and demonstrate the
validity of the algorithm through simulation.

Index Terms—MANETs, security, secure routing, malicious
nodes, Black Hole attacks, packet crafting, trust evaluation.

I. INTRODUCTION
In contrast to wired networks with stable infrastructure,

MANETs consist of mobile devices communicating over
relatively less robust wireless links in a possibly
ever-changing topology. The unreliability is mainly due to
two reasons: device mobility and signal interference.

Random node mobility, hardly possible to predict, allows
movement in arbitrary direction and speed leading to a higher
incidence of broken links, and consequently can greatly
reduce the performance of MANETs. Exceptions are cases
such like Vehicular Ad Hoc Networks where the movement
of vehicles and mobile devices may be confined within
certain areas such as roads, and therefore can be predicted at a
certain degree. In most MANETs, a path performing well at
one moment may become unavailable in the next time
interval. Therefore, an adaptive and dynamic routing
algorithm is demanded to achieve better performance.

In previous research, group mobility models were
developed according to the movement patterns of mobile
nodes in certain applications. For example, the Reference
Point Group Mobility (RPGM) model and a number of
extensions were introduced [2]-[8]. In RPGM, mobile hosts
are organized in groups according to their logical relationship,
and each group has a logical center whose motion defines the
entire group’s motion behavior (location, speed, direction,
and acceleration) where the motion of a single node is the
vector sum of the motion of the reference point and the
independent random movement. Reference Velocity Group
Mobility (RVGM) model extends RPGM by adding velocity

Manuscript was received September 4, 2012; revised October 10, 2012.

This work was supported in part by the Enhanced Research Grant
(ERG)funded by Sam Houston State University, Huntsville, TX 77341USA.

The authors are with the Department of Computer Science, Sam Houston
State University, Huntsville, TX 77341 USA (e-mail:cooper@shsu.edu,
chen@shsu.edu, cxs017@shsu.edu)

vector of the group and each node, resulting a more accurate
depict of how nodes actually move. Ravikiran and Singh [5]
carried out simulation and performance analysis on the above
models over three major MANET routing algorithms:
Dynamic Source Routing (DSR), Ad Hoc On Demand
Distance Vector (AODV), and Destination Sequenced
Distance Vector (DSDV). Cano and Manzoni [1] also
reported on the simulation and performance of several
different group mobility models. Although these mobility
models may work well in predicting the location of mobile
nodes, they fail to show the logical relationship (e.g. trust
level) among neighbor nodes, which is critical in secure
routing and routing optimization.

Noticing information exchange being important among
neighbor nodes, Joe and Batsell introduced a Multipoint
Relaying (MPR) based hybrid routing algorithm which
makes use of the multipoint relaying based on the
information exchange among neighbor nodes [3].
Nonetheless, this routing algorithm still does not explore
logical relationship among neighbor nodes.

In an effort to achieve better reliability in MANETs, Ye
and collaborators introduced a reliable routing framework, in
which a number of reliable R-nodes are purposely placed in
the network and play the role of supporting the network as
backbones [9]. While this idea may be practical in certain
metropolitan areas, it would not be suitable for impromptu
scenarios such as disaster rescues and recovery.

It has been suggested in earlier research that routing can be
optimized by collecting and aggregating relative information
among neighbor nodes. For example, Chai-KeongToh and
co-workers introduced the Associativity-Based Routing
(ABR) which makes use of the Associativity Ticks among
neighbor nodes [6], [7]. The Associativity Ticks indeed show
a mobile node’s dormant time, in which the node is in a stable
status, yet, they are not able to illustrate the long term
cumulative relationship among neighbors. For example, a
node will treat its old, stable neighbor nodes same as
newcomer neighbor nodes, which may be just passing
through the neighborhood. Also, in ABR only the source
node maintains the routing information, meaning when a
node is temporarily unavailable (e.g. when a device is
restarting), ABR will redo routing and may choose a worse
node and not be able to switch back.

Security of networks has always been a critical issue in
many network applications, especially in wireless
environments. But unfortunately most current on-demand
routing algorithms in MANETs, such as AODV, are not
competent in detecting malicious nodes or malevolent
behavior. Therefore a node with a piece of malicious code
may advertise itself being on the shortest path yet in fact it is
not [4]. Although Secure AODV (SAODV), proposed by

Secure Last Acknowledged Packet Routing Algorithm
(SLAPRA) for MANETs

P. Cooper, L. Chen, and C. Sun

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

299DOI: 10.7763/IJFCC.2013.V2.172

Zapata, protects route discovery mechanism which provides
security features like integrity, authentication, and
non-repudiation[10], it requires a signature key pair from a
suitable asymmetric cryptosystem and each node being able
to verify the association between the address of a given node
and its public key. Such computation load and key
management scheme may not be suitable in current MANET
applications.

In this research, we propose the Secure Last
Acknowledged Packet Routing Algorithm (SLAPRA), an
innovative trust level-based routing algorithm to improve the
security level of MANETs. More specifically, by making use
of last acknowledged packets, SLAPRA detects and isolates
misbehaving nodes that may be involved in attacks such as
Black Hole Attacks, and packet crafting. The fundamental
idea of SLAPRA is that, every node keeps the record of their
Last Received Packet from the nodes and that of Last Sent
Packet to other nodes. If a node detects change of route, in
order to verify abnormality in the network, it compares the
content of its recorded Last Received Packet to that of its last
hop neighbor’s Last Sent Packet.

This paper is organized as follows. In Section II, details of
SLAPRA are introduced in four subsections: Tables, Packet
Types, Algorithm, and Pseudo Code. Section III presents
simulation and analysis. We draw conclusion and propose
future work in Section IV.

Fig. 1. A route example with six good nodes (S, D, N1, N2, N3, and N4) and

one malicious node (M).

II. SECURE LAST ACKNOWLEDGED PACKET ROUTING
In the following subsection, we introduce the tables that

are utilized by mobile nodes to store critical information
about routing and trust relationship among neighbors.
Subsection B describes the structures and functions of four
different types of packets facilitating the secure routing
algorithm. SLAPRA is discussed in detail in subsection C
followed by the pseudo code in subsection D.

TABLE I: NODE N4’S TABLE T1

Source Last Hop SHA-1 Hash of LAP

S N3 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12
N1 N3 de9f2c7fd25e1b3afad3e85a0bd17d9b100db4b3
N2 N3 da39a3ee5e6b4b0d3255bfef95601890afd80709
N3 N3 aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d

A. Tables
Each node maintains and updates five tables to implement

the algorithm. T1 (refer to Table I) is used for storing the hash
(SHA-1 in this case) values of each of the Last
Acknowledged Packets (LAPs) and the corresponding source
(which initiated the current data packet) and the last hop node
(which forwarded the current data packet to the current node)
IDs. Source works as the key in Table I. Since hash value
changes dramatically (at least half of bits) even with small

change in original packet content, when original LAP is
changed or modified, it helps detect changes in a fast and
efficient manner.

In the route example shown in Fig. 1, N4’s last hop is N3,
and the hash of LAP is updated every time after it receives a
packet from S. this information is stored in T1 of N4 as
shown next.

Table T2 is used to store and manage the trust levels of the
neighbor nodes from which the local node received packets.
Every time when the local node receives a packet from one of
its neighbor nodes for the first time, it appends a new record
for its neighbor in its T2 with a default trust level, e.g. 30.
Neighbor ID is the key for T2, and trust level can be
dynamically updated. Table II below shows the content of
N4’s T2 in the same example.

TABLE II: NODE N4’S TABLE T2

Neighbor ID Trust Level for receiving
N3 30

Table T3 is used to store the information of Last Sent

Packets (LSPs) to the next hops. Each record has two
attributes: the neighbor node ID, and the Hash value of LSP
to the corresponding neighbor node. Neighbor ID works as a
key for this table. Table III below shows the content of N4’s
T3 in the same example.

TABLE III: NODE N4’S TABLE T3

Neighbor ID SHA-1 Hash of LSP
D efen5c7fd25e1b3afad3e85a0bd17eft100db5b3

Table T4 is the Bad Node List, which stores all the IDs of

malicious nodes detected in the neighborhood. The local
node will place its neighbor node IDs into this table if their
trust levels decreased to below a threshold, such as zero. As a
consequence, a node will refuse to process any packet from
the neighbor nodes listed in its T4. Table IV below shows the
content of N4’s T4 in the same example, where N8 is a
previous bad node not shown in current route.

TABLE IV: NODE N4’S TABLE T4

Bad Node
N8

TABLE V: NODE N4’S TABLE T5

Verification_Sequence_Number Suspicious_Node
123 M
124 M

Table T5 maintains a list of suspicious nodes and the

associated Verification Sequence Numbers (VSNs). VSNs
work as a key for this table, and every time when the local
node receives a suspicious (e.g. route change) packet, it
creates a new VSN associated with the suspicious node in T5.
Each suspicious node may be associated with multiple VSNs
in T5, since it may send multiple suspicious packets to the
local node. For example, when node N4 receives one
suspicious packet from M, it creates a VSN in T5, and another
suspicious packet from M later will result in a new VSN
associated with M in T5.

B. Packet Types
There are four types of packets in this algorithm: data

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

300

packet, verification packet, warning-type-1 packet, and
warning-type-2 packet. We limit all packet size to 1KB.
Packet header is set to 16 bytes, and the rest of packet is the
payload. While the payload structure remains constant, the
length of the actual content in the payload may vary.

A data packet is simply a regular packet with user data
content. Its header consists of four parts: Packet Type, Source
ID, Last Hop ID, and Payload Length, each of which is 4
bytes in size. To keep our simulation simple, we labeled data
packets as type 1. The Payload Length field in the header
dictates the length of the payload’s content that will be read.
The format of the data packets goes as Fig. 2 below.

Fig. 2. Format of data type packets.

A verification packet is sent to the last hop in the path by a

local node when the node finds certain data packet suspicious
(e.g. when route change is detected). The header of
verification packets includes four parts: Packet Type, Source
ID, Last hop ID, and Verification Sequence Number (VSN).
Each of these parts is 4 bytes. In the simulation, the packet
type of verification packets is set to 0. The Payload part of
verification packets consists of two parts: the 20-byte-long
hash, and the Timestamp, which is 12 bytes in length. The
structure of verification packets is shown in Fig. 3.

Fig. 3. Format of verification packets.

Fig. 4. Format of warning-type-1 and warning-type-2 packets.

Warning-type-1 and warning-type-2 packets share the

same header format with verification packets, except for their
payload being empty (refer to Fig. 4). Warning-type-1
packets are labeled as type 3 and warning-type-2 packets as
type 4. The function of Verification Sequence Number (VSN)
here is to inform the next hop node to decrease the trust level
of the specific node corresponding to this VSN in the T5. The
difference between these two warning-type packets is,

Warning-type-1 informs the next hop to decrease the trust
level with a constant β (due to black hole node claiming
shortest path), and type 2 triggers trust level to decrease by a
constant Ω (due to intentional packet crafting), where β is
smaller than Ω. Details of the use of these two types of
packets are discussed in following subsections.

C. Algorithm
For the following algorithm description, also refer to

pseudo code in the next subsection. Every node, upon
receiving a packet, will identify the packet type before
proceed. If it is a data type packet, the node will traverse its
T4 locally to check whether the last hop node of the packet
can be found in table. Packet will be rejected if last hope is
found in bad node list T4. Otherwise, packet’s last hop will
be compared to the Last Hop attribute value in T1. If there is a
match on both source and last hop, this is considered a normal
and regular operations are executed. Otherwise new record
will be added to T1 if no match is found. Regular operations
include updating record in T1, increasing trust level of last
hop in T2by a small adjustable preset constant α, updating
last hop information in the packet and record in T3, and
finally sending the packet to next hop. In the example shown
in Fig. 1, node N4 constantly receives packets from N3.
Every time N4 updates LAP information with corresponding
Source ID in its T1, and increases the trust level of N3 in T2.
N4 also updates the hash of Last Sent Packet in T3, and then
forwards the packet to destination node D.

Route change is detected when packet’s last hop did not
match the records in T1. In such case a verification packet
needs to be sent to the corresponding last hop node. In the
same example above, once N4 receives a packet from
malicious node M, it finds out, after checking its T1, that
route has been changed. Consequently N4 sends a
verification packet to N3.

When a node receives a verification packet, it appends
timestamp of the packet to the hash of LSP, and hashes the
new combined bytes. Then the new hash result is compared
with the hash content in the verification packet. In the above
example, N3 receives a verification packet, which contains
the hash and timestamp. N3 looks up the hash of LSP record
from S in its T3, then calculates checksum = Hash(Hash of
LSP + timestamp). If the checksum equals to the hash content
in the packet, then M is considered to be a regular node just
relaying packets. However in this case, M is still not the
shortest path to N4, so it is considered ablack hole attacker if
it claims being on the shorted path. When this is detected, N3
will send N4 a warning-type-1 packet to inform that M is a
black hole. The worst case happens when the above
checksum comparison turns out to be not equal. It indicates
that M intentionallycraftedpackets apparent from source S
(assuming all nodes on path are informed in regular
rerouting). In this situation, N3 will alert N4 by sending it a
warning-type-2 packet.

Both warning type packets carry VSN to be used in search
within table T5. Upon any match, the trust level of suspicious
node will be decreased in T3, by either β or Ω depending on
the actual warning type.

D. Pseudo Code
Fig. 5 below shows the pseudo code and comments of the

algorithm.

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

301

Fig. 5. Pseudo code and comments of SLAPRA algorithm

III. SIMULATION AND ANALYSIS
In the following subsections we present the design and

implementation of simulation, and demonstrate the results of
testing.

A. Design of Implementation
The simulation is implemented by coding a multi-threaded

peer to peer UDP application using Java Sockets. From the
topology point of view, each node is an object of the Node
class. Every node runs two threads: receiver and sender. The
thread of receiver catches the UDP packets and then pushes

them into the input queue. The thread of sender on the other
hand fetches the received packets from the input queue in the
same order they were received and queued, then processes
the packets according to SLAPRA, and finally forwards them
to the next hop on route.

B. Coding
Our simulation coding consists of eight java files.

Node.java is a class for regular nodes containing a “Linkto”
function which configures the topology by connecting one
node to its next hop. Its “SendInitialPacket” thread sets the
data rate of sending packets, and the numbers of total packets
to be sent. This file also has three variables alpha, beta, and
omega which configure the values of α, β and Ω in the
algorithm respectively. These preset values can be adjusted
for various network scenarios in future research.
MaliciousNode.java is a class of malicious nodes, of which
“Attack” function configures the node it attacks. The “Sender”
thread sets the data rate at which malicious packets are sent.
Table2.java is the class of T2 table in every node containing a
constant “InitialTrust”, which sets the initial trust value, e.g.
20.

During the execution of these programs, each node in the
network produces a log file, with its node ID as file name,
containing all behavioral records of the node. These records
are used for analyzing the validity and performance of the
proposed algorithm.

C. Testing and Results
Program logs from testing show that our algorithm is

capable of finding black hole node(s) in the network. Also, by
examining these log files, we can verify that the regular nodes
have actually isolated the malicious node(s) by decreasing
trust levels and finally dropping them off the neighborhood’s
communication.

How fast the malicious node can be isolated depends on
the values of alpha, beta, and omega plugged in the runtime.
Since the good nodes drop the trust level of the suspicious
node gradually, the faster the malicious nodes send malicious
packets, the more quickly it will be isolated. We consider this
a nice security feature. In a real test, the source node is set to
send the initial packets at the rate of 800kbps, and the
malicious node sends crafted packets at rate of 40kbps. The
initial trust level of each node is set to 20, and alpha for
increasing trust level is set to 0.5. Beta for warning-type-1 to
decrease trust level is 3, and omega for warning-type-2 to
decrease trust level is 5. In the network plotted in Fig. 1,
malicious node M begins to attack N4 200 milliseconds after
the source node S started sending initial data packets. After
20 seconds of executing the program, we obtain the following
records from N4’s log file (note that Node8000 refers to the
malicious node and T2 and T4 are the local tables at N4):

2012-7-16 16:13:54.337: T2: Node8000 trust level
decreased to 15.0!!

2012-7-16 16:13:54.552: T2: Node8000 trust level
decreased to 10.0!!

2012-7-16 16:13:54.797: T2: Node8000 trust level
decreased to 5.0!!

Packet=get_packet() // packet received
if (Packet.type==data packet) // data packet received
{
if (Packet.last_hop not in T4) //packet not from bad node
{
hash Packet;
if (source exists in T1) // when packet source already exists in T1
{
ifPacket.last_hop<>T1(last_hop)

// packet from different route; needs verification
{
T5.append(Sequence_number, Packet.last_hop, hash);

// to verify the change of last hop
send_verifcation_packet(Sequence_number);

}
else // last hop did not change; proceed with regular operations
{
update T1(last_hop, hash);
increase T2(last_hop, trust_level, α);
update T3(next_hop, LSP);
send_data_packet(next_hop);
 }
}
else
 {
append record to T1; // new source added to T1
update T3(next_hop, LSP);
send_data_packet(next_hop);
 }
}

else // packet is from a bad node
reject packet;

 }
else if (packet.type == Verification packet)
// verification packet received
{

checksum=SHA-1(T3[Verification_source].hash_LSP +
T3[Verification_source].ID + payload.system_timestamp);

 // hashed LSP along with timestamp is hashed
packet.payload.remove_timestamp;
 // timestamp is removed for comparison of the rest of payload
If ((checksum == payload)
// when same packet forwarded by a different node
 send_warning_1_packet(Verification_source); // inform next hop
else // packet content was changed and packet was forwarded
 send_warning_2_packet(Verification_source);
}
else if (packet.type == warning_type_1)
{
SnodeID= get_suspicious _node(Sequence_Number);
// suspicious black hole node
decrease T2(nodeID, trust_level,β); // black hole
if (trust_level< = 0) append to T4;
}
else if (packet.type == warning_type_2)
{
SnodeID = get_suspicious _node(Sequence_Number);
// suspicious packet crafting node
decrease T2(nodeID, trust_level, Ω); // packet crafter
if (trust_level< = 0) append to T4;
}
send_verification_packet(Verification_Sequence_Number)
{

payload = SHA-1(concatenate LKCP(hash, source) +
system_timestamp);

payload.append(local_ID, system_timestamp);
send_packet(source);// last hop node (source of current hop)
 }

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

302

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

303

2012-7-16 16:13:55.035: T2: Node8000 trust level
decreased to 0.0!!

2012-7-16 16:13:55.035: T4: Node8000 has been added
table!!

2012-7-16 16:13:55.17: Reject the packet from Node 8000!

In Node8000’s log file, we can find following record,
which indicates the start time Node 8000 began to send
malicious packets:

2012-17-16 16:13:54.277: Sent 'This is malicious node.' to
port 5600.

This log record indicates our algorithm is capable of
detecting black hole nodes and making alerts.

IV. CONCLUSION AND FUTURE WORK
In this paper, we have proposed Secure Last

Acknowledged Packet Routing Algorithm (SLAPRA), which
is capable of detecting black hole nodes and packet crafters in
a very efficient and prompt manner. Our future research
includes finding appropriate values of alpha, beta, and omega
for various network scenarios. We aim to improve the current
algorithm so that it is also capable of detecting other types of

MANET attacks.

REFERENCES
[1] J. C. Cano and P. Manzoni, “Group mobility impact over TCP and

CBR traffic in Mobile Ad Hoc Networks,” IEEE Infocom, 2004.
[2] X. Hong, M. Gerla, G. Pei, and C. C. Chiang, “A Group Mobility

Model for Ad Hoc Wireless Networks,” in Proc. of ACM/IEEE
MSWiM’99, Seattle, WA, Aug. 1999, pp. 53-60.

[3] I. Joe and S. G. Batsell, “MPR-based Hybrid Routing for Mobile
Ad-Hoc Networks,” in Proceedings of the 27th Annual IEEE
Conference on Local Computer Networks.

[4] D. Mishra, Y. K. Jain, and S. Agrawal, "Behavior Analysis of
Malicious Node in the Different Routing Algorithms in Mobile Ad Hoc
Network (MANET)," Advances in Computing, Control and
Telecommunication Technologies, pp. 621-623, 28-29 December 2009.

[5] G. Ravikiran and S. Singh, “Influence of Mobility Models on the
Performance of Routing Protocols in Ad-Hoc Wireless Networks,”
IEEE VTC’ 04 (spring), Milan, Italy, May 17-19, 2004.

[6] G. K. Toh, “Associativity-Based Routing for Ad-Hoc Mobile
Networks,” Wireless Personal Communications, vol. 4, pp. 103-139,
1997.

[7] C. K. Toh, M. Delwar, and D. Allen, “Evaluating the Communication
Performance of an Ad Hoc Wireless Network,” IEEE Transactions on
Wireless Commnunications, vol. 1, no. 3, July 2002.

[8] K. H. Wang and B. Li, “Group Mobility and Partition Prediction in
Wireless Ad-Hoc Networks,” IEEE Infocom, 2002.

[9] Z. Ye, S. V. Krishnamurthy, and S. K. Tripathi, “A Framework for
Reliable Routing in Mobile Ad Hoc Networks,” IEEE Infocom, 2003.

[10] M. G. Zapata, “Secure ad hoc on-demand distance vector routing,”
Sigmobile Mob. Comput. Commun. Rev, vol. 6, no. 3, 2002.

