
  

  
Abstract—Mobile Ad Hoc Networks (MANETs) are 

becoming more pervasive thanks to their advantages of being 
infrastructureless and portable. However such networks suffer 
from a variety of attacks due to several inherent factors such as 
mobility, signal attenuation and interference, and limited 
computation power and battery resources on mobile devices. 
Secure light-weight routing for a reliable path consisting of 
trustable nodes has not been an easy task. In this research, we 
propose the Secure Last Acknowledged Packet Routing 
Algorithm (SLAPRA),capable ofefficient and prompt attack 
detection and malicious node isolation, and demonstrate the 
validity of the algorithm through simulation. 
 

Index Terms—MANETs, security, secure routing, malicious 
nodes, Black Hole attacks, packet crafting, trust evaluation.  
 

I. INTRODUCTION 
In contrast to wired networks with stable infrastructure, 

MANETs consist of mobile devices communicating over 
relatively less robust wireless links in a possibly 
ever-changing topology. The unreliability is mainly due to 
two reasons: device mobility and signal interference. 

Random node mobility, hardly possible to predict, allows 
movement in arbitrary direction and speed leading to a higher 
incidence of broken links, and consequently can greatly 
reduce the performance of MANETs. Exceptions are cases 
such like Vehicular Ad Hoc Networks where the movement 
of vehicles and mobile devices may be confined within 
certain areas such as roads, and therefore can be predicted at a 
certain degree. In most MANETs, a path performing well at 
one moment may become unavailable in the next time 
interval. Therefore, an adaptive and dynamic routing 
algorithm is demanded to achieve better performance. 

In previous research, group mobility models were 
developed according to the movement patterns of mobile 
nodes in certain applications. For example, the Reference 
Point Group Mobility (RPGM) model and a number of 
extensions were introduced [2]-[8]. In RPGM, mobile hosts 
are organized in groups according to their logical relationship, 
and each group has a logical center whose motion defines the 
entire group’s motion behavior (location, speed, direction, 
and acceleration) where the motion of a single node is the 
vector sum of the motion of the reference point and the 
independent random movement. Reference Velocity Group 
Mobility (RVGM) model extends RPGM by adding velocity 
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vector of the group and each node, resulting a more accurate 
depict of how nodes actually move. Ravikiran and Singh [5] 
carried out simulation and performance analysis on the above 
models over three major MANET routing algorithms: 
Dynamic Source Routing (DSR), Ad Hoc On Demand 
Distance Vector (AODV), and Destination Sequenced 
Distance Vector (DSDV). Cano and Manzoni [1] also 
reported on the simulation and performance of several 
different group mobility models. Although these mobility 
models may work well in predicting the location of mobile 
nodes, they fail to show the logical relationship (e.g. trust 
level) among neighbor nodes, which is critical in secure 
routing and routing optimization. 

Noticing information exchange being important among 
neighbor nodes, Joe and Batsell introduced a Multipoint 
Relaying (MPR) based hybrid routing algorithm which 
makes use of the multipoint relaying based on the 
information exchange among neighbor nodes [3]. 
Nonetheless, this routing algorithm still does not explore 
logical relationship among neighbor nodes. 

In an effort to achieve better reliability in MANETs, Ye 
and collaborators introduced a reliable routing framework, in 
which a number of reliable R-nodes are purposely placed in 
the network and play the role of supporting the network as 
backbones [9]. While this idea may be practical in certain 
metropolitan areas, it would not be suitable for impromptu 
scenarios such as disaster rescues and recovery. 

It has been suggested in earlier research that routing can be 
optimized by collecting and aggregating relative information 
among neighbor nodes. For example, Chai-KeongToh and 
co-workers introduced the Associativity-Based Routing 
(ABR) which makes use of the Associativity Ticks among 
neighbor nodes [6], [7]. The Associativity Ticks indeed show 
a mobile node’s dormant time, in which the node is in a stable 
status, yet, they are not able to illustrate the long term 
cumulative relationship among neighbors. For example, a 
node will treat its old, stable neighbor nodes same as 
newcomer neighbor nodes, which may be just passing 
through the neighborhood. Also, in ABR only the source 
node maintains the routing information, meaning when a 
node is temporarily unavailable (e.g. when a device is 
restarting), ABR will redo routing and may choose a worse 
node and not be able to switch back. 

Security of networks has always been a critical issue in 
many network applications, especially in wireless 
environments. But unfortunately most current on-demand 
routing algorithms in MANETs, such as AODV, are not 
competent in detecting malicious nodes or malevolent 
behavior. Therefore a node with a piece of malicious code 
may advertise itself being on the shortest path yet in fact it is 
not [4]. Although Secure AODV (SAODV), proposed by 
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Zapata, protects route discovery mechanism which provides 
security features like integrity, authentication, and 
non-repudiation[10], it requires a signature key pair from a 
suitable asymmetric cryptosystem and each node being able 
to verify the association between the address of a given node 
and its public key. Such computation load and key 
management scheme may not be suitable in current MANET 
applications. 

In this research, we propose the Secure Last 
Acknowledged Packet Routing Algorithm (SLAPRA), an 
innovative trust level-based routing algorithm to improve the 
security level of MANETs. More specifically, by making use 
of last acknowledged packets, SLAPRA detects and isolates 
misbehaving nodes that may be involved in attacks such as 
Black Hole Attacks, and packet crafting. The fundamental 
idea of SLAPRA is that, every node keeps the record of their 
Last Received Packet from the nodes and that of Last Sent 
Packet to other nodes. If a node detects change of route, in 
order to verify abnormality in the network, it compares the 
content of its recorded Last Received Packet to that of its last 
hop neighbor’s Last Sent Packet. 

This paper is organized as follows. In Section II, details of 
SLAPRA are introduced in four subsections: Tables, Packet 
Types, Algorithm, and Pseudo Code. Section III presents 
simulation and analysis. We draw conclusion and propose 
future work in Section IV. 

 
Fig. 1. A route example with six good nodes ( S, D, N1, N2, N3, and N4) and 

one malicious node (M). 
 

II. SECURE LAST ACKNOWLEDGED PACKET ROUTING 
In the following subsection, we introduce the tables that 

are utilized by mobile nodes to store critical information 
about routing and trust relationship among neighbors. 
Subsection B describes the structures and functions of four 
different types of packets facilitating the secure routing 
algorithm. SLAPRA is discussed in detail in subsection C 
followed by the pseudo code in subsection D. 

 
TABLE I: NODE N4’S TABLE T1 

Source Last Hop SHA-1 Hash of LAP 

S N3 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12
N1 N3 de9f2c7fd25e1b3afad3e85a0bd17d9b100db4b3
N2 N3 da39a3ee5e6b4b0d3255bfef95601890afd80709
N3 N3 aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d

A. Tables 
Each node maintains and updates five tables to implement 

the algorithm. T1 (refer to Table I) is used for storing the hash 
(SHA-1 in this case) values of each of the Last 
Acknowledged Packets (LAPs) and the corresponding source 
(which initiated the current data packet) and the last hop node 
(which forwarded the current data packet to the current node) 
IDs. Source works as the key in Table I. Since hash value 
changes dramatically (at least half of bits) even with small 

change in original packet content, when original LAP is 
changed or modified, it helps detect changes in a fast and 
efficient manner. 

In the route example shown in Fig. 1, N4’s last hop is N3, 
and the hash of LAP is updated every time after it receives a 
packet from S. this information is stored in T1 of N4 as 
shown next. 

Table T2 is used to store and manage the trust levels of the 
neighbor nodes from which the local node received packets. 
Every time when the local node receives a packet from one of 
its neighbor nodes for the first time, it appends a new record 
for its neighbor in its T2 with a default trust level, e.g. 30. 
Neighbor ID is the key for T2, and trust level can be 
dynamically updated. Table II below shows the content of 
N4’s T2 in the same example. 

 
TABLE II: NODE N4’S TABLE T2 

Neighbor ID Trust Level for receiving
N3 30 

 
Table T3 is used to store the information of Last Sent 

Packets (LSPs) to the next hops. Each record has two 
attributes: the neighbor node ID, and the Hash value of LSP 
to the corresponding neighbor node. Neighbor ID works as a 
key for this table. Table III below shows the content of N4’s 
T3 in the same example. 

 
TABLE III: NODE N4’S TABLE T3 

Neighbor ID SHA-1 Hash of LSP 
D efen5c7fd25e1b3afad3e85a0bd17eft100db5b3

 
Table T4 is the Bad Node List, which stores all the IDs of 

malicious nodes detected in the neighborhood. The local 
node will place its neighbor node IDs into this table if their 
trust levels decreased to below a threshold, such as zero. As a 
consequence, a node will refuse to process any packet from 
the neighbor nodes listed in its T4. Table IV below shows the 
content of N4’s T4 in the same example, where N8 is a 
previous bad node not shown in current route. 

 
TABLE IV: NODE N4’S TABLE T4 

Bad Node 
N8 

 
TABLE V: NODE N4’S TABLE T5 

Verification_Sequence_Number Suspicious_Node
123 M 
124 M 

 
Table T5 maintains a list of suspicious nodes and the 

associated Verification Sequence Numbers (VSNs). VSNs 
work as a key for this table, and every time when the local 
node receives a suspicious (e.g. route change) packet, it 
creates a new VSN associated with the suspicious node in T5. 
Each suspicious node may be associated with multiple VSNs 
in T5, since it may send multiple suspicious packets to the 
local node. For example, when node N4 receives one 
suspicious packet from M, it creates a VSN in T5, and another 
suspicious packet from M later will result in a new VSN 
associated with M in T5. 

B. Packet Types 
There are four types of packets in this algorithm: data 
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packet, verification packet, warning-type-1 packet, and 
warning-type-2 packet. We limit all packet size to 1KB. 
Packet header is set to 16 bytes, and the rest of packet is the 
payload. While the payload structure remains constant, the 
length of the actual content in the payload may vary. 

A data packet is simply a regular packet with user data 
content. Its header consists of four parts: Packet Type, Source 
ID, Last Hop ID, and Payload Length, each of which is 4 
bytes in size. To keep our simulation simple, we labeled data 
packets as type 1. The Payload Length field in the header 
dictates the length of the payload’s content that will be read. 
The format of the data packets goes as Fig. 2 below. 

 

 
Fig. 2. Format of data type packets. 

 
A verification packet is sent to the last hop in the path by a 

local node when the node finds certain data packet suspicious 
(e.g. when route change is detected). The header of 
verification packets includes four parts: Packet Type, Source 
ID, Last hop ID, and Verification Sequence Number (VSN). 
Each of these parts is 4 bytes. In the simulation, the packet 
type of verification packets is set to 0. The Payload part of 
verification packets consists of two parts: the 20-byte-long 
hash, and the Timestamp, which is 12 bytes in length. The 
structure of verification packets is shown in Fig. 3. 

 

 
Fig. 3. Format of verification packets. 

 

 
Fig. 4. Format of warning-type-1 and warning-type-2 packets. 

 
Warning-type-1 and warning-type-2 packets share the 

same header format with verification packets, except for their 
payload being empty (refer to Fig. 4). Warning-type-1 
packets are labeled as type 3 and warning-type-2 packets as 
type 4. The function of Verification Sequence Number (VSN) 
here is to inform the next hop node to decrease the trust level 
of the specific node corresponding to this VSN in the T5. The 
difference between these two warning-type packets is, 

Warning-type-1 informs the next hop to decrease the trust 
level with a constant β (due to black hole node claiming 
shortest path), and type 2 triggers trust level to decrease by a 
constant Ω (due to intentional packet crafting), where β is 
smaller than Ω. Details of the use of these two types of 
packets are discussed in following subsections. 

C. Algorithm 
For the following algorithm description, also refer to 

pseudo code in the next subsection. Every node, upon 
receiving a packet, will identify the packet type before 
proceed. If it is a data type packet, the node will traverse its 
T4 locally to check whether the last hop node of the packet 
can be found in table. Packet will be rejected if last hope is 
found in bad node list T4. Otherwise, packet’s last hop will 
be compared to the Last Hop attribute value in T1. If there is a 
match on both source and last hop, this is considered a normal 
and regular operations are executed. Otherwise new record 
will be added to T1 if no match is found. Regular operations 
include updating record in T1, increasing trust level of last 
hop in T2by a small adjustable preset constant α, updating 
last hop information in the packet and record in T3, and 
finally sending the packet to next hop. In the example shown 
in Fig. 1, node N4 constantly receives packets from N3. 
Every time N4 updates LAP information with corresponding 
Source ID in its T1, and increases the trust level of N3 in T2. 
N4 also updates the hash of Last Sent Packet in T3, and then 
forwards the packet to destination node D.  

Route change is detected when packet’s last hop did not 
match the records in T1. In such case a verification packet 
needs to be sent to the corresponding last hop node. In the 
same example above, once N4 receives a packet from 
malicious node M, it finds out, after checking its T1, that 
route has been changed. Consequently N4 sends a 
verification packet to N3. 

When a node receives a verification packet, it appends 
timestamp of the packet to the hash of LSP, and hashes the 
new combined bytes. Then the new hash result is compared 
with the hash content in the verification packet. In the above 
example, N3 receives a verification packet, which contains 
the hash and timestamp. N3 looks up the hash of LSP record 
from S in its T3, then calculates checksum = Hash(Hash of 
LSP + timestamp). If the checksum equals to the hash content 
in the packet, then M is considered to be a regular node just 
relaying packets. However in this case, M is still not the 
shortest path to N4, so it is considered ablack hole attacker if 
it claims being on the shorted path. When this is detected, N3 
will send N4 a warning-type-1 packet to inform that M is a 
black hole. The worst case happens when the above 
checksum comparison turns out to be not equal. It indicates 
that M intentionallycraftedpackets apparent from source S 
(assuming all nodes on path are informed in regular 
rerouting). In this situation, N3 will alert N4 by sending it a 
warning-type-2 packet. 

Both warning type packets carry VSN to be used in search 
within table T5. Upon any match, the trust level of suspicious 
node will be decreased in T3, by either β or Ω depending on 
the actual warning type. 

D. Pseudo Code 
Fig. 5 below shows the pseudo code and comments of the 

algorithm. 
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Fig. 5. Pseudo code and comments of SLAPRA algorithm 

 

III. SIMULATION AND ANALYSIS 
In the following subsections we present the design and 

implementation of simulation, and demonstrate the results of 
testing. 

A. Design of Implementation 
The simulation is implemented by coding a multi-threaded 

peer to peer UDP application using Java Sockets. From the 
topology point of view, each node is an object of the Node 
class. Every node runs two threads: receiver and sender. The 
thread of receiver catches the UDP packets and then pushes 

them into the input queue. The thread of sender on the other 
hand fetches the received packets from the input queue in the 
same order they were received and queued, then processes 
the packets according to SLAPRA, and finally forwards them 
to the next hop on route. 

B. Coding 
Our simulation coding consists of eight java files. 

Node.java is a class for regular nodes containing a “Linkto” 
function which configures the topology by connecting one 
node to its next hop. Its “SendInitialPacket” thread sets the 
data rate of sending packets, and the numbers of total packets 
to be sent. This file also has three variables alpha, beta, and 
omega which configure the values of α, β and Ω in the 
algorithm respectively. These preset values can be adjusted 
for various network scenarios in future research. 
MaliciousNode.java is a class of malicious nodes, of which 
“Attack” function configures the node it attacks. The “Sender” 
thread sets the data rate at which malicious packets are sent. 
Table2.java is the class of T2 table in every node containing a 
constant “InitialTrust”, which sets the initial trust value, e.g. 
20.  

During the execution of these programs, each node in the 
network produces a log file, with its node ID as file name, 
containing all behavioral records of the node. These records 
are used for analyzing the validity and performance of the 
proposed algorithm. 

C. Testing and Results 
Program logs from testing show that our algorithm is 

capable of finding black hole node(s) in the network. Also, by 
examining these log files, we can verify that the regular nodes 
have actually isolated the malicious node(s) by decreasing 
trust levels and finally dropping them off the neighborhood’s 
communication. 

How fast the malicious node can be isolated depends on 
the values of alpha, beta, and omega plugged in the runtime. 
Since the good nodes drop the trust level of the suspicious 
node gradually, the faster the malicious nodes send malicious 
packets, the more quickly it will be isolated. We consider this 
a nice security feature. In a real test, the source node is set to 
send the initial packets at the rate of 800kbps, and the 
malicious node sends crafted packets at rate of 40kbps. The 
initial trust level of each node is set to 20, and alpha for 
increasing trust level is set to 0.5. Beta for warning-type-1 to 
decrease trust level is 3, and omega for warning-type-2 to 
decrease trust level is 5. In the network plotted in Fig. 1, 
malicious node M begins to attack N4 200 milliseconds after 
the source node S started sending initial data packets. After 
20 seconds of executing the program, we obtain the following 
records from N4’s log file (note that Node8000 refers to the 
malicious node and T2 and T4 are the local tables at N4): 

2012-7-16 16:13:54.337: T2: Node8000 trust level 
decreased to 15.0!! 

2012-7-16 16:13:54.552: T2: Node8000 trust level 
decreased to 10.0!! 

2012-7-16 16:13:54.797: T2: Node8000 trust level 
decreased to 5.0!! 

Packet=get_packet()  // packet received 
if (Packet.type==data packet)   // data packet received 
{ 
if (Packet.last_hop not in T4)  //packet not from bad node 
{ 
hash Packet; 
if (source exists in T1) // when packet source already exists in T1 
{ 
ifPacket.last_hop<>T1(last_hop) 

// packet from different route; needs verification 
{ 
T5.append(Sequence_number, Packet.last_hop, hash);  

// to verify the change of last hop 
send_verifcation_packet(Sequence_number); 

} 
else // last hop did not change; proceed with regular operations 
{ 
update T1(last_hop, hash); 
increase T2(last_hop, trust_level, α); 
update T3(next_hop, LSP); 
send_data_packet(next_hop); 
         } 
} 
else 
      { 
append record to T1; // new source added to T1 
update T3(next_hop, LSP); 
send_data_packet(next_hop); 
       } 
} 

else // packet is from a bad node 
reject packet; 

 } 
else if (packet.type == Verification packet) 
// verification packet received  
{ 

checksum=SHA-1(T3[Verification_source].hash_LSP + 
T3[Verification_source].ID + payload.system_timestamp); 

    // hashed LSP along with timestamp is hashed 
packet.payload.remove_timestamp; 
     // timestamp is removed for comparison of the rest of payload 
If ((checksum == payload) 
// when same packet forwarded by a different node 
         send_warning_1_packet(Verification_source); // inform next hop
else // packet content was changed and packet was forwarded 
         send_warning_2_packet(Verification_source); 
} 
else if (packet.type == warning_type_1) 
{ 
SnodeID= get_suspicious _node(Sequence_Number); 
// suspicious black hole node 
decrease T2(nodeID, trust_level,β); // black hole 
if (trust_level< = 0) append to T4; 
} 
else if (packet.type == warning_type_2) 
{ 
SnodeID = get_suspicious _node(Sequence_Number); 
// suspicious packet crafting node 
decrease T2(nodeID, trust_level, Ω); // packet crafter 
if (trust_level< = 0) append to T4; 
} 
send_verification_packet(Verification_Sequence_Number)  
{ 

payload = SHA-1(concatenate LKCP(hash, source) + 
system_timestamp); 

payload.append(local_ID, system_timestamp); 
send_packet(source);// last hop node (source of current hop) 
 } 
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2012-7-16 16:13:55.035: T2: Node8000 trust level 
decreased to 0.0!! 

2012-7-16 16:13:55.035: T4: Node8000 has been added 
table!! 

2012-7-16 16:13:55.17: Reject the packet from Node 8000! 

In Node8000’s log file, we can find following record, 
which indicates the start time Node 8000 began to send 
malicious packets: 

2012-17-16 16:13:54.277: Sent 'This is malicious node.' to 
port 5600. 

This log record indicates our algorithm is capable of 
detecting black hole nodes and making alerts. 

 

IV. CONCLUSION AND FUTURE WORK 
In this paper, we have proposed Secure Last 

Acknowledged Packet Routing Algorithm (SLAPRA), which 
is capable of detecting black hole nodes and packet crafters in 
a very efficient and prompt manner. Our future research 
includes finding appropriate values of alpha, beta, and omega 
for various network scenarios. We aim to improve the current 
algorithm so that it is also capable of detecting other types of 

MANET attacks. 
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