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Abstract—Interleaver is an important component of turbo
code and has a strong impact on its error correcting
performance. Quadratic permutation polynomial (QPP)
interleaver is a contention-free interleaver which is suitable for
parallel turbo decoder implementation. To improve the
performance of LTE QPP interleaver, largest-spread and
maximum-spread QPP interleavers are analyzed for Long
Term Evolution (LTE) turbo codes in this paper. Compared
with LTE QPP interleaver, those algorithms have low
computing complexity and better performances from
simulation results.

Index Terms—Quadratic permutation polynomial (QPP)
interleaver, Long Term Evolution (LTE), largest-spread QPP
interleaver, maximum-spread QPP interleaver.

I. INTRODUCTION

The selection of turbo coding was considered during the
study phase of Long Term Evolution (LTE) standard to
meet the stringent requirements. Following deliberations
within the working group, the quadratic permutation
polynomials (QPP) were selected as interleavers for turbo
codes, emerging as the most promising solutions to the LTE
requirements. The QPP interleavers for the LTE standard [1]
involve 188 different lengths. In this paper we take two
kinds of methods to improve the LTE QPP interleaver.

The polynomial interleavers offer the following benefits
[2]: special performance, complete algebraic structure, and
efficient implementation (high speed and low memory
requirements). A QPP interleaver of length L is defined
as:

T[(x) = (qo‘l’qu‘l‘qzxz)mOdL’x:0...L_1 (1)

where q; and q, are chosen so that the quadratic
polynomialin (1) is a permutation polynomial (i.e. the
set {m(0), m(1),---,m(L — 1)} is a permutation of the
set {0,1,--,L — 1} and ¢q, determines a shift of the
permutation elements.

In the following we only consider quadratic polynomials
with free term q, = 0 , as for the QPP interleavers in the
LTEstandard. If Z,={0,1,---,L—1} , then the
permutation function ism: Z; — Z;.

The spread factor D is defined as
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D =min i {8,(pip;)} ()

i,jeTy
SL(pi,pj) is the Lee metric between points p; =

(i,m(®)) and p; = (j,n())
8.(pupj) =li—jl,+Im@ —n(Dl,  3)
where
li —jl, = min{(i — j)(mod L), (j — i)(mod L)} (4)

The quadratic polynomials which lead to the largest
spreading factor Dfor some interleaver lengths are given in
[2]. An algorithm for faster computation of D is also
presented. It is based on the representatives of orbits in the
representation of interleavercode.

Section II gives a brief review of QPP interleaver.
Largest-Spread and Maximum-Spread QPP interleavers are
the topics of Section III. Section IV presents the bit error
rates (BER) resulted from simulations for LTE standard, LS
and MS QPP inter leavers length 512. Section V concludes
the paper.

II. QPP INTERLEAVERS
A.  Permutation Polynomial(PP) over Integer N

Given an integerN = 2, a polynomialF (x) = f, + fix +
fox? 4 -+ fx™, where fo, fi, fo,,fmand m are
nonnegative integers, is said to be a permutation polynomial
overZy when F(x) permutes {0,1,2,---,N — 1}.

In this paper, all the summations and multiplications are
modulo N unless explicitly stated. We further define the
formal derivative of the polynomial F(x) to be a
polynomial F'(x) such that F'(x) = f; + 2f,x + 3f3x% +
-+ mfpx™ 1. For any integer N, whether polynomial
F(x) is a permutation polynomial can be determined by
the following theorem [3].

Theorem 1: Let F(x)=f; +2f,x+3fzx%+ -+
mf,,x™ be a polynomial with integer coefficients. F(x) is
a permutation polynomial over the integer ring N = 2" if
and only if 1) f; is odd, 2) f, + fo + fo + -+ is even, and
3) fs+fs+f;+- iseven.

Theorem 2: F(x) is a permutation polynomial over the
integer ringN = 2"if and only ifF(x)is a permutation
polynomial over Z(p) and F'(x) # 0 modulo p for all
integersxp™.

Theorem 3: For any N = H?:i i where p;s are
distinctprime numbers,F(x)is a permutation polynomial
modulo N if and only if F(x)is also a permutation
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TABLE I: EXAMPLES OF MAXIMUM-SPREAD QPP INTERLEAVER

k N f(x) 1) D =ubp(N) ¢ ¢ €

4 128 15x + 32x2 —17x + 32x?2 16 2 64

5 512 31x + 64x? —33x + 64x?2 35 4 3 128
6 2048 63x + 128x?2 —65x + 128x? 64 4 256
7 8192 127x + 256x? —129x + 256x2 128 12 7 512
8 32768 255x + 512x2 —257x + 512x2 256 32 12 1024
9 131072 511x + 1024x2 —513x + 1024x? 512 64 23 2048

Because the function of interleaver is to permute
{0,1,---,L—1} , we can apply the construction of
permutation polynomial over integer N to Turbo
interleavers by properly choosing N and polynomial
coefficients f. The first-degree polynomial F(x) = f, +
fix (linear interleaver) is the simplest one among all
permutation polynomials. However, the linear interleaver
has very bad input weight 4 error event characteristics,
causing a higher error floor for medium or long frame size
cases. And quadratic permutation polynomial can overcome
these defects, this leaves it the next in the chain. When
m=2, F(x) becomes F(x) = f,+ fix+ f>x?. Notice
that the coefficient f just corresponds to a cyclic rotation
in the interleaved sequence. It does not appear in the
conditions for F(x) to be a permutation polynomial and it
does not affect the performance. We ignore f, for
simplification, so F(x) becomes quadratic polynomial
F(x) = fix + fox?..

B. QPP Interleavers

QPP Interleaver completes interleaving by making QP
(Quadratic Polynomial) satisfy some conditions. In order
to makeF (x)be a QPP, coefficients f; and f,have to meet
some special conditions. Then the following 2 corollaries
deduced from theorem 1 and 2 are given.

Corollary 1 [3]: A quadratic polynomial of the
form F(x) = fix + f,x? is a permutation polynomial
overZyn if and only iff; # Oandf, = 0 modp.

Corollary 2 [4]: LetN = [[,epp™¥?, denote y divides z
by y|z and denotey can not dividesz byy L z. The
necessary and sufficient condition for a quadratic
polynomialF (x) = fix + f,x%(mod N)to be a permutation
polynomial can be divided into two cases.

1) 2|Nand4 L N (ie, ny, =1)
fi + f2is odd, ged(f;, N/2) = 1, andf, = [[,ep 0",
Npy = 1, V psuch thatp # 2andny , = 1.
2) Either 21N or 4N (e, ny,#1 )
ng(fl'N) = lal’ldfz = HpEP pnF,p, nF,p = 17 vpsuCh
thatny , = 1.
Apply above corollaries, we can find some available
coefficients f; and f,in QPP interleavers by computer
searching. However, the interleavers with different

coefficients have different performances, so we have to
choose better based on these coefficients. Then we discuss
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search metric on choosing better coefficients, before this we
present some definitions firstly:

1) 6y Distance

On(Px1,Px2) = |1 — X2y + | (x) = fl)Iy  (5)
where|i — j|y = min{(i — j)(mod N), (i — j)(mod N)}.
2) Spread Factor D(f )
D(f) = min{6y(p:,p;)|pi . v; € F} (6)
wherei,j € Nand i # j.
3) Nonlinearity Metric of QPP Interleavers{ (F)
¢ (F) = N/ged(2f,, N) (7)

Obviously, QPP interleaver can be viewed as a linear
interleaver fix that is “disturbed” by quadratic
interleaver f,x2, the periodicity of the disturbance is at
most(.This disturbance can overcome a higher error floor of
linear interleaver at a certain extent.

Since the minimum distance of a turbo code is now
known to grow at most logarithmically, therefore, the spread
factor that controls the effective free distance should be
“rewarded” at most logarithmically. The nonlinearity(is
expected to have a proportional reduction in the
multiplicities of low-weight code words so it is reasonable
to leave it. So we can get a simple metric of searching
coefficients of QPP interleaver [4].

max{Q(f) = In(D()) ¢ ()} ®)

Further fi and f, Dby
maximizationQ(f), we can get some coefficients with good
performances. Since{will grow fast as N grows, it is not
good for improving decoding performance, so it must be

choosing  coefficients

modified. We define a new modified nonlinearity metric {’
which can avoid above defect. So we have a corresponding
refined metric

max{Q'(f) = In(D(f)) ' (N}
where {' = {f,x?(mod N)|x =0,1,---,{ — 1}

)

Through this refined metric, we search coefficients more
than one couple, since the up-bound of interleavers spread
factor D(f) is V2N, in order to avoid D(f) not
becoming so small when frame sizeNis small that we limit
the search process under the condition of D(f) = V2N ,
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where = 0.45. While N > 2000, must decrease to 0.30
properly.

III. LARGEST-SPREAD AND MAXIMUM-SPREAD QPP
INTERLEAVERS

A. Largest-Spread QPP Interleaver

In this section we present a theorem which states
sufficient conditions to be satisfied by the coefficients of
two quadratic polynomials [4], so that the resulting
interleavers are identical. For the LTE standard, the
interleaver’s length is always an even number.

Theorem 4: Consider two QPP interleavers described by
the following polynomials (the free term is considered zero):

(10)
(11)

IfLis even, thenp, > q; , and the following relation is
fulfilled:

m(x) = (p1x + p,x*)mod L, x =0,1,--,L— 1
m(x) = (q1x + g;x*)mod L, x=0,1,---,L—1

p1—q1 =22 —q2) =L/2 (12)
The two quadratic polynomials lead to identical
permutations.
Proof:

For the two QPP to lead to identical permutations, it is
required that

m(x) = my(x), vx=0,1,---,L — 1 (13)

We denote
D1X + pyx? =ky - L+ 1y (x) (14)
G1X + p2x? = ky - L+ 1,(x) (15)

where k;, k, € N.Under the conditions above we have to

Show that there arek,, k, €N, vx=0,1,---,L —1,
which verify relationship (13). Subtracting (14) from (15)
and considering (13), we have:

(P2 —q2)x* + (p1 — q1) = (ky — k) - L (16)
The solution of this quadratic equation is:
x
—(p1 — 41) + (01 — 1) + 4(p, — q2) (ks — k)L
= 17)
2(p2 — q2)
Using (12) from the theorem statement, we have
L L\? L
_ —z+\/(z) £4(5) ( — k)L
= v} =
+2 (18)
where
1—(—2x+ 1)?
oy~ ey = D
x(x—1)
=== (19)
or
—2x+1)?2-1 x(x-1
ki —k, = ( ) _xx -1 20)

8 2
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Relationships (19) and (20) could also be obtained as
follows. From (12) we have

p1=q1+L/2 21)
P2=4qz+L/2 (22)
Then, from (14) we get
ki L =px +ppx? —my(x) (23)
Or, taking into account (21), (22) and (13),
ki L =qux+qx* —mp(x) + (L/2) - (x £x%) (24
Or, from (15),
ki-L=(/2)-(x+x)+ky,-L (25

From here, (19) and (20) result immediately.

BecauseV x = 0,1,--,L — 1, x(x — 1) and x(x + 1)are
divisible by 2, i.e. k; — k, € Zthen, there arek,, k, €N
which verify relation (13).

The theorem shows that two QPPs generate identical
permutation functions, if the coefficients are at the same
distance (L/2) . Therefore, we can only consider
coefficientsq; = 0,1,-+, (L/2) — 1in polynomial searching,
because the interleaverm,(x) = (px + p,x*)mod Lis the
same as theinterleaver m(x) = ((q1 +L/2)x+ (q, +
L/Z)xz)mod L, if g, < L/2, or as the interleaver described
by the  permutation 7(x) = ((q1 +L/2)x+ (q, —
L/Z)xz)mod L, if g, = L/2. As the number of searched
QPPs is halved, so is the search time, therefore speeding up
the search process.

B.  Maximum-Spread QPP Interleaver

Theorem 5: The following is an infinite sequence of QPPs
that generate maximum-spread interleavers:

f(x) = (2% — Dx + 2¥1x2(mod22k-1) k=1,23,
(26)

Strictly, we have QPP interleavers only when k > 3. The
first observation is that for k=1 and k=2, the
corresponding

QPPs f(x) are immediately reduced to first-degree
polynomials because the second-degree coefficient f, =
0 (modN). We now show after some preliminaries that
fork = 3, the QPP f(x) is also reducible to a first-degree
polynomial although f, = 2¥*1 = 16 # (modN = 32).

Definition: A polynomialz(x)(modN)that evaluates to
zero for all x, ie, z(x) =0 (modN)Vx is called a
zero-polynomial.

Proposition : Let Nbe an integer factorable as N =
pq.The following is a zero-polynomial of degreep:

z(x) = mq 1?2y (x + k + D)(mod N) Vk,m € Zy. (27)

Proof: Exactly one of the numbers in the sequencex +
k+i, 0<i<pis congruent to0modulo p .Therefore,
z(x) mod N. Thens(x) = p(x) + z(x) (mod N), i.e., s(x)
and p(x) + z(x) are equivalent functions modulo N.

Proof: This follows directly from the definition of a zero
polynomial.

From Proposition 1, the following is a zero polynomial of
second degree for N = 32:
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z(x) = 16x(x + 1) = 16x% + 16x (mod 32) (28)

Therefore, for k =3, by adding f(x) to z(x) we
obtain the equivalent first-degree polynomial

s(x) = f(x) + z(x) = (16x2 + 7x) + (16x? + 16x)
= 23x (mod 32) (29)

For k >3, the polynomials are not reducible to
first-degree polynomials because they have a degree of
nonlinearity(, larger than 1 as explained in Section III (In
fact, for k=1,2,3, we have { = 1). The first six terms of
maximum-spread QPPs that are not reducible to first-degree
polynomials are shown in Table I. The last three columns of
the Table 1 are the degrees of nonlinearity (, the refined
degree of nonlinearity ', and the degree of shift-invariance
€.

The inverse functions f~1(x) are also provided in Table
I. The closed-form expression forf ~1(x) is

(%) = (=2% = Dx + 2¥*1x2(mod2%¢~1). (29)
One casily verifies that
F(F @) = fFH(f @) = x (mod N). (30)

For general QPPs, we are not aware of a closed-form
expression for the inverse functions. Further, not all QPPs
have an inverse polynomial that is a QPP. However, if it
exists, it is efficiently computed algebraically using the
extended Euclidean algorithm [4]. It is easily verified that
the necessary and sufficient condition for the existence of a
QPP inverse [4] for the polynomials in Theorem 2 is
satisfied.

IV.SIMULATION PARAMETERS

The simulations were performed for a turbo code having
the global coding rate of 1/3, without puncturing, over an
AWGN (Additive White Gaussian Noise) channel, with a
BPSK (Binary Phase Shift Keying) modulation.

The decoding algorithm is Max Log- MAP with iteration
stopping criterion named LLR (Logarithm Likelihood Ratio)
module. The maximum number of iteration is 12 .

The interleavers we have used are QPP interleaver, MS
QPP interleaver and LS QPP interleaver for comparison.
The data length is10°, 2048 for a block data cutting.

Fig. 1 presents BER curves for the without coding and
LTE QPP interleavers length 2048.

Fig. 2 presents BER curves for the LTE, MS and LS QPP
interleavers for length 512. From Fig. 2 we note that BER
for the MS interleaver is lower than for LS and LTE QPP
interleavers.
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Fig. 1. BER curves for the interleaver length 2048
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Fig. 2. BER curves for the interleaver length 512

V. CONCLUSION

To improve the performance and reduce the complexity,
largest-spread and maximum-spread QPP interleavers are
analyzed and the Max-Log MAP algorithm is used for Long
Term Evolution (LTE) turbo codes in this paper. The
simulated BER curves outlined in Figure 3 show that the
performance of the MS-QPP interleaver is better compared
to the LTE and LS QPP interleavers. Because of the
simplicity in structure, MS-QPP interleaver is suitable for
LTE standard.
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