

Abstract—The storage method for XML data in database will

affect the efficiency of XML keywords querying, indexing and
updating significantly. In most cases, the XPath sentences
provided by user are not refined. These queries can often
achieve minimization by deleting redundant parts. It means the
minimized query is one of subsets of this query. Such kind of
minimization query is method based on deleting queries. The
steps are determining nodes relations, finding redundant nodes,
deleting redundant nodes and sub-tree and obtain final
minimization query tree. In this paper, we propose an improved
XPath query minimization method based on deletion using
simulation concept. Experiments analysis results show that with
introduction of appropriate indexing and new algorithm, the
XML keywords indexing efficiency can be significantly
improved.

Index Terms—XML keyword query, XPath query, XML
storage, XML database.

I. INTRODUCTION
XML query optimization involves many aspects as

algorithm execution, physical plan selection and etc.
Execution efficiency of XML query has close relation with
an important factor except for above factors, namely
complexity of query itself and query size.

In the XML query and keyword indexing, the database to
store XML data can be divided into two types, namely Native
XML database [1], [2] and non-Native XML database [3], [4].
The feature of former is that management on XML data based
on XML data model [5], while latter map XML data model
into other data model, such as relation model [6]. As to
semi-structured characteristics, mapping from XML data to
other models always make problem complicated and bring
problems of update as well as query efficiency. XML
document is an ordered tree. Storage in the unit of node or
sub-tree not only needs to record data in XML node, but also
should consider structural relationship among nodes.
Therefore, if nodes with structural relationship are not stored
in same record, it always needs to save certain number of
structural information to ensure correctness of data reduction.
Generally, if parent node or child node of one is not kept in
same record, their record address should be stores, so that
records are not mutually independent. Once recorded address
was changed, it will affect record that keeps this record
address. However, XML data update always introduces
change of node record address. The dependent relation
among records will impact on XML update efficiency.

Manuscript received November 9, 2012; revised January 12, 2013.
Zhen-Fang Li is with the School of Computer and Information

Technology, Shanxi University, China (e-mail: lizfsmile@163.com).

In this paper, we propose an improved XPath query
minimization method based on deletion using simulation
concept. Experiments analysis results show that with
introduction of appropriate indexing and new algorithm, the
XML keywords indexing efficiency can be significantly
improved. The specific arrangement of paper is as follows:
section 2 introduces related works; section 3 gives
minimization method based on deleting; section 4 performs
experimental analysis and section 5 concludes our work.

II. RELATED WORKS
XPath is the core and basis for many languages as XQuery

and XSLT. Computation on XPath expression is actually
seeking for mapping from Tree Pattern Query (TPQ) to
document tree, or called match for tree pattern query.
Generally, efficiency of tree pattern query matching is
directly related to scale of query. Larger is tree pattern query
scale, lower is matching efficiency, so we should simplify
tree pattern query as possible before tree pattern query
matching, namely to minimize query expression.

In order to formally describe XPath query minimization
problem, some definitions are provided here firstly. We
always assume existence of node identifier character set N as
well as node tag or type Σ. If there is no special statement,

, , , , ,a b c d e f ∈ Σ and are not equal; , , , , , , ir s u v w u v N′ ∈ ; p
is the query and pΣ is node tag set in p. Meanwhile, under
the premise of not leading to confusion, call node whose tag
is u in p as node u; the node whose identifier is a also as node
a.

Definition 1: An XML document tree t is a four-tuple
(, , ,)t t t tr N E λ . Where, tN N⊆ is set of all nodes; t tr N∈ is
the only root element node; t t tE N N⊆ × is set of all edges
in the tree. The :t tNλ → Σ is a function to determine type
of each node. A typical XML document tree is shown in Fig.
1.

Definition 2: A Tree Pattern Query (TPQ) p is <tp, op>.
Where, , , ,p p p p pt r N E λ=< > is a tree. The Ep is divided into
three disjoint sets Cp, Dp and DSp to represent all child edges
c-edge, decent edges d-edge and descendants or themselves
ds-edge. The op is the only output node.

An example of TPQ is shown in Fig. 1 (b). Where, the
single line represents c-edge, double line as d-edge, dashed
and solid line as ds-edge. The diamond-shaped node is output
node.

Definition 3: Given , pu v N∈ , if edge (,) pu v E∈ , then we

can call v is child of u. Particularly, if (,) pu v C∈ , v is c-child

An Effective XML Storage Method Based on Deleting
XPath Query Minimization

Zhen-Fang Li

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

372DOI: 10.7763/IJFCC.2013.V2.188

of u. If (,) pu v D∈ , v is d-child of u. If (,) pu v DS∈ , v is
ds-child of u. Assume u reach v along edges

1 2, , , (0)ne e e n ≥" , where i pe E∈ , v is quasi-descendant of u.
Particularly, u is the quasi-descendant of itself. If 1n ≥ and
there is (1)ie i n≤ ≤ not belong to ds-edge, v is called
descendant of u. If v is quasi-descendant of u, u is
quasi-ancestor of v. Particularly, v is quasi-ancestor of itself.
If v is descendant of u, u is ancestor of v. In addition, child(u)
is used to represent set of all child nodes in u. The
corresponding set of all c-child nodes of u is represented by
c-child(u).

a

ed r

a

b

e

a

a c
*

b

(a)XML treat (b) the pattern query

Fig. 1. XML tree, tree pattern and its insertion.

The solving of TPQ is realized by mapping from tree

pattern query to document tree, which is called embedding.
Definition 4: Given tree pattern query p and document tree

t, the embedding of p into t is a function : p te N N→ that
meet following:

1) Maintain node identifier: px N∀ ∈ , if () (*)p x a aλ = ≠ ,

then (())t e x aλ = .

2) Maintain edge relationship: (,) px y C∀ ∈ , e(y) in t is child of

e(x); (,) px y D∀ ∈ , e(y) in t is descendant of e(x);

(,) px y DS∀ ∈ , e(y) in t is descendant or itself of e(x).

Given tree pattern query p and tree t, p(t) is used to
represent solution of p on t. It means

() { | , () }t pp t x N e e o x= ∈ ∃ = .
An example of TPQ embedding is shown in Fig. 1. The left

is an XML document tree and right part is a TPQ. The dotted
line part shows mapping from TPQ to document tree node.
We can see from the figure that query result is node c.

Definition 5: Given two TPQs p1 and p2, p2 contains p1, if
and only if 1 2() ()p t p t⊆ for any document tree t, denoted as

1 2p p⊆ .
Definition 6: If and only if 1 2p p⊆ as well as 2 1p p⊆ ,

two TPQs p1 and p2 are equivalent, denoted as 1 2p p≡ .
Definition 7: Node p Q∈ , if the query 'Q obtained by

deleting p and all its descendants from Q is equivalent to Q,
the node p is a redundant node.

Definition 8: As to a query Q, if there is no other query
equivalent to it and smaller than Q, then Q is called

minimized query. In a TPQ, the node number of query is used
to show query size.

III. XPATH QUERY MINIMIZATION BASED ON DELETING
In most case, the XPath sentences given by users are not

refined. These queries are usually can be minimized by
deleting redundant part, namely the minimized query of it is
one of its subsets. The steps are as following: determining
node relationship, finding redundant nodes, deleting
redundant nodes and sub-tree, ultimately obtain final
minimized query tree. The paper proposes an improved
XPath query minimization algorithm based on deleting.
Firstly the concept of simulation is provided here.

Definition 9: As to a TPQ ,p pp t o=< > , where

(, , ,)p p p p pt r N E λ= , the simulation relation is defined as
following: simulation is the maximum binary relation among
all nodes in p. As to two nodes u and v, , pu v N∈ , v simulates
u if and only following conditions are satisfied:

1) Maintain node identifier: it needs
() ()p pu vλ λ=

. If

pu o=
, then pv o=

.

2) Maintain node relationship:

If pc(u, 'u), then (('))v cpar sim u∈ .
If ad(u, 'u), then (('))v anc sim u∈ .
If sad(u, 'u), then (('))v q anc sim u∈ − .
Lemma 1: Known a tree pattern query p and

non-redundant node u in p, there are:
1) If and only if there is another c-child node ()w sim v∈ of u

in p, the c-child node v of u in p is redundant.

2) If and only if there another descendant node ()w sim v∈ of
u in p, the d-child node v of u in p is redundant.

3) If and only if there another quasi-descendant ()w sim v∈
of u in p, the ds-child node v of u in p is redundant.

As the research is conducted in Berkeley DB XML query
system, the XPath query minimizing optimization has
removed redundant descendant-or-self. The paper gives an
improved XPath query minimization algorithm as following.

Input: Tree pattern query p=<tp, op> .
Output: Tree pattern query p after minimization.
Simulate(p);
Minimize(rp);
Simulate(p)
//Access to all nodes in Np in down-top order
{
Sort nodes in Np with down-top order;
for(Each node u in Np) {
if(u is output node)
sim(u)={u};
else if(u is leaf node)
sim(u)={v| pv N∈ and () ()p pv uλ λ= };
else
sim(u)={v| pv N∈ and () ()p pv uλ λ=
 and('u∀ ∈c-child(u), v ∈cpar(sim(u’)))
 and('u∀ ∈d-child(u), v ∈anc(sim(u’)))};

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

373

compute cpar(sim(u)) and anc(sim(u));
}
Minimize(u)
for (each child node v in u) {
if(v is c-child){
 if(there is another un-deleted c-child node w and

w ∈sim(v))
 delete v and its sub-tree;
 else
 Minimize(v);} //node v is not redundant node
 else if(v is d-child) {
 if(there is another un-deleted node w in u and

w ∈sim(v) ∪ anc(sim(v)))
 delete v and its sub-tree;
 else
 Minimize(v);}
 }

Simulate() firstly sort all nodes in down-top order so that

all child nodes of node u emerges before u, which can be
obtained by preorder reverse p and consumed time is O(n).
Calculate sim(u), cpar(sim(u)) and anc(sim(u)) for each node
u. Each one can be represented as a n-triple Boolean matrix,
which is indexed and located by node pu N∈ . In the
computation of sim(u), the time for leaf node is O(n). As to
immediate node, the consume time to compute sim(u) is
related to child node number of u. To each child v, it needs to
traverse cpar(sim(v)) or anc(sim(v)), while
O(cpar(sim(v)))=O(cpar(sim(v)))= O(n), so the time to
compute sim(u) is (| () |)O n child u× . Where, child(u) is child
number of u. In the calculation of cpar(sim(v)) and
anc(sim(v)), it only needs one more traverse from down to
top, so the complexity is O(n). In short, the time of once for
cycle is ((| () | 1))O n child u× + , the consume time of

Simulate() is ((| () 1 |))pO n u N child u× Σ ∈ + = 2()O n .
Minimize() checks if there is redundant down-top. If not,

check its child nodes. As to each child node v of u, it needs
O(|child(u)|) to check whether there is redundant in v, namely
determine whether there is child node belongs to sim(v) or
anc(sim(v)), the consumed time is O(|child(u)|×|child(u)|), the
consumed time of whole minimize(u) is

2((| () |))pO n u N child u× Σ ∈ = 2()O n . To sum up, the time

complexity of this algorithm is 2()O n .

IV. EXPERIMENT ANALYSIS
The experiment was carried out on machine whose CPU is

P4 2.9G. The development tool is VC6.0++. The experiment
tool software is Native XML database management system
Berkeley DB XML. The execution time is selected as
evaluation index. The execution time given here is obtained
from average time after many times of experiments and
removing highest and lowest values. Data is generated by
XMark. It is an opening source specialized for XML system
test [7, 8]. Its XML generator Xmlgen can produce XML
document with good structure. The data model is simulated
Web site auction model. All data are in a large single

document and size of data is determined by parameters.
According to above experiment schema design (See Table

I), many experiments were conducted. Here the query is
analyzed one by one. Q1 queries detail information whose
name is “Mehrdad Reinhard” or “Dejan Alsio”. There are
7650 person in the document and 2 meet query conditions.
Therefore, the index can be used to rapidly find name
“Mehrdad Reinhard” and “Dejan Alsio” to form name list. In
the mapping with nodes in person list, B+ tree structure
indexing can be used to skip ancestor nodes not engaged in
connections. Q2 queries first increase amount in the ongoing
auction. If the first price increase exists, there is certainly
price increasing, so we should firstly refine query sentences.
There are 3600 open_auction in the document and each one
contains different increase times. With B+ tree structural
indexing, the descent nodes not engaged in connection can be
rapidly skipped. Q3 queries name of all auction objects. The
query sentence is a path query without branches. There are
uncertain query paths that can be decomposed by above path
decomposition method. Q4 queries how many objects have
price more than 40. From comparison on original query
system and improved one, the query time difference was
recorded as shown in Fig. 2. We can see that with
introduction of appropriate indexing and new algorithm, the
system query efficiency can be significantly improved.

Fig. 2. Magnetization as a function of applied field.

TABLE I: TEST QUERIES

Query Content

Q1

query ‘for $b in (doc(“chenyinmei.dbxml/chenyinmei.xml”)
/site/people/person
[name=”Mehrdad Reinhard” or name=”Dejan Alsio”])
return <info>{$b}</info>’

Q2

query‘for $b in (doc(“chenyinmei.dbxml/chenyinmei.xml”)
/site/open_auctions/open_auction)
return <increase>
{$b[bidder]/bidder[1]/increase/text()}</increase>’

Q3
query ‘for $b in (doc(“chenyinmei.dbxml/chenyinmei.xml”)
/site/regions//item/name)
return <name>{$b/text()}</name>’

Q4

query ‘count(for $i in
(doc(“chenyinmei.dbxml/chenyinmei.xml”)
/site/closed_auctions/closed_auction)
where $i/price/text()>=40 return <price>{$i/price}</price>)’

V. CONCLUSION
Query optimization is important issue in the database

optimization, which is also key to achieve efficient query.
The paper addressed on keyword index optimization of XML
database. Simulation technology was utilized to propose an
improved XPath query minimization method based on
deletion. It effectively shortens query time path expression
and improves query efficiency. We also find in the research

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

374

that the enhanced simulation technology can be considered to
provide integrity constrains as possible so as to better reduce
query size and then improve query efficiency, which is also
our research direction in the next.

REFERENCES
[1] P. Ramanan, “Efficient Algorithms for Minimizing Tree Pattern

Queries,” in Proc. 21th ACM SIGMOD International Conference on
Management of Data, ACM Press, 2002, pp. 299-309.

[2] S. Flesca, F. Furfaro, and E. Masciari, “On the Minimizing XPath
Queries,” in Proc. 29th VLDB International Conference on Very Large
Database, Morgan Kaufmann Publishers, 2003, pp. 153-164.

[3] S. Al-Khalifa, H. V. Jagadish, and J. M. Patel, “Structural Joins: A
Primitive for Efficient XML Query Pattern Matching,” in Proc. 18th
International Conference on Data Engineering, IEEE Computer
Society, 2002, pp.141-154.

[4] C. W. Chung, J. K. Min, and K. Shim, “APEX: an adaptive path index
for XML data,” in Proc. 2002 ACM International Conference on
Management of Data SIGMOD, ACM Press, 2002, pp. 121-132.

[5] Q. Chen, A. Lim, and K. W. Ong, “D(k)-index: An Adaptive Structural
Summary for Graph-structured Data,” in Proc. 2003 ACM SIGMOD
International Conference on Management of Data, ACM Press, 2003,
pp.134-144.

[6] C. X. Wan and Y. S. Liu, “Efficient supporting XML query and
keyword search in relational database systems,” in Proc. 3rd
International Conference on Web-Age Information Management, 2002,
pp. 1-12.

[7] XMark – An XML Benchmark Project. [Online]. Available:
http://monetdb.cwi.nl/xml.

[8] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and
R. Busse, “XMark：A Benchmark for XML Data Management,” in
Proc. 28thVLDB, 2002, pp. 974-985.

Zhen-Fang Li was born in Dec. 1979, Shanxi
Province. She received bachelor degree in computer
software and theory from Lanzhou University in Jun.
2001 and master degree in computer software from
Lanzhou University in Jun. 2004. Since 2006, she is
working for doctoral degree in computer application in
Shanxi University. The main researches include XML
database and XML keyword search.

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

375

