
  

  
Abstract—The study for a Named Entity Recognizer for 

Filipino Text Using Conditional Random Field (NERF-CRF) 
focused creating a system which identifies and classifies named 
entities present in a given corpus. The named entities were 
classified into four, namely: person, place, date and org. Named 
entities that are identified but do not fall in the four 
classifications are tagged as etc. 

Different modules were created to achieve the study's 
purpose, including a tokenizer and a part-of-speech tagger. The 
conditional random field approach was used in the classification 
of identified named entities. Filipino biographies were the 
corpus used in testing the system. The results, based on solving 
for the F-measure, indicate that the system is 83% accurate, 
and best in identifying named entity Date with 0% error rate 
but is unsatisfactory in distinguishing named entity place and 
org, with 42% and 33% error rates respectively. 
 

Index Terms—Conditional random field, extraction, named 
entity recognition, natural language processing  
 

I. INTRODUCTION 
Named entity recognition (NER) is a process that 

automatically examines a corpus and tags the proper nouns 
present in the latter. These proper nouns, called named 
entities, can be names of person, organization, place, date, 
etc. 

As NEs (Named Entities) such as organizations’ names, 
persons’ names and locations’ names contain more 
informative information, NE recognition is the fundamental 
for efficient information access. It is processing text to 
identify and classify names, an important component in many 
NLP applications, enabling the extraction of useful 
information from documents. 

Named entities of the Filipino language have never been 
limited to words with its first letter capitalized, as with the 
named entity place "Lanao del Sur". Moreover, few named 
entities have different classification for every use. Named 
entity "Rizal" can either refer to the person Jose Rizal, or a 
place in the Southern Luzon of the Philippines. 

These issues of capitalization and ambiguity can be 
addressed by establishing a system that simply looks up 
similar entries in a database created beforehand. However, 
this approach is relatively inadvisable, merely for the fact that 
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to create a database for such a system is terribly unwieldy, 
and the runtime for the system will be inevitably slow. 
Furthermore, such system requires an update from 
time-to-time, given that new named entities such as names of 
persons and organizations come up each and every day. 

For this reason, NER is often performed using a statistical 
tagger which learns patterns for the recognition of names 
from manually-annotated textual corpora. A few corpora 
have been constructed as gold standards—i.e. they define 
correct annotations for NER by example. They are commonly 
used to train statistical machine learners but are limited in 
scope due to the cost of manual annotation. This is a problem 
because others have shown that more training data leads to 
higher accuracy language models [1], [2]. 

While many named entity recognition systems exist in the 
market today, very few, if any, have been designed 
specifically for handling texts written in the Filipino 
language. Most software packages and implementations for 
NER accept a stream of English text and extracts names of 
people, places, and companies or organizations [3]. For this, a 
NER for Filipino Text was formulated, and is supposed to be 
of good performance. 

The following sections presents the composition of the 
system, with the testing, results, conclusions and 
recommendations shown in Section IV, V, VI and VII 
respectively. 

 

II. THE CONDITIONAL RANDOM FIELD 
The NERF-CRF is concerned on the use of Conditional 

Random Fields to classify tagged named entities within the 
Filipino text. Lafferty, McCallum and Pereira presented 
conditional random fields in [4], a framework for building 
probabilistic models to segment and label sequence data. As 
the study implies, conditional random fields offer several 
advantages over hidden Markov models and stochastic 
grammars for such tasks, including the ability to relax strong 
independence assumptions made in those models. 
Conditional random fields also avoid a fundamental 
limitation of maximum entropy Markov models (MEMMs) 
and other discriminative Markov models based on directed 
graphical models, which can be biased towards states with 
few successor states. They have presented iterative parameter 
estimation algorithms for conditional random fields and 
compare the performance of the resulting models to HMMs 
and MEMMs on synthetic and natural-language data. As they 
concluded, conditional random fields offer a unique 
combination of properties: discriminatively trained models 
for sequence segmentation and labeling; combination of 
arbitrary, overlapping and agglomerative observation 
features from both the past and future; efficient training and 
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decoding based on dynamic programming; and parameter 
estimation guaranteed to find the global optimum [4]. 

Another NER utilizing conditional random field was later 
conducted by Mao et al in [5]. The paper presented an 
approach that exploits non-local information to improve the 
NER recall. Several kinds of non-local features encoding 
entity token occurrence, entity boundary and entity class 
were explored under Conditional Random Fields (CRFs) 
framework. Experiments on SIGHAN 2006 MSRA (CityU) 
corpus indicate that non-local features can effectively 
enhance the recall of the state-of-the-art NER systems. 
Incorporating the non-local features into the NER systems 
using local features alone, their best system achieves a 
23.56% (25.26%) relative error reduction on the recall and 
17.10% (11.36%) relative error reduction on the F-measure; 
the improved F-measure 89.38% (90.09%) is significantly 
superior to the best NER system with F-measure of 86.51% 
(89.03%) participated in the closed track [5]. 

 

III. SYSTEM ARCHITECTURE 

 
Fig. 1. System Architecture of NERF-CRF 

 
With Filipino text as the input, the system will process the 

said input through different modules that act together to 
achieve the classifying aim of the system. 

The tokenizer, which is the foremost module of the system, 
is in charge of breaking down the whole text into single 
characters. The properties of the characters, whether the 
characters are capitalized, numeric, or alphabet, are then 
checked. The use of punctuation marks in the text is also 
assessed in this module. Moreover, keywords such as sa, si, 
and noong are also checked. After these series of checking, 
the tokenizer will produce tokens, composed of combined 
characters that form a word or a phrase. 

Once the tokens have been established, the POS 
(part-of-speech) tagger will simply identify tokens' 
part-of-speech with the use of literals which were initially 
listed from previous training data, and will label the token 
with its corresponding part-of-speech. 

The Recognition module simply looks for tokens which 

are labeled as “proper noun” and passes it on to the next 
module. 

The CRF module includes the main focus of this NER, the 
process of classifying nouns based on the classifier’s logic. 
CRF starts by identifying the compatibility of the token to a 
named entity, using feature functions which are also 
predefined. Once a characteristic of the token satisfies a 
feature function of a certain named entity, the weight for that 
named entity increases. Equation (1) was used in the said 
process: 
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where Wi represents weights from features possessed by the 
token, and Wi' are weights of features not possessed by the 
token. The result as to what named entity of the token is 
depends on (1), or the final weight given by the module. Once 
identified, it will finally append the named entity of the token 
to itself. The tagged version of the input will be the output of 
the system. 
 

IV. TESTING 
A set of biographies were gathered for the testing of the 

system. After selecting 50 of these through random selection, 
the researchers examined its grammar and sentence 
construction. The files were tested individually and the 
results were tallied for each named entity based on the 
classification of results set by [6], such as number of entities 
that must be tagged by the system (NT), number of entities 
that were correctly tagged by the system (CT), number of 
entities that were wrongly tagged by the system (WT) and the 
total number of entities that were tagged by the system 
whether correctly or wrongly tagged (T).  

 

V. RESULTS 
To be able to assess the accuracy of the system, the 

proponents used (2). 
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The F-measure is defined as a harmonic mean of precision 

(P) and recall (R). The F-measure is a measure of a test's 
accuracy [7], [8]. It considers both the precision P and the 
recall R of the test to compute the score:  
 

resultsreturnedallofnumber
resultscorrectP =   (3) 

ed resultsall returnnumber of 
titiescorrect ennumber of  R =

 
(4) 

 
P is the number of correct results divided by the number of 

all returned results and r is the number of correct results 
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divided by the number of results that should have been 
returned. 

Moreover, to identify the system’s performance in terms of 
its error rate, the following formula was used: 

sed entitieer of taggtotal numb
wrong tagsnumber of  E =       (5) 

In identifying the performance of the developed 
NERF-CRF in terms of Precision, Recall, Error Rate and 
F-Measure, the following results were computed: 

 
TABLE I: SUMMARY OF RESULTS 

NAMED 

ENTITY 
PRECISION RECALL 

ERROR 

RATE 

F-MEA

SURE 

PERSON 98.89 99.07 1.11 98.98 

PLACE 56.59 98.59 42.80 71.91 

ORG 65.29 46.47 33.88 54.30 

DATE 100 100 0.00 100 

ETC 87.83 70.21 11.03 78.04 

TOTAL: 80.68 86.12 18.86 83.31 

 
The summary assessment of the performance of the system 

based on 50 files tested in terms of Precision, Recall, Error 
Rate and F-Measure was computed as 80.68%, 86.12%, 
18.86% and 83.31% respectively.(see Table I) 
  

VI. CONCLUSION 
Based from the findings of the study, the following 

conclusions were reached through the series testing and 
evaluation: 

1) The overall performance of the developed NERF-CRF 
is above average, with an F-measure of 83%. 

2) The NERF-CRF is very effective in tagging named 
entity date with 100% accuracy in terms of F-measure. 

3) The developed system is worst in tagging named entity 
organization with an accuracy of only 53% based on 
F-measure.  

4) The performance of the system will increase further if 
more feature functions were fed into the system. 

 

VII. RECOMMENDATION 
The following suggestions might be helpful for those 

future researchers who will also specialize in any topic 
relating to NER:  

1) Compare the significant difference of the developed 
NER to other existing Named Entity Recognizer for 
Filipino Text that utilizes different algorithm to further 
emphasize the usefulness of the CRF approach. 

2) Tag other named entities other than name of person, 
place, org, date and etc such as product name, monetary 
values, numbers, percentage and time. 

3) This system can be improved by correctly tagging the 
entities after the word taga, the developed system was 
not able to tag the named entities correctly once it is 
preceded by the word taga. 

4) Add more feature functions [9] to maximize the 
conditional probability of labels for every input 

sequence and to reduce the error rate in word 
segmentation.  

5) A gazetteer can be used to enhance the performance of 
the system and solve the ambiguity between named 
entities person and organization. 

6) Improve the performance of the developed NER and 
make it domain independent [10].  

7) Recognize some Unicode characters such as the left and 
right single quotes. The developed system was not able 
to recognize a named entity that has open parenthesis 
and single quotation marks which generated errors in 
the recognition task 
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