
  

  
Abstract—This paper proposes a fitting method to 

approximate the mixtures of various sloped-tail Gamma 
distribution characterizing the random telegraph noises (RTN) 
by an adaptive segmentation Gaussian mixtures model (GMM). 
The concepts central to the proposed method are 1) adaptive 
segmentation of the long-heavy tailed distributions such that the 
log-likelihood of GMM in each partition is maximized and 2) 
copy and paste with an adequate weight into each partition. 
This allows the fitting model to apply various bounded tail 
distribution even with multiple convex and concave folding 
curves. It is verified that the proposed method can reduce the 
error of the fail-bit predictions by 2-orders of magnitude while 
reducing the iterations for EM step convergence to 1/16 at the 
interest point of the fail probability of 10-12 which corresponds 
to the design point to realize a 99.9% yield of 1Gbit chips.   
 

Index Terms—Mixtures of Gaussian, random telegraph noise, 
em algorithm, heavy-tail distribution, long-tail distribution, 
fail-bit analysis, static random access memory, guard band 
design.  
 

I. INTRODUCTION 
The approximation-error of the tails of random telegraph 

noise (RTN) distribution will become an unprecedentedly 
crucial challenge resulting from the fact that: (1) its error 
directly leads to the error of the guard band (GB) design 
required to avoid the out of spec after shipped to the market, 
and (2) tails of RTN distribution will become much longer 
than that of random-dopant-fluctuation (RDF) which is the 
conventional dominant factor of the whole margin-variations 
and the convolution results of the two will be more affected 
by the RTN than the RDF, as can be seen in Fig. 1.  Since the 
increasing paces of variation-amplitude Vth  are differently 
dependent on the MOSFET channel-size (LW) like the below 
expressions of (1) and (2), the Vth increasing paces of 
RTN is a 1.4x faster than that of RDF if assuming the LW is 
scaled down to 0.5 every process generation, as shown in Fig. 
1(a). 
 

(1) 
(2) 

  
where AVt (RDF) and AVt (RTN) are Pelgrom coefficients 
for RDF and RTN, respectively.  
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This means that RTN will soon exceed RDF and becomes 
a dominant factor of whole margin variations, as shown in 
Fig. 1(a).  According to the references [1]-[5], there will 
come the time soon around 15nm scaled CMOS era.     

 
(a) 

 
(b) 

Fig. 1. (a) Trend of variation amplitude of RTN and RDF (b) Comparisons of 
distributions of convolution results between 3 cases of assuming RTN for 

40nm, 16nm, and 7nm class device scaling. (1) RTN<RDF, (2) RTN=RDF, 
(3) RTN>RDF.  RTN will dominate the whole variations. 

 
To make clear the issues we will discuss in this paper, the 

concepts of what will happen at that time are shown in Figs. 
1-2. Fig. 1(b) illustrates the probability density functions for 
RDF, RTN1(40nm), RTN2(<16nm) and RTN3 (<7nm), and 
its convolution results, respectively. 

It is worth mentioning that the distribution-shape of the 
convolution results obey the Gaussian when RTN<RDF and 
changes to follow the combinations of Gamma and Gaussian 
distributions when RTN=RDF, and finally becomes 
dominated by Gamma distribution of RTN when RTN>RDF, 
respectively [4]-[5]. The tails on the both sides of the 
distribution are asymmetrical and are differently influenced 
by longer-tail Gamma-RTN for right side and shorter tail 
Gaussian-RDF for left side and, respectively, as shown in Fig. 
1(b).  

Since the interest area for the GB design is on the right side, 
i.e., in less margin zone, it can be seen that the 
approximation-error of the RTN distribution directly leads to 
estimation-error of fail-bit counts (FBC). The conventional 
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Gaussian-model characterizing for the whole-margin 
variation can’t be used any more for analyzing such non 
Gaussian long-tail distributions of RTN.  Fig. 2 shows how 
the affects of the approximation-error on the FBC error will 
be increased as the process dimension is scaled down. Until 
15nm, its impact can be increased by 6 orders of magnitude 
compared to that of 40nm, as shown in Fig. 2.   

 
Fig. 2.  Increased impact of approximation-error on the trouble of excessive 

under-estimation/over- estimation of the fail-bit counts. 
 

In order to solve the above issues, we propose, for the first 
time, a fitting method to approximate a long-tailed RTN 
distribution by an adaptive segmentation Gaussian mixtures 
model (GMM). This provides the following benefits: 1) 
applicable to the various convex and concave shapes of 
bounded Gamma distribution even with the wide range of 
shape-parameter =0.02 to 1.15 and  2) still using Gaussian 
distribution to simply utilize an error-function for cumulative 
density function. The main contribution of this paper is to 
point out that it is possible to approximate the long tailed 
distributions by mixtures of convenient Gaussian probability 
distributions, so that available yield-prediction models can be 
effectively analyzed and so that the effect of the long tailed 
distributions upon the fail-bit count accuracy can be 
analytically determined. This is because the convolution 
result of linear combinations of Gaussians becomes also 
Gaussians and can be expressed by the analytical expressions, 
which allows using normal (Gaussian) cumulative density 
function (normcdf) for estimating the error counts. This 
makes it easier to predict the fail-bit counts before and after 
screening at the stages of both circuit design and screening 
test [1]-[3]. 

Here is how the rest of this paper is organized. In Section II, 
we refer to some of the example as evidence indicating how 
the conventional models cause intolerable huge error to make 
clear the purpose of the proposed work.  In Section III, we 
will propose our recursive algorithm for constructing 
approximating Gaussian mixtures model (GMM). In Section 
IV, we refer to some of the example as evidence indicating if 
the proposed models can approximate well the heavy 
long-tailed distributions. We give a precise fail-bit count 
prediction. In Section V, we rigorously prove that it is 
possible to approximate various long-tailed distributions with 
bounded convex and concave curves by mixtures of Gaussian 
distributions. Finally, we state our conclusion in Section VI. 
 

II. DISCUSSIONS ON THE CONVENTIONAL MODELS  
Expectation-maximization (EM) algorithm [6], which is an 

iterative procedure that maximizes the likelihood of Gaussian 
mixtures models (GMM), is well known as easy and 
convenient means to approximate GMM to the non Gaussian 
distributions.  

 

 
(a) 

 
(b) 

Fig. 3. (a) Approximation error comparisons between  3, 9, 24-GMMs cases: 
errors of orders of 107 , 106, and 101, respectively. (b) Error dependency of 3 

types of Gamma distributions of =0.07, 0.25 and 0.54, respectively.  
 

However, all GMMs given by this fitting algorithm tend to 
concentrate in the non-tail region in which the sensitivity to 
increase the likelihood is much larger than that for the tail 
region, as shown in Fig. 3.  Since the interest region for 
analyzing the fail-bit counts of the rare-events is in the tail 
region (at probability of 10-12), the EM algorithm for this 
application leads to a significant fail-bit count error of orders 
of 107, as shown in Fig. 3. Even if increasing the number of 
GMM from 3 to 9 and 24, the significant error of orders of 
106 and 101, respectively, are still remained, as shown in Fig. 
3.    In almost all fail-bit analyses, the distribution of interest 
only matters in the tail-region of probability of orders of 10-12 
[1]-[3]. Thus, this is a crucial challenge we should address 
until the time comes for the rare-event SRAM yield 
predictions. 

 

III. PROPOSED STATISTICAL APPROXIMATION MODEL FOR 
RTN GAMMA DISTRIBUTION 

In order to solve these crucial issues, we develop a 
remarkably simple adaptively segmentation EM algorithm- 
based fitting algorithm. The centerpiece of this idea is: (a) 
adaptive partitioning of the long tailed distributions such that 
the log-likelihood of GMM is maximized in each 
segmentation and (b) copy and paste fashion with an 
adequate weight into each partition for constructing the 
whole long-tail distributions. The concepts of the two 
different proposed EM-based approximation means are 
shown in Fig. 4(a) and (b), respectively. 

A. Adaptive Segmentation  
Algorithm of the adaptive segmentation is described below 

from step 1) to step 4). 
1) 1st-step is to do approximation by 3-GMM between 

X0 and Xn. And find the point of X1, where 
likelihood of 3-GMM is maximized. 
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2) 2nd-step is to do the same thing as 1) between X1 and 
Xn. And find the point of X2, where likelihood of 
3-GMM is maximized. 

3) 3rd-step is to do the same thing as 2) between X2 and 
Xn. And find the point of X3, where likelihood of 
3-GMM is maximized between X3 and Xn. 

This flow can be repeated until the likelihood of whole 
GMM can be maximized as shown in Fig. 4(a). 

 
(a) Adaptive segmenttaion 

 
(b) Copy and paste fashion 

 
(c) Example of complex distributions comprising various variation factors 
Fig. 4.   Concepts of the proposed approximation algorithm. (a) adaptive 
segmenttaion:Xm are decided such that likelifood of each 3-GMM can be 
maximized. (b) copy and paste fashion: copy the first 3-GMM and paste to 

others with adaptive weighting. (c) example of complex distributions 
comprising various variation factors 

B. Copy and paste fashion 

Algorithm of the copy and paste fashion is described below 
from step 1) to step 4). 
 

1) 1st-step is to do approximation by 3-GMM between 
X0 and Xn. And find the point of X1, where 
likelihood of 3-GMM is maximized. X is given by 
(X1-X0) and w0 is the weight of the 1st 3-GMM. 

2) 2nd-step is to get the weight (w1) of the 2nd 3-GMM. 
And copy the 1st 3-GMM and paste it into the adjacent 
place (shifted by X) by weighting of  w1, which is 
given by the slope of Gamma distribution. 

where, slope=(w0 - w1)/ X  

3) 3rd-step is to do the same thing as 2), as shown in Fig. 
4(b). This flow can be repeated until Xm>Xn. 

   
This algorithm can allow approximating any heavy-long 

tailed distributions by the convenient short-tail Gaussian 
probability distributions. Even if the whole distributions are 
comprised of mixtures of various convex and concave curves 
as shown in Fig. 4(c), individual area of (O-P), (P-Q), (Q-R), 
(R-S), and (S-T) can be adaptively segmented based on its 
slope. It is a clear that the both proposed ideas can apply to 
this kind of distribution. In Section V, an example of actual 
distributions of future RTN is given and discussed.   

Thanks to the segmentation, the range of variables for the 
3-GMM approximation is limited and almost similar to the 
other segmentations. This can make the number of 
EM-iterations required to find the best point smaller and help 
to avoid the wrong convergence point unlike the 
conventional EM-algorithm, as shown in Table I. This also 
allows us to use only Gaussian distributions when doing 
convolution of Gaussian-RDF and Non-Gaussian-RTN 
distributions.   
 

TABLE I:     COMAPRISONS  OF  EM-ITERATIONS 

 Segmentation 
(proposed) 

Conventional 
(w/o segmentation) 

Gamma1 3 338  
Gamma2 6 340  
Gamma3 6 340  

 
The convolution results also can be given by analytical 

simple and convenient expressions of just linear combination 
of Gaussian, which can give us the fail-bit count by just 
summing up the values of normal (Gaussian) cumulative 
density function (normcdf) for each Gaussian of the whole 
GMM. The example of how to caluculate the fail-bit error 
counts of the segmentation of (xa-xb) is shown in Fig. 5. 
 

 
Fig. 5.   Error bit counts of the segmentation of (xa-xb) can be given by just 
summing up the normal (Gaussian) cumulative density function (normcdf) 

of three GMMs. 
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IV. DISCUSSION ON ACCURACY OF STATISTICAL 
APPROXIMATION MODEL FOR RTN DISTRIBUTION 

To illustrate the effects of the proposed scheme on the 
reduction of the approximation-error in the long tails, the 
following examples are assumed: (1) ratio of how fast does 
the tail decay of Gaussian-RDF and Gamma-RTN, i.e., its 
parameters are assumed as follows: (σ=1, μ=0) for Gaussian, 
(α=1, β=0.56) for Gamma. The relationship between the two 
distributions and its convolution are shown in Fig. 1b) and (2) 
comparisons of the following 6 approximation-models of 
Gamma distribution (α=1,  =0.56): (a) the number of 3, 9, 24, 
and 128 of GMMs are used for fitting the whole distribution 
(no segmentation) and (b) the number of 3 and 9 of GMMs 
are used for approximating each segmentation comprising 
whole distribution. 

 

 
Fig. 6.   Comparisons of the convolution results between the cases with and 
without segmentation schemes of 3, 9, 24, and 128-GMMs. Proposed one 

can reduce the error by 104x, 102x, and 4x than 3, 9, and 24-GMMs, 
respectively 

 
Fig. 6 shows the comparisons of the convolution results 

between the cases with and without segmentation schemes.  It 
is found that 3-GMM segmentation scheme can reduce the 
errors by 7-orders and 4-orders of magnitude at the fail 
probability of 1012, as shown in Fig. 6. It is worth mentioning 
that 3-GMM segmentation scheme provides a better 
approximation than the case of 24-GMM, as shown in Fig. 6  
In order to characterize the error of each convolution result, 
the “golden”, which is given by the numerical calculation of 
convolution of Gaussian and Gamma distributions, is used as 
a reference. The numbers of fail-bit count errors for each 
approximation model are compared, as shown in Fig. 7. The 
number of fail-bit count error is defined as the difference in 
the cdf value between the “golden” and that for each model. 

It is worth mentioning that the relationship of “which is 
better” is dependent on the x-scale, as shown in Fig. 7.  For 
example, 128-GMM is the best in X= (-6~-12) in which the 
fail-probability is larger than 10-8 (shown in Fig. 7). In 
contrast, the proposed one can reduce the error best in X= 
(-12~-16) in which the fail-probability is smaller than 10-8 
where there is the most interest point for the GB designs. 
When discussing the GB designs for volume production, the 

expected yield-loss should be predicted.  We assumed the 
target here that fail-probability is 10-12 to realize 99.9% yield 
of 1Gbit memory chip, which is a quite realistic target. Thus, 
our most interest point of x is around x=-16, where 
fail-probability is around 10-12, as you can see by Fig. 7.  In 
that sense, we can say that our proposed 3-GMM 
segmentation method can provide the best approximation 
compared with others, as shown in Fig. 7. 

 
Fig. 7.  Comparisons of the numbers of fail-bit count errors between 6 

approximation means of 3, 9, 24, and 128 GMM without segmentation and 3 
and 9-GMM with segmentation schmes. 

 
Fig. 8. Comparisons of the numbers of fail-bit count errors between the 

adaptive segmentation and copy and paste fashion for the 3-cases of 
convolution of RTN1, RTN2, and RTN3.  Total # of bits are assumed as 1012. 
 

As mentioned earlier, 9-GMM segmentation is worth than 
3-GMM segmentation in the wide range of x=-6~-16 because 
the variation of probability becomes larger and the density of 
GMM in area of lower probability becomes much smaller as 
shown in Fig. 7. Regarding the cases without using 
segmentation, the number of errors is 1~4 orders of 
magnitude larger than that for the proposed 3-GMM 
segmentation scheme. 

Fig. 8 shows the comparisons of the numbers of fail-bit 
count errors between the adaptive segmentation and copy and 
paste fashion we proposed in this paper.  The 3-cases of the 
errors of the convolution of Gauss with RTN1, RTN2, and 
RTN3 are shown, respectively. Although the small difference 
in terms of the fail-bit counts can be seen in the non-interest 
area, it is found that the both ideas of the proposed adaptive 
segmentation and copy and paste fashion can provide the 
small enough accuracy in the interest area (rare-event), 
compared with the conventional means, as shown in Figs 7-8. 

 

V. APPLICATION TO MORE COMPLEX DISTRIBUTIONS 
According to the reference [7]- [9], the distribution of RTN 

amplitude will have a complex bounded tail caused by 
“atomistic” variation-behaviors with various variation factors 
of the gate line-edge roughness (GER), fin-edge roughness 
(FER), and metal gate granularity (MGG), as shown in Fig. 9. 
They are no longer obeyed to the single gamma distribution 
but to the multiple gamma distribution depending on the tail 
positions of (O-P), (P-Q), and (Q-R), as shown in Fig. 9.  As 
the examples to illustrate the effectiveness of the proposed 
fitting models, the three types of distributions whose have a 
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different folding points are given as Combo1, Combo2, and 
Combo3, as shown in Fig. 9. 

The proposed both ideas of “adaptive segmentation” and 
“copy and paste” fashion can apply to this kind of complex 
non-linear distribution. This is because the width of each 
segmentation is much smaller than the length of (O-P), (P-Q), 
and (Q-R). The same concepts can be used in each partition 
of (O-P), (P-Q), and (Q-R). 

 

 
Fig. 9.  Various bounded tails of the distributions of Gauss (RDF) and 

combination of different shaped gamma distributions of Combo1, Combo2, 
and Combo3. 

 
Fig. 10.  Comparisons of errors for fitting to Combo1, Combo2, and Combo3 
between the cases of (a) with the convnetional 3-GMM model and (b) with 

the proposed segmentation models. 

 
Fig. 11.  Comparisons of the errors of cumulative density function (cdf) of 

the convolution results for Combo1, Combo2, and Combo3 between the case 
of using the “adaptive segmentation” and “copy and paste” fashion. 

 
   Fig. 10 shows the comparisons of approximation-errors for 
fitting to Combo1, Combo2, and Combo3 between the cases 
of (a) using the convnetional 3-GMM model and (b) using the 
proposed segmentation models. As can be seen in the Fig. 

10(a), the conventional 3-GMM models without using 
segmentation manner can’t fit the tails of Combo1-3 at all. 
The errors of 4,6, and 7 orders of maginitude have to be 
expected at the rare probability of 10-12.  Contrary, the fitting 
errors can be drastically reduced by using the proposed ideas, 
as shown in Fig. 10(b). Unlike the case of Fig. 10(a), it can be 
seen that the fitting curves and its target lines in Fig. 10(b) are 
perfectly overlapped.  Thanks to the segmentation manner, 
the same concepts can be adaptively applied to the different 
sloped-tail distributions.  This indicates that this ideas can be 
applied to the various sloped-distributions even if they are 
combined like the given examples in Fig. 9.  

Since the both ideas of “adaptive segmentation” and “copy 
and paste” fashion can apply to this kind of complex 
non-linear distribution, the errors of cumulative density 
function (cdf) of the convolution results for Combo1, 
Combo2, and Combo3 are compared between the two, as 
shown in Fig. 11. 
 
 

It is found that the trend of cdf errors depending on the 
margin scale of x position is similar between the different 
distributions of Combo1-3, as can be seen in Fig. 11. 
The cdf errors for the “copy and paste” are smaller than that 
for the “adaptive segmentation” in the smaller x-position. 
Contrary, its relationship is inverted.  Since the region of a 
larger x and a smaller probability like 10-12 is more interest 
area for the rare event fail-bit count analyses, it can be said 
that the proposed idea of “adaptive segmentation” provides 
the better fitting model to predict the yield-loss after shipped 
to the market due to the time-dependent RTN-caused failures. 
 

VI. CONCLUSION 
In this paper, we have discussed, for the first time, how the 

various-sloped RTN distribution-tail should be approximated 
and how much its approximation-error can affect on the 
accuracy of the statistical predictions of the number of fail-bit 
counts, which is required to avoid the out of spec after 
shipped to the market. It has been pointed out that the 
conventional Gaussian models can’t be used any more due to 
intolerable model errors caused by the deviation from the 
actual RTN-caused distributions, once the distribution-tail of 
the RTN becomes longer than that of the conventional 
variations of the RDF.  This is because the tail of convolution 
results doesn’t obey to the Gaussian any more but follows to 
the mixtures of various-sloped Gamma distributions.  

To address the above issues, we have proposed the two 
types of an effective simple algorithm for approximating the 
tails of RTN distributions by convenient and simple GMM. 
This allows the fitting model to apply the various bonded tail 
distributions even with the multiple convex and concave 
folding curves. It has been verified that the proposed method 
can reduce the error of the fail-bit predictions by 2-orders of 
magnitude while reducing the iterations for EM step 
convergence to 1/16 at the interest point of the fail probability 
of 10-12 which corresponds to the design point to realize a 
99.9% yield of 1Gbit chips.    

We have also pointed out that the proposed scheme is a 
candidate fitting algorithm for the distributions of the future 
RTN distributions, which will be crucial not only for the 
circuit design but also the GB design for screening test when 
RTN variables becomes larger than that of RDF. 
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