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Abstract—This paper introduces a class of conjunction-based 

clauses with function variables and their semantics, with an aim 

to provide a larger problem-transformation space that 

seamlessly supports both top-down computation and bottom-up 

computation.  A representative set of the collection of all models 

of a set of conjunction-based clauses is formulated.  Two types of 

equivalent transformation on conjunction-based clauses, i.e., 

unfolding and forwarding, are presented and their application is 

illustrated.  The presented work provides a foundation for 

constructing a correct method for solving query-answering 

problems. 

 
Index Terms—Query-answering problem, equivalent 

transformation, conjunction-based clause, representative set, 

forwarding transformation. 

 

I. INTRODUCTION 

A query-answering (QA) problem is concerned with 

finding the set of all ground instances of a given query atom 

that are logical consequences of a given logical formula.  

Equivalent transformation (ET) of formulas is essential and 

very useful for solving many kinds of logical problems [1], 

including QA problems.  In ET-based problem solving, a 

logical formula representing a given problem is successively 

transformed into a simpler but logically equivalent formula.  

Correctness of computation is readily guaranteed by any 

combination of equivalent transformations.  Many kinds of 

correct algorithms for solving logical problems can be 

devised based on the ET principle. 

Meaning-preserving Skolemization [2] necessitates 

incorporation of function variables.  This paper introduces a 

class of extended clauses, called conjunction-based clauses, 

which may contain occurrences of function variables, and 

establishes their semantics.  A representative set of the 

collection of all models of a set of conjunction-based clauses 

is formulated, based on which preservation of the intersection 

of all these models can be discussed.  Two types of 

transformation on conjunction-based clauses, i.e., unfolding 

transformation and forwarding transformation, are presented.  

Transformation of the first type corresponds to top-down 

(goal-directed) computation, while that of the second type can 

be naturally regarded as bottom-up computation.  Application 

of them to simplification of a QA problem is illustrated. 

To begin with, Section 2 formulates a class of QA problems, 

describes a general scheme for solving them using ET, and 
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recalls the class of extended clauses introduced in[2].  Section 

3 formulates conjunction-based clauses and defines their 

semantics.  Section 4 defines a representative set of the 

collection of all models of a set of conjunction-based clauses.  

Section 5 presents unfolding transformation and forwarding 

transformation on conjunction-based clauses.  Section 6 

illustrates their application.  Section 7 provides concluding 

remarks. 

 

II. SOLVING QUERY-ANSWERING PROBLEMS BY 

EQUIVALENT TRANSFORMATION 

A. Query-Answering (QA) Problems 

A query-answering problem (QA problem) is a pair K, a, 

where K is a logical formula and a is an atomic formula (atom).  

The answer to a QA problem K, a, denoted by ans(K, a), is 

defined as the set of all ground instances of a that follow 

logically from K.  When K consists of only definite clauses, 

problems in this class are problems that have been discussed 

in logic programming [6].  In the class of QA problems 

discussed in [8], K is a conjunction of axioms and assertions 

in Description Logics [3].  Recently, QA problems have 

gained wide attention, owing partly to emerging applications 

in systems involving integration between formal ontological 

background knowledge and instance-level rule-oriented 

components, e.g., interaction between Description Logics and 

Horn rules [5, 7] in the Semantic Web's ontology-based rule 

layer. 

B. Solving QA Problems by Equivalent Transformation 

Using the set of all models of K, denoted by Models(K), the 

answer to a QA problem K, a  can be equivalently 

represented as  

ans(K, a)  =  (Models(K))  rep(a), 

where Models(K) is the intersection of all models of K  and 

rep(a) is the set of all ground instances of a.  Calculating 

Models(K) directly may require high computational cost.  

To reduce the cost, K is transformed into a simplified formula 

K such that (Models(K))  rep(a) is preserved and 

(Models(K))  rep(a) can be determined at a low cost.   

By meaning-preserving Skolemization [2] and moving 

constraint atoms from left sides to right sides, the logical 

formula K is converted into a set Cs of extended clauses, each 

of which takes the form 

a1, , am    b1, , bp, f1, , fq, 

where a1, , am are usual atoms, each of b1, , bp is a usual 

atom or a constraint atom, and f1, , fq are func-atoms, which 

are introduced as follows: Given any n-ary function constant 
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or n-ary function variable f, an expression  

func(f, t1, , tn, tn+1), 

where the ti are usual terms, is considered as an atom of a new 

type, called a func-atom.  When f is a function constant and 

the ti are all ground, the truth value of this atom is evaluated to 

be true iff f(t1, , tn) = tn+1.  Let ECL denote the set of all 

extended clauses.   

Given Cs  ECL, the set of all models of Cs is denoted by 

Models(Cs).  A QA problem Cs, a such that Cs  ECL is 

called a QA problem on ECL. 

 

III. CONJUNCTION-BASED CLAUSES AND CONVERSION 

FROM EXTENDED CLAUSES 

An atom conjunction is a formula of the form [a1, , am], 

where a1, , am are usual atoms.  A conjunction-based clause 

C is a formula of the form 

c1, , cm    b1, , bn, f1, , fp, 

where c1, , cm are atom conjunctions, each of b1, , bn is a 

usual atom or a constraint atom, and f1, , fp are func-atoms.  

The sets {c1, , cm} and {b1, ..., bn, f1, ..., fp} are called the 

left-hand side and the right-hand side, respectively, of C, 

denoted by lhs(C) and rhs(C), respectively.  When m = 1, C is 

called a conjunction-based definite clause, c1 is called the 

head of C, denoted by head(C), and rhs(C) is also called the 

body of C, denoted by body(C).  When the conjunction-based 

clause C above contains no usual variable and no function 

variable, it determines a formula L(C), given by 

L(C)  =  (conj(c1)    conj(cm)  b1    bn     

f1     fp), 

where for any i  {1, , m}, if ci = [a1, , aq], then conj(ci) 

denotes (a1    aq).   

Let CBC be the set of all conjunction-based clauses.  Let 

FVar be the set of all function variables, FCon the set of all 

function constants, and Map(FVar, FCon) the set of all 

functions from FVar to FCon.  Given   Map(FVar, FCon) 

and R  CBC, let inst(, R) be the set of conjunction-based 

clauses obtained from R by instantiating all function variables 

appearing in it into function constants using .  A set G of 

ground usual atoms is a model of a set R  CBC iff there 

exists   Map(FVar, FCon) such that for any C  inst(, R) 

and any ground substitution  for all usual variables occurring 

in C, L(C) is true with respect to G.  The set of all models of 

a set R  CBC is denoted by Models(R).  

Theorem 1.  Let Cs be a set of extended clauses.  Let R be 

the set of conjunction-based clauses obtained from Cs by 

converting each clause (a1, , am  b1, , bn, f1, , fp)  Cs 

into the conjunction-based clause ([a1], , [am]  b1, , bn, 

f1, , fp).  Then Models(Cs) = Models(R).      

 

IV. A REPRESENTATIVE SET FOR SOLVING QA PROBLEMS 

Next, the notion of a representative set of a collection of 

sets is introduced.  The intersection of a given collection of 

sets can be determined in terms of the intersection of sets in its 

representative set (Theorem 2).  Given a set R of 

conjunction-based clauses, a set collection, MM(R), is 

defined, with an important property being that MM(R) is a 

representative set of the set of all models of R (Theorem 3).  

Consequently, the answer to a QA problem concerning R can 

be computed through MM(R). 

A. Representative Sets 

A representative set is defined below: 

Definition 1.   Let G be a set and M1, M2  2
G
.  M1 is a 

representative set of M2 iff M1  M2 and for any m2  M2, 

there exists m1  M1 such that m2  m1.    

Theorem 2 below provides a basis for computing the 

intersection of the set of all models of a clause set using its 

representative set. 

Theorem 2.  Let G be a set.  For any M1, M2  2
G
, if M1 is 

a representative set of M2, then M1 = M2.    

B. Representative Set for All Models of a 

Conjunction-Based-Clause Set 

Given a set R  CBC, MM(R) is defined below.  The 

following notations are used: 

 Let CBCnfv be the set of all conjunction-based clauses 

with no occurrence of any function variable, GCBC 

the set of all conjunction-based clauses that consist 

only of ground usual atoms, and GAC the set of all 

ground atom conjunctions. 

 Given R  CBCnfv, let ginst(R) be defined as a subset 

of GCBC as follows: 

1) Let R1 be the set of ground conjunction-based clauses 

obtained from R by R1 = {C | (C  R) & ( is a ground 

substitution for all usual variables occurring in C)}. 

2) Let R2 be the set of ground conjunction-based clauses 

obtained from R1 by removing each conjunction-based 

clause whose right-hand side contains at least one false 

constraint atom or at least one false func-atoms. 

3) Then let ginst(R) be the set of ground conjunction-based 

clauses obtained from R2 by removing all true constraint 

atoms and all true func-atoms from the right-hand side of 

each conjunction-based clause in R2. 

 Let SEL be the set of all mappings from GCBC to 

GAC  {} such that for any sel  SEL and any C  

GCBC, the following conditions are satisfied: 

1) If lhs(C) = , then sel(C) = . 

2) If lhs(C)  , then sel(C)  lhs(C). 

 Let GCBDC be the set consisting of every 

conjunction-based definite clause whose body 

contains only ground usual atoms and whose head is 

either a ground atom conjunction or . 

 Given a mapping sel  SEL and R  GCBC, let 

edc(sel, R) be defined as a subset of GCBDC by 

edc(sel, R)  =  {edc(sel, C) | C  R}, 

where for each conjunction-based clause C  R, edc(sel, C) is 

the conjunction-based definite clause obtained from C as 

follows: 
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1) head(edc(sel, C)) = sel(C) 

2) body(edc(sel, C)) = rhs(C) 

 Given C = ([a1, , am]  b1, , bn)  GCBDC, let  

dc(C) = {(ai  b1, , bn) | 1  i  m}.  Given D  

GCBDC, let dc(D) = CD dc(C). 

Definition 2.  Let R  CBC.  A collection MM(R) of 

ground-atom sets is defined by 

MM(R)  =  {M(D) | (  Map(FVar, FCon)) & (sel  SEL) 

&  

 (D = dc(edc(sel, ginst(inst(, R))))) & (  M(D))}, 

where for any set D of definite clauses, M(D) denotes the 

minimal model of D.   

Theorem 3.  For any set R of conjunction-based clauses, 

MM(R) is a representative set of Models(R).    

 

V. EQUIVALENT TRANSFORMATION OF QA PROBLEMS 

A QA problem R, a such that R  CBC is called a QA 

problem on CBC.  Given a QA problem R, a on CBC, R may 

be further transformed equivalently in the CBC space into 

another subset of CBC for problem simplification.  Unfolding, 

forwarding, and other transformation rules may be used. 

A. Unfolding Transformation 

Given a set A of atoms, let Rep(A) = {a | (a  A) &  is a 

substitution for usual variables) }.  Let R, a be a QA 

problem on CBC.  Assume that: 

1) Aq is a set of atoms such that a  Rep(Aq) and Ap is a set of 

atoms such that Rep(Ap)  Rep(Aq) = . 

2) D is a set of conjunction-based definite clauses in R that 

satisfies the following conditions:  

 For any conjunction-based definite clause C  D, 

head(C) contains only one atom and this atom 

belongs to Rep(Ap).  

 For any conjunction-based clause C  R - D, each 

atom occurring in lhs(C) belongs to Rep(Aq). 

1) occ is an occurrence of an atom b in the right-hand side of 

a conjunction-based clause C in R – D such that b  

Rep(Ap). 

2) UNFOLD(R, D, occ) is the set  

(R – {C})    ({unfold(C, C, b) | C  D}), 

where for each C  D, unfold(C, C, b) is defined as follows, 

assuming that head(C) = [b] and  is a renaming substitution 

for usual variables such that C and C have no usual variable 

in common: 

 If b and b are not unifiable, then unfold(C, C, b) = 

. 

 If they are unifiable, then unfold(C, C, b) = {C}, 

where C is the conjunction-based clause obtained 

from C and C as follows, assuming that  is the 

most general unifier of b and b: 

 lhs(C) = lhs(C). 

 rhs(C) = (rhs(C) - {b})  rhs(C). 

Then MM(R) = MM(UNFOLD(R, D, occ)), and 

consequently, by Theorems 2 and 3, (Models(R))  rep(a) 

= (Models(UNFOLD(R, D, occ)))  rep(a). 

B. Forwarding Transformation 

Let c be an atom conjunction [a1, , am] and c an atom 

conjunction [b1, , bn].  Then let c  c denote the atom 

conjunction [a1, , am, b1, , bn].  Assume that R is a set of 

range-restricted conjunction-based clauses, i.e., for each 

conjunction-based clause C  R, each usual variable that 

occurs in lhs(C) also occurs in rhs(C). 

 Fwd-1:  Let c and d be atom conjunctions.  Assume 

that 

1) R = {C1, C2}  Rrest, where C1 = (c ) and C2 = (d ); 

2) C = (c  d ). 

Then MM(R) = MM({C}  Rrest), and it follows 

from Theorems 2 and 3 that for any usual atom a, 

(Models(R))  rep(a) = (Models({C}  Rrest)) 

 rep(a). 

 Fwd-2:  Let c1, , cm and d1, , dq be atom 

conjunctions.  Let e1, , en and a1, , ak be usual 

atoms.  Assume that  

1) R = {C1, C2}  Rrest, where 

 C1 = (c1, , cm, [e1, , en] ), 

 C2 = (d1, , dq  a1, , ak); 

2)  is a substitution for usual variables such that each atom 

in [a1, , ak] occurs in [e1, , en]; 

3) C = (c1, , cm, ([e1, , en]  d1), , ([e1, , en]  dq 

) ). 

Then MM(R) = MM({C, C2}  Rrest), and it follows from 

Theorems 2 and 3 that for any usual atom a, (Models(R))  

rep(a) = (Models({C, C2}  Rrest))  rep(a). 

 

VI. EXAMPLE 

The Oedipus problem, given in [3], is taken as an example.  

Oedipus killed his father, married his mother Iokaste, and had 

children with her, among them Polyneikes.  Polyneikes also 

had children, among them Thersandros, and Thersandros is 

not a patricide.  The problem is to find “a person who has a 

patricide child who has a non-patricide child.”  Assuming that 

“oe,” “io,” “po,” and “th” stand, respectively, for Oedipus, 

Iokaste, Polyneikes, and Thersandros, this problem is 

represented as a QA problem Cs, prob(X), where Cs 

consists of the following seven clauses: 

CI: hasChild(oe, io)   CII: hasChild(po, io)  

CIII: hasChild(po, oe)   CIV: hasChild(th, po) 

 

CV: pat(oe)    CVI:  pat(th) 

CVII: pat(Z), prob(X)  hasChild(Z, Y), hasChild(Y, 

X), pat(Y) 

The clause set Cs is converted into a set R consisting of the 

following conjunction-based clauses: 
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C1: [hasChild(oe, io)]   C2: [hasChild(po, io)] 

 

C3: [hasChild(po, oe)]    C4: [hasChild(th, po)] 

 

C5: [pat(oe)]    C6:  pat(th) 

C7: [pat(Z)], [prob(X)]  hasChild(Z, Y), 

hasChild(Y, X), pat(Y) 

The set R is successively transformed as follows: 

 By unfolding at hasChild(Z, Y) in C7 with Ap = 

{hasChild(X, Y)}, Aq = {prob(X), pat(X)}, 

and D = {C1, C2, C3, C4}, we obtain: 

Ca: [pat(oe)], [prob(X)]  hasChild(io, X), pat(io) 

Cb: [pat(po)], [prob(X)]  hasChild(io, X), pat(io) 

Cc: [pat(po)], [prob(X)]  hasChild(oe, X), pat(oe) 

Cd: [pat(th)], [prob(X)]  hasChild(po, X), pat(po) 

 By unfolding at the hasChild-atoms in Ca, Cb, Cc, and 

Cd, with Ap = {hasChild(X, Y)}, Aq = {prob(X), 

pat(X)}, and D = {C1, C2, C3, C4}, we obtain: 

Ce: [pat(po)], [prob(io)]  pat(oe) 

Cf: [pat(th)], [prob(io)]  pat(po) 

Cg: [pat(th)], [prob(oe)]  pat(po) 

 The conjunction-based clauses C1-C4 can then be 

removed.  The current conjunction-based-clause set 

is {C5, C6, Ce, Cf, Cg}.  

 By Fwd-2 with C5 and Ce, we obtain: 

Ch: [pat(oe), pat(po)], [pat(oe), prob(io)]  

 By Fwd-2 with Ch and Cf, we obtain: 

Ci: [pat(oe), pat(po), pat(th)], [pat(oe), pat(po), 

prob(io)], [pat(oe), prob(io)]  

 By Fwd-2 with Ci and C6, we obtain: 

Cj: [pat(oe), pat(po), prob(io)], [pat(oe), prob(io)] 

 

 By Fwd-2 with Cj and Cg, we obtain: 

Ck:    [pat(oe), pat(po), prob(io), pat(th)], [pat(oe), 

pat(po), prob(io), prob(oe)],  

[pat(oe), prob(io)]  

 By Fwd-2 with Ck and C6, we obtain: 

Cm: [pat(oe), pat(po), prob(io), prob(oe)], 

[pat(oe), prob(io)]  

 The conjunction-based clauses C6, Ce, Cf, and Cg can 

then be removed.  The current 

conjunction-based-clause set is the singleton{Cm }.  

Obviously, MM({Cm})  rep(prob(X)) = {prob(io)}.  

Thus Iokaste is the only answer to this problem. 

 

VII. CONCLUDING REMARKS 

Conventional Skolemization imposes restrictions on 

solving QA problems in the first-order domain.  Development 

of a correct and efficient solver for a large class of QA 

problems demands meaning-preserving Skolemization, which 

converts a given first-order formula into a set of extended 

clauses possibly containing function variables.  This paper 

has proposed a class of conjunction-based clauses with 

function variables and has established their semantics.  This 

class of formulas forms a space for equivalent transformation 

that allows a combination of top-down computation through 

unfolding transformation and bottom-up computation through 

forwarding transformation.  It provides a basis for 

construction of more general and more efficient QA-problem 

solvers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

International Journal of Future Computer and Communication, Vol. 1, No. 1, June 2012

8

REFERENCES 

[1] K. Akama and E. Nantajeewarawat, “Formalization of the Equivalent 
Transformation Computation Model,” Journal of Advanced 
Computational Intelligence and Intelligent Informatics, vol. 10, no. 3, 
pp. 245-259, 2006. 

[2] K. Akama and E. Nantajeewarawat, “Meaning-Preserving 
Skolemization,” in Proc. of the 2011 International Conference on 
Knowledge Engineering and Ontology Development (KEOD 2011), 
Paris, France, pp. 322-327, 2011. 

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. 
Patel-Schneider, the Description Logic Handbook. 2nd edn. 
Cambridge University Press, 2007. 

[4] C. L. Chang and C. L. Lee, Symbolic Logic and Mechanical Theorem 
Proving. Academic Press, 1973. 

[5] I. Horrocks, P. F. Patel-schneider, S. Bechhofer, and D. Tsarkov, 
“OWL Rules: A Proposal and Prototype Implementation,” Journal of 
Web Semantics, pp. 23-40, 2005. 

[6] J. W. Lloyd.  Foundations of Logic Programming.  2nd edn. 
Springer-Verlag, 1987. 

[7] B. Motik, U. Sattler, and R. Studer, “Query Answering for OWL-DL 
with Rules,” Journal of Web Semantics, pp. 41-60, 2005. 

[8] S. Tessaris, Questions and Answers: Reasoning and Querying in 
Description Logic.  PhD Thesis, Department of Computer Science, the 
University of Manchester, UK, 2001. 


