

Abstract—We present some practical issues in designing the

write buffer management scheme for SSDs (Solid-State Drives).
In SSDs with SATA interface, there exist the pending I/O
commands in NCQ (Native Command Queueing), and it can be
effectively exploited for write buffer management. Based on this
fact, we propose an efficient write buffer management scheme
that exploits the future buffer reference pattern from I/O
commands queued in NCQ. We also discuss the relationship
between the buffer size and the effectiveness of NCQ-awareness
in our scheme. Finally, we show that the proposed scheme
improves the performance of write buffer for some workloads.

Index Terms—NAND flash memory, NCQ, write buffer,
SSDs.

I. INTRODUCTION
SSDs are modern storage devices that consist of an array

of NAND flash memories. Unlike hard disk drives, SSDs
have many advantages such as short data access latency, low
power consumption, and resistance to shock. However, the
SSD has some shortcomings due to the physical
characteristics of NAND flash memory such as poor write
performance and limited number of erase operations. For the
reason, many commercial SSDs employ the write buffer to
overcome these problems.

The write buffer in SSD reduces the amount of write data
to be practically flushed to the NAND flash memories. It also
reduces the erase operation for improving lifespan of the SSD.
There have been many studies on write buffer management
for SSD [1]-[3]. However, such studies did not fully exploit
the internals of the SSDs. In SSDs with SATA interface, the
I/O commands from the host through the SATA interface are
queued in NCQ (Native Command Queueing). We specially
focus on the NCQ, which has important information for
buffer management.

In this paper, we propose an efficient management scheme
for write buffer within SSD. In our scheme, I/O commands
information is used for exploiting the future reference pattern.
NCQ has the pending I/O commands to be serviced later, it
gives an important hint for predicting the future buffer
reference. Hence, in SATA SSDs with NCQ, future reference
pattern as well as past reference pattern can be exploited for
write buffer management design.

In section II, related works on write buffer management
for SSDs and an internal architecture of SATA SSDs are

Manuscript received February 10, 2013; revised March 12, 2013. This

research was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (2010-0010260).

The authors are with the department of computer engineering,
Kwangwoon University, Seoul, 139-701, Republic of Korea (e-mail:
{zinjja2, tskim}@kw.ac.kr)

presented. Section III describes the proposed write buffer
management scheme, and discusses an appropriate buffer
size in our scheme for obtaining the effectiveness of
NCQ-awareness. Finally, Section IV and Section V present
the experimental results and concluding remark, respectively.

II. RELATED WORKS AND BACKGROUND

A. Related works
Many studies on write buffer management scheme for

SSDs have been conducted. FAB is a buffer management
scheme for NAND flash memory [1]. The scheme manages
the data in block unit and selects the largest size of page
cluster as a victim to maximize the chance of the switch
merge operations. BPLRU employs the page padding scheme
for maintaining the consecutive pages in log block and LRU
policy for selecting the victim, respectively [2]. Through the
page padding, BPLRU reduces the number of full merge
operations that are more expensive than switch merge
operations. CLC employs dual lists to maintain hot and cold
page clusters for considering the characteristics of I/O
workloads [3]. When it selects the victims, temporal locality
of workload and data size belonging to page clusters are
considered. These algorithms use the locality of I/O
workloads, the physical characteristics of NAND flash
memory based SSDs, or both, but did not fully exploit the
internals of the SSDs.

B. The NCQ in SATA SSDs
The NCQ is originally designed to improve the I/O

performance in SATA HDDs, but it is still widely employed
in SSDs [4]. The SSDs with standardized storage interfaces
allow up to 32 I/O commands for queueing, while
non-standard SSDs may support up to more than 128 [5]. The
I/O commands in NCQ consist of logical address, size, and
type information. An I/O command at the head of NCQ is
dispatched when SSD is ready to serve. The dispatched I/O
command is served by buffer in the SSD or may be served in
the NAND flash memory via FTL (Flash Translation Layer).

Based on the I/O command handling procedure in SATA
SSDs, we observed that the data belonging to the I/O
commands queued in NCQ would be needed in the near
future. Therefore, we can conclude that considering the NCQ
in designing the write buffer for SATA SSDs may be a good
strategy.

III. THE PROPOSED SCHEME FOR EXPLOITING THE FUTURE
REFERENCE

In this paper, we discuss some practical issues when

Exploiting the Future Reference in Write Buffer
Management Design for SSDs

Seongmin Kim and Taeseok Kim

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

442DOI: 10.7763/IJFCC.2013.V2.202

designing the write buffer management scheme for SSDs. In
usual buffer management, when the buffer is full, the victim
buffer is selected for replacement. Ideally, the buffer that will
not be referenced for the longest of time should be selected
for victim, but many buffer management schemes including
LRU (Least Recently Used) have exploited only the past
buffer reference pattern because the future buffer reference
information cannot be accessible in real systems. However,
in SATA SSDs, since the NCQ has the pending I/O
commands to be serviced later, we can obtain the future
buffer reference information from NCQ.

Based on this idea, we could devise a simple and effective
buffer management scheme. The proposed scheme
additionally exploits the information of the I/O commands in
NCQ, which is not exploited by existing studies. It is
important to note that the proposed scheme can be integrated
with other existing write buffer management schemes
without large modification. In order to focus on the effect of
NCQ in designing the write buffer management scheme, we
present our scheme based on simple LRU (Least Recently
Used). We believe that our scheme can be trivially adjusted
with any other existing schemes.

Like LRU, our scheme maintains the buffers in reference
order from MRU (Most Recently Used) to LRU. When I/O
command at the head of NCQ is dispatched, if data belonging
to the I/O command resides in the buffer, the data moves to
the MRU location. If data belonging to the I/O command
dose note reside in the buffer, data from the LRU position is
replaced, and the data belonging to the dispatched I/O
command is inserted into the MRU position.

Unlike the existing schemes, our scheme performs an

additional operation. Since data belonging to the I/O
commands in NCQ will be used in the near future, they
should be pinned not to be replaced. When new I/O command
arrives at NCQ, our scheme moves data belonging to the I/O
command to virtual MRU position if the data resides in buffer.
The virtual MRU means that it is not actually the most
recently used but should be maintained in buffer as if it is
most recently used (Fig. 1). If the data belonging to the newly
arrived I/O command does not reside in buffer, no action is
required.

Fig. 2 illustrates the pseudo code of main function in the
proposed scheme. The function check_buffer(R) is invoked
when new I/O command arrives at NCQ. If data belonging to
the I/O command resides in the buffer, this function moves
the data to virtual MRU position using only the I/O
command’s address and size. This algorithm has very low
complexity because it performs only the comparison
operation and the pointer changes.

In what situation, does our scheme outperform the LRU?
In order to analyze the effectiveness of NCQ-awareness, it is
required to discuss the relationship between the buffer size
and the effectiveness of NCQ-awareness. Suppose that a new
I/O command, R arrives at NCQ, and data belonging to R

already reside in buffer. In LRU scheme, in order to service
the data from the buffer when R is dispatched later, the buffer

size should be larger than or equal to ∑
−

=

1

0
.

N

i
i sizeR , where N is

Input: R : A new I/O com m and

O utput: N U LL

// invoked w hen a new I/O com m and arrives at N CQ .
begin: check_buffer (R)
 // N pages: the num ber of pages per block.

 // R.lpn : R’s logical page num ber, R.size: R’s size.

 M ax_lbn = R.lpn / N pages;
 M in_lbn = (R.lpn + R.size – 1) / N pages;

 for each block Bi in the LRU list
 if Bi.lbn > = M in_lbn and Bi.lbn < = M ax_lbn then
 // m oves the block Bi to virtual M RU position
 m ove_to_virtualM RU (Bi);
 end
 end
end

Fig. 2. Algorithm of the NCQ-aware LRU scheme.

 The number of commands that arrive at NCQ prior to R.

Note that the maximum of N is practically 32, 64, or 128 as
mentioned in Section II. The size of each request is also
generally limited, which is generally hundreds of KB in
Linux [6].

On the other hand, in our scheme, even though the buffer

size is smaller than ∑
−

=

1

0
.

N

i
i sizeR , the data belonging to R can

be serviced from the buffer when R is dispatched later. It
means that our scheme would show better performance than
the LRU when the buffer size is limited. In the worst case that
all I/O commands arrive at NCQ prior to R are serviced from
the buffer, our scheme will show the similar performance to
the LRU.

IV. PERFORMANCE EVALUATIONS

A. Experimental Environments
To show the effectiveness of the proposed scheme, we

implemented a simulator based on Flashsim [7] that emulates
the I/O handling in SSDs with SATA interface. We assume
that the hybrid FTL such as BAST is used for address
mapping and the buffer is replaced in block units [8]. In order
to focus on the effect of NCQ in designing the buffer
management scheme, we compared the proposed scheme
with simple LRU. The workloads used in our experiments
were generated by using IOmeter, which is an I/O subsystem
measurement and characterization tool [9]. Table I shows the
summary of workloads used in our experiments.

TABLE I: THE WORKLOADS USED IN EXPERIMENTS.

 Record size Access pattern
Avg. inter-

arrival
time

Workload 1 256KB random 0.83ms
Workload 2 1MB random 5.02ms

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

443

VirtualM RU M RU LRU

Fig. 1. The virtual MRU concept.

B. Results
As can be seen in Fig. 3, the proposed scheme outperforms

LRU in terms of hit ratio. Especially, when the buffer size is
1MB, the proposed scheme performs better than LRU up to
4% and 2% for workload 1 and 2, respectively. As the buffer
size is smaller, it seems that exploiting only the temporal
locality like in LRU is not sufficient to effectively choose the
victim buffer for replacement, and thus exploiting more
future reference pattern by using the I/O command
information in NCQ is more helpful. When buffer size is
large, the performance gain that obtained by considering the
NCQ is low because the queue length is short and thus there
is little opportunity to exploit the future reference.

Fig. 4 shows the write bandwidth as a function of buffer
size. In these results, we can see that our scheme performs
better than LRU up to 5% and 2% for workload 1 and 2,
respectively. Finally, Fig. 5 shows the IOPS. As can be seen,
our scheme outperforms LRU up to 4% and 1%, respectively.

V. CONCLUSION
In this paper, we presented a novel write buffer

management scheme, which exploits the future reference
pattern. Our work has started from a careful observation of
the SSD’s internals. The SSDs with SATA interface have a
queue called NCQ, which has many I/O commands to be

(a) workload 1 (b) workload 2

Fig. 3. Hit ratio as a function of buffer size.

(a) workload 1 (b) workload 2

Fig. 4. Write bandwidth as a function of buffer size.

(a) workload 1 (b) workload 2

Fig. 5. IOPS as a function of buffer size.

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

444

served later. Based on this observation, we could devise
simple and efficient buffer management scheme that exploits
the future reference pattern as well as the past reference
pattern. Through the trace-driven simulations, we showed
that considering the NCQ for buffer management is
significantly effective in terms of hit ratio, write bandwidth,
and IOPS.

REFERENCES

[1] H. Jo, J. U. Kang, S. Y. Park, J. S. Kim, and J. Lee, “FAB: Flash-Aware
Buffer Management Policy for Portable Media Players,” IEEE Trans.
on Consumer Electronics, vol. 52, no. 2, pp. 485-493, 2006.

[2] H. Kim and S. Ahn, “BPLRU: A Buffer Management Scheme for
Improving Random Writes in Flash Storage,” in Proc. 6th USENIX
Conf. on File and Storage Technologies, San Francisco, 2008, pp.
239-252.

[3] S. Kang, S. Park, H. Jung, H. Shim, and J. Cha, “Performance
trade-offs in using nvram write buffer for flash memory-based storage
devices,” IEEE Trans. on Computers, vol. 58, no. 6, pp. 744–758,
2009.

[4] G. Gasior, “Intel’s X25-E Extreme solid-state drive,” The technical
report, 2008.

[5] E. Seppanen, M. T. O’Keefe, and D. J. Lilja, “High performance solid
state storage under Linux,” in Proc. 26th IEEE Symposium on Massive
Storage Systems and Technologies, Nevada, 2010, pp. 1-12.

[6] B. Ko, Y. Kim, and T. Kim, “Performance improvement of I/O
subsystems exploiting the characteristics of solid state drives,” in Proc.
ICCSA’11, Santander, Spain, 2011, pp.528-539.

[7] A. Gupta, Y. J. Kim, B. Tauras and B. Urgaonkar, “FlashSim: A
Simulator For NAND Flash-based Solid-State-Drives,” in Proc.
International Conference on Advances in System Simulation, 2009, pp.
125-131.

[8] J. Kim, J. M. Kim, S. H. Hoh, S. L. Min, and Y. Cho, “A
Space-Efficient Flash Translation Layer for CompactFlash Systems,”
IEEE Trans. on Consumer Electronics, vol. 48, no. 2, pp. 366-375,
2002.

[9] D. D. Levine, “Iometer User’s Guide,” Intel Server Architecture Lab.
2003.

Seongmin Kim received the BS degrees in computer
engineering from Kwangwoon University, Korea, in
2011. He is currently working toward the MS degree at
the School of Computer Engineering, Kwangwoon
University. His research interests include operating
systems, flash memories and next-generation
nonvolatile memories, and embedded system.

Taeseok Kim received the BS, MS and PhD degrees in
computer science from Seoul National University,
Korea, in 2000, 2002, and 2007 respectively. He is
currently an assistant professor in the department of
computer engineering, Kwangwoon University, Seoul,
Korea. His research interests include multimedia
systems, operating systems, storage systems, and
embedded system.

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

445

