
  

  
Abstract—We present some practical issues in designing the 

write buffer management scheme for SSDs (Solid-State Drives).  
In SSDs with SATA interface, there exist the pending I/O 
commands in NCQ (Native Command Queueing), and it can be 
effectively exploited for write buffer management. Based on this 
fact, we propose an efficient write buffer management scheme 
that exploits the future buffer reference pattern from I/O 
commands queued in NCQ. We also discuss the relationship 
between the buffer size and the effectiveness of NCQ-awareness 
in our scheme. Finally, we show that the proposed scheme 
improves the performance of write buffer for some workloads. 
 

Index Terms—NAND flash memory, NCQ, write buffer, 
SSDs.  

I. INTRODUCTION 
SSDs are modern storage devices that consist of an array 

of NAND flash memories. Unlike hard disk drives, SSDs 
have many advantages such as short data access latency, low 
power consumption, and resistance to shock. However, the 
SSD has some shortcomings due to the physical 
characteristics of NAND flash memory such as poor write 
performance and limited number of erase operations. For the 
reason, many commercial SSDs employ the write buffer to 
overcome these problems.  

The write buffer in SSD reduces the amount of write data 
to be practically flushed to the NAND flash memories. It also 
reduces the erase operation for improving lifespan of the SSD. 
There have been many studies on write buffer management 
for SSD [1]-[3]. However, such studies did not fully exploit 
the internals of the SSDs. In SSDs with SATA interface, the 
I/O commands from the host through the SATA interface are 
queued in NCQ (Native Command Queueing). We specially 
focus on the NCQ, which has important information for 
buffer management. 

In this paper, we propose an efficient management scheme 
for write buffer within SSD. In our scheme, I/O commands 
information is used for exploiting the future reference pattern. 
NCQ has the pending I/O commands to be serviced later, it 
gives an important hint for predicting the future buffer 
reference. Hence, in SATA SSDs with NCQ, future reference 
pattern as well as past reference pattern can be exploited for 
write buffer management design. 

In section II, related works on write buffer management 
for SSDs and an internal architecture of SATA SSDs are 
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presented. Section III describes the proposed write buffer 
management scheme, and discusses an appropriate buffer 
size in our scheme for obtaining the effectiveness of 
NCQ-awareness. Finally, Section IV and Section V present 
the experimental results and concluding remark, respectively. 

 

II. RELATED WORKS AND BACKGROUND 

A. Related works 
Many studies on write buffer management scheme for 

SSDs have been conducted. FAB is a buffer management 
scheme for NAND flash memory [1]. The scheme manages 
the data in block unit and selects the largest size of page 
cluster as a victim to maximize the chance of the switch 
merge operations. BPLRU employs the page padding scheme 
for maintaining the consecutive pages in log block and LRU 
policy for selecting the victim, respectively [2]. Through the 
page padding, BPLRU reduces the number of full merge 
operations that are more expensive than switch merge 
operations. CLC employs dual lists to maintain hot and cold 
page clusters for considering the characteristics of I/O 
workloads [3]. When it selects the victims, temporal locality 
of workload and data size belonging to page clusters are 
considered. These algorithms use the locality of I/O 
workloads, the physical characteristics of NAND flash 
memory based SSDs, or both, but did not fully exploit the 
internals of the SSDs. 

B. The NCQ in SATA SSDs 
The NCQ is originally designed to improve the I/O 

performance in SATA HDDs, but it is still widely employed 
in SSDs [4]. The SSDs with standardized storage interfaces 
allow up to 32 I/O commands for queueing, while 
non-standard SSDs may support up to more than 128 [5]. The 
I/O commands in NCQ consist of logical address, size, and 
type information. An I/O command at the head of NCQ is 
dispatched when SSD is ready to serve. The dispatched I/O 
command is served by buffer in the SSD or may be served in 
the NAND flash memory via FTL (Flash Translation Layer). 

Based on the I/O command handling procedure in SATA 
SSDs, we observed that the data belonging to the I/O 
commands queued in NCQ would be needed in the near 
future. Therefore, we can conclude that considering the NCQ 
in designing the write buffer for SATA SSDs may be a good 
strategy.  

 

III. THE PROPOSED SCHEME FOR EXPLOITING THE FUTURE 
REFERENCE 

In this paper, we discuss some practical issues when 
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designing the write buffer management scheme for SSDs. In 
usual buffer management, when the buffer is full, the victim 
buffer is selected for replacement. Ideally, the buffer that will 
not be referenced for the longest of time should be selected 
for victim, but many buffer management schemes including 
LRU (Least Recently Used) have exploited only the past 
buffer reference pattern because the future buffer reference 
information cannot be accessible in real systems. However, 
in SATA SSDs, since the NCQ has the pending I/O 
commands to be serviced later, we can obtain the future 
buffer reference information from NCQ. 

Based on this idea, we could devise a simple and effective 
buffer management scheme. The proposed scheme 
additionally exploits the information of the I/O commands in 
NCQ, which is not exploited by existing studies. It is 
important to note that the proposed scheme can be integrated 
with other existing write buffer management schemes 
without large modification. In order to focus on the effect of 
NCQ in designing the write buffer management scheme, we 
present our scheme based on simple LRU (Least Recently 
Used). We believe that our scheme can be trivially adjusted 
with any other existing schemes.  

Like LRU, our scheme maintains the buffers in reference 
order from MRU (Most Recently Used) to LRU. When I/O 
command at the head of NCQ is dispatched, if data belonging 
to the I/O command resides in the buffer, the data moves to 
the MRU location. If data belonging to the I/O command 
dose note reside in the buffer, data from the LRU position is 
replaced, and the data belonging to the dispatched I/O 
command is inserted into the MRU position.  
 

 

 
Unlike the existing schemes, our scheme performs an 

additional operation. Since data belonging to the I/O 
commands in NCQ will be used in the near future, they 
should be pinned not to be replaced. When new I/O command 
arrives at NCQ, our scheme moves data belonging to the I/O 
command to virtual MRU position if the data resides in buffer. 
The virtual MRU means that it is not actually the most 
recently used but should be maintained in buffer as if it is 
most recently used (Fig. 1). If the data belonging to the newly 
arrived I/O command does not reside in buffer, no action is 
required. 

Fig. 2 illustrates the pseudo code of main function in the 
proposed scheme. The function check_buffer(R) is invoked 
when new I/O command arrives at NCQ. If data belonging to 
the I/O command resides in the buffer, this function moves 
the data to virtual MRU position using only the I/O 
command’s address and size. This algorithm has very low 
complexity because it performs only the comparison 
operation and the pointer changes.  

In what situation, does our scheme outperform the LRU? 
In order to analyze the effectiveness of NCQ-awareness, it is 
required to discuss the relationship between the buffer size 
and the effectiveness of NCQ-awareness. Suppose that a new 
I/O command, R arrives at NCQ, and data belonging to R 

already reside in buffer. In LRU scheme, in order to service 
the data from the buffer when R is dispatched later, the buffer 

size should be larger than or equal to ∑
−
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Input: R : A  new  I/O  com m and 

O utput: N U LL 
 
// invoked w hen a new  I/O  com m and arrives at N CQ . 
begin: check_buffer (R) 
    // N pages: the num ber of pages per block. 

    // R.lpn : R’s logical page num ber, R.size: R’s size. 

    M ax_lbn =  R.lpn / N pages; 
    M in_lbn =  (R.lpn +  R.size – 1) / N pages; 
 
    for each block Bi in the LRU  list 
        if Bi.lbn > =  M in_lbn and Bi.lbn < =  M ax_lbn then 
             // m oves the block Bi to virtual M RU  position 
             m ove_to_virtualM RU (Bi); 
       end 
    end 
end 

 
Fig. 2.  Algorithm of the NCQ-aware LRU scheme. 

 
 The number of commands that arrive at NCQ prior to R. 

Note that the maximum of N is practically 32, 64, or 128 as 
mentioned in Section II. The size of each request is also 
generally limited, which is generally hundreds of KB in 
Linux [6]. 

On the other hand, in our scheme, even though the buffer 

size is smaller than ∑
−

=

1

0
.

N

i
i sizeR , the data belonging to R can 

be serviced from the buffer when R is dispatched later. It 
means that our scheme would show better performance than 
the LRU when the buffer size is limited. In the worst case that 
all I/O commands arrive at NCQ prior to R are serviced from 
the buffer, our scheme will show the similar performance to 
the LRU.   

 

IV. PERFORMANCE EVALUATIONS 

A. Experimental Environments 
To show the effectiveness of the proposed scheme, we 

implemented a simulator based on Flashsim [7] that emulates 
the I/O handling in SSDs with SATA interface. We assume 
that the hybrid FTL such as BAST is used for address 
mapping and the buffer is replaced in block units [8]. In order 
to focus on the effect of NCQ in designing the buffer 
management scheme, we compared the proposed scheme 
with simple LRU. The workloads used in our experiments 
were generated by using IOmeter, which is an I/O subsystem 
measurement and characterization tool [9]. Table I shows the 
summary of workloads used in our experiments. 

 
TABLE I: THE WORKLOADS USED IN EXPERIMENTS. 

 Record size Access pattern 
Avg. inter-

arrival 
time 

Workload 1 256KB random 0.83ms 
Workload 2 1MB random 5.02ms 
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B. Results 
As can be seen in Fig. 3, the proposed scheme outperforms 

LRU in terms of hit ratio. Especially, when the buffer size is 
1MB, the proposed scheme performs better than LRU up to 
4% and 2% for workload 1 and 2, respectively. As the buffer 
size is smaller, it seems that exploiting only the temporal 
locality like in LRU is not sufficient to effectively choose the 
victim buffer for replacement, and thus exploiting more 
future reference pattern by using the I/O command 
information in NCQ is more helpful. When buffer size is 
large, the performance gain that obtained by considering the 
NCQ is low because the queue length is short and thus there 
is little opportunity to exploit the future reference.  

Fig. 4 shows the write bandwidth as a function of buffer 
size. In these results, we can see that our scheme performs 
better than LRU up to 5% and 2% for workload 1 and 2, 
respectively. Finally, Fig. 5 shows the IOPS. As can be seen, 
our scheme outperforms LRU up to 4% and 1%, respectively. 

 

V. CONCLUSION 
In this paper, we presented a novel write buffer 

management scheme, which exploits the future reference 
pattern. Our work has started from a careful observation of 
the SSD’s internals. The SSDs with SATA interface have a 
queue called NCQ, which has many I/O commands to be 

 

  
(a) workload 1                       (b) workload 2     

 
Fig. 3.  Hit ratio as a function of buffer size.     

 

  
(a) workload 1                       (b) workload 2     

 
Fig. 4.  Write bandwidth as a function of buffer size.     

 

  
(a) workload 1                       (b) workload 2     

 
Fig. 5.  IOPS as a function of buffer size.     
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served later. Based on this observation, we could devise 
simple and efficient buffer management scheme that exploits 
the future reference pattern as well as the past reference 
pattern. Through the trace-driven simulations, we showed 
that considering the NCQ for buffer management is 
significantly effective in terms of hit ratio, write bandwidth, 
and IOPS.  
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