

Abstract—Due to out-of-place update property of NAND

flash memory, garbage collection is required for NAND flash
memory based SSDs (Solid-State Drives). In this paper, we
discuss some practical issues on developing the garbage
collection scheme. First, both efficiency and longevity should be
considered together for garbage collection design. To this end,
we present simple and effective victim block selection, hot/cold
page classification, and free block management schemes.
Second, the spatial and temporal overhead of garbage collection
should be small for being employed on real systems. Finally, we
discuss how to make use of the internal architecture of SSDs for
garbage collection design. We implemented new garbage
collection scheme that considers these all on real SSD platform.
Through extensive experiments, we show that the proposed
garbage collection scheme provides a good efficiency as well as
expands the longevity of SSDs.

Index Terms—NAND flash memory, garbage collection, solid
state drives

I. INTRODUCTION
Due to several desirable properties such as low data

latency, low power consumption, and shock resistance,
NAND flash memory based SSDs are widely used in various
computing environments. SSDs use electronic interfaces
compatible with traditional block I/O hard disk drives, but
they employ an array of NAND flash memories instead of
any moving mechanical components. Therefore, SSDs have a
critical weakness of inefficient in-place update operations,
which is inherited from characteristics of NAND flash
memory.
 To address this problem, flash memory based SSDs
usually employ out-of-update operations [1]. The
out-of-update is an operation that writes an updated data to a
new free place, and leaves the place containing obsolete data
as garbage. When there is not enough free space, the garbage
space should be collected and then translated into free space.
This procedure is called garbage collection.
 In this paper, we discuss several practical issues on
developing a garbage collection scheme for NAND flash
memory based SSDs. First of all, garbage collection scheme
should provide a good efficiency. Since garbage collection
consists of many erase and write operations, it is important to
reduce the number of erase and write operations as many as
possible. Another important requirement for garbage

Manuscript received January 30, 2013; revised March 15, 2013. This

research was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (2010-0010260).

The authors are with the department of computer engineering,
Kwangwoon University, Seoul, 139-701, Republic of Korea (e-mail:
thn7440@gmail.com, tskim@kw.ac.kr)

collection design is to balance the erase count of all blocks.
Since the erase count is limited to 100,000 for SLC (Single
Level Cell) flash memory and 10,000 for MLC (Multi Level
Cell) flash memory, respectively, the erase count should be
carefully controlled.
 In order to design a garbage collection scheme that
satisfies two goals at the same time, we discuss the following
four issues and present simple and effective policies,
respectively.

1) How to select a victim block?
2) How to classify hot/cold pages?
3) How to manage the free blocks?
4) When or how often perform the garbage collection?

First, for victim block selection, we develop a simple

model that evaluates each block by using the number of valid
pages and erase count. Once a victim block is selected, all
valid pages in the victim block should be copied into a free
block. To improve the efficiency and longevity, we classify
the valid pages into hot and cold by considering their update
frequency and recency. Finally, hot valid pages are copied
into old block and cold valid pages are copied into young
block in order to wear out all blocks evenly.

Since other I/O commands are blocked during garbage
collection, the spatial and temporal overhead of garbage
collection should not be large. To this end, our victim block
selection, hot/cold page classification, and free block
management should not be complicated while improving
both efficiency and longevity.

Finally, the internal architecture of SSDs can be used for
garbage collection design. In SSDs with SATA interface, I/O
commands from a host are queued in NCQ. Therefore, we
can estimate the burstness of write workload by observing the
status of NCQ. If NCQ is empty, we can perform garbage
collection actively, if NCQ has many I/O commands, garbage
collection is conservatively performed.
 We implemented our garbage collection scheme on
OpenSSD platform [2]. Through extensive experiments, we
show that our scheme shows a good performance in terms of
efficiency and longevity. In Section II, related works on
garbage collection and the internal architecture of SSDs are
presented. In Section III and IV, the proposed garbage
collection scheme and experimental results are presented,
respectively. Finally, we make a concluding remark in
Section V.

II. RELATED WORKS AND BACKGROUND

A. The Existing Garbage Collection Schemes
When the free space is not enough in NAND flash memory,

Practical Issues in Designing of Garbage Collection for
Solid States Drives

Taeho Nam and Taeseok Kim

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

451DOI: 10.7763/IJFCC.2013.V2.204

garbage collection is performed. The garbage collection first
selects a victim block, copies valid pages in the block into a
free block, and finally erases the victim block. In order to
provide the efficiency, it is effective to select a block with
many invalid pages as victim. That is because, as many
invalid pages exist in victim block, more free space can be
obtained by erasing the block. In addition, the operation time
for garbage collection is reduced because a relatively small
number of valid pages are just copied. Therefore, the number
of invalid pages should be necessarily considered for high
efficiency of garbage collection. On the other hand, the erase
count of block should be also considered for victim selection.
If a block with high erase count is selected as victim, it may
affect the longevity of NAND flash memory. In conclusion,
both longevity and efficiency should be appropriately
considered for victim block selection.

Until now, many garbage collection schemes considering
both longevity and efficiency have been proposed. Unlike the
other schemes that will be introduced later, greedy algorithm
only focuses on the efficiency of garbage collection [3].
Since it selects a block with the largest number of invalid
pages as victim, it can be used as an indicator that provides an
upper bound of efficiency. Cost Benefit (CB) algorithm is a
first one that considers both efficiency and longevity [4]. It
considers the longevity of NAND flash memory by using a
value a, which means the elapsed time since the latest
invalidation of a page in the block. Cost Age Time (CAT) is a
similar approach with CB except that it uses the erase counts
of blocks [5]. Hot/Cold Swapping (HC) technique that
separates hot and cold data has been also proposed [6]. It
periodically swaps the block with the largest erase count and
the block with the smallest erase count for wear-leveling. It
could increase the longevity of SSDs, but it has a significant
swapping overhead. Turn-Based selection (TB) scheme has
two phases; X and Y turn [7]. In X turn, TB selects a victim
block using the greedy algorithm, while it selects a victim
block according to some wear-leveling rules in Y turn.
Static-Dynamic (SD) that employed in TrueFFS file system
selects victims with a chain of physical flash blocks called
Virtual Erase Unit (VEU) [8]. When garbage collection is
needed, SD selects a VEU in a round-robin order. SD
consists of dynamic and static phases for wear-leveling; in
the dynamic phase, garbage collection is performed from the
round-robin VEU queue, and in the static phase, hot-cold
VEU swapping is performed. Dual-Pool (DP) performs data
swapping between a young block and an old block similar to
the Hot/Cold Swapping for wear-leveling [9]. Finally, Fast
and endurant Garbage Collection (FeGC) has been proposed
recently [1]. It considers the invalidated time of all invalid
pages in a block for selecting a victim block and then
redistributes valid pages by their update intervals. Moreover,
FeGC manages free blocks efficiently and allocates them
appropriately based on the characteristics of I/O workloads.
By doing this, FeGC reduces garbage collection time and
prolongs the lifetime of SSDs. They presented a significantly
elaborate model for garbage collection, but the overhead is
never low. It performs too many operations to select just one
victim block and tries to classify all valid pages as hot or cold.
For this reason, it may incur too large spatial and temporal
overhead in large capacity of NAND flash memory based

SSDs. As a matter of fact, our work has been started from this
FeGC. We tried to minimize the temporal and spatial
overheads of FeGC while providing a good efficiency and
extending the longevity of SSDs.

B. SSD Architecture
In addition to the traditional considerations such as

efficiency and longevity, we consider the architecture of
SSDs for garbage collection design. To understand our
approach that will be described later, it is necessary to
carefully observe the internal architecture of SSDs. Fig. 1
shows an internal architecture of SSDs [2], [10].

Fig. 1. An architecture of the SSDs.

The SSD can be largely divided into three layers. In the

HIL (Host Interface Layer), I/O commands come from the
host are queued in NCQ (Native Command Queuing). Once
servicing a previous I/O command is completely finished, I/O
command at the head of NCQ is dispatched. Finally, it is
served from NAND flash memories via FTL (Flash
Translation Layer). The main role of the FTL is to translate
logical addresses to physical addresses. In addition, garbage
collection, bad block management, and wear-leveling are
performed in FTL. In this work, we focus on garbage
collection in FTL, and make use of I/O commands
information in NCQ for garbage collection design.

III. THE PROPOSED GARBAGE COLLECTION
In this section, we describe a new garbage collection

scheme that considers the internal architecture of SSDs as
well as longevity and efficiency. It is important to note that
each procedure for garbage collection is designed with very
low overhead, and thus it can be implemented on real SSD
devices.

A. How to select a victim block?
As above mentioned, it is very important to select a victim

block by considering both efficiency and longevity. To select
the most suitable victim block, we calculate an evaluation
value for each block.

ii EαVα ⋅−+⋅)(1 (1)

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

452

Fig. 2. The HC values of four pages.

Fig. 3. The structure for free block management.

The value is calculated by (1), where Vi is the number of

valid pages of ith block, and Ei is the erase count of the ith
block. Then, a block with smallest evaluation value is
selected as a victim. α is a constant between 0 and 1, which
determines how much weight is put on efficiency or
longevity. For example, when α is 0, only longevity is
considered, and when α is 1, only efficiency is considered.
Namely, by adjusting α, efficiency and longevity can be
considered with an appropriate portion.

In order to implement this victim block selection policy, it
is sufficient to maintain only the number of valid pages and
the erase count for each block. Moreover, selecting a victim
can be performed in a constant time if all blocks are
mainlined in the evaluation value order.

B. How to classify Hot/Cold Pages?
To increase efficiency and longevity of garbage collection,

we classify all valid pages into hot and cold. After the
classification of hot/cold pages, hot pages are copied into
young block that has low erase count, and cold pages are
copied into old block that has high erase count. The hot/cold
page classification can be performed based on their update
frequency and recency. In order to consider both frequency
and recency of page update, we develop a simple and
effective technique as follows.

We associate each page with a HC (Hot/Cold) value that
indicates its hot degree by analyzing update frequency and
recency. We also maintain a clock, which is incremented for
every page update. Whenever an update to a page is made,
the value of clock is added to the HC value of the page. Fig. 2
illustrates an example that calculates the HC values of four
pages. In this example, the HC values of page A, B, C, and D
are 18, 12, 6, and 9, respectively.

Now, it is trivial to determine if a specific page is hot or
cold. If the HC value of a page is higher than average of all
valid pages, the page can be classified as hot, otherwise, can
be classified as cold. In Fig. 2, since average of all HC values
is 11.25, page A and B are hot pages, and page C and D are
cold pages, respectively.

In order to implement this hot/cold classification policy,
the HC values of all valid pages and only one average value
are maintained. Since these values are calculated only when
page is updated, the computation cost is also very low.
During garbage collection, it is sufficient to just compare the
HC value of each valid page and the average value.

C. How to Manage the Free Blocks?
As mentioned in Section I, since the erase count is limited

in SSDs, all blocks should be controlled to evenly worn out.
To this end, we copies hot pages into young block and cold
pages into old block like FeGC [1]. Fig. 3 illustrates data
structure for free block management. There are several
shaded node lists that contain a group of free blocks with the
same erase count. The shaded node lists are also maintained
in a linked list in ascending order of erase count. During
garbage collection, if hot valid pages should be copied back,
the oldest block is allocated for them. On the contrary, if cold
valid pages should be copied back, the youngest block is
allocated.

The spatial overhead in the free block management is not
large. In the worst case, namely, all free blocks have their
own different erase counts, this scheme needs (2 * the
number of free blocks) nodes. However, the situation does
rarely happen because the wear-leveling is considered in both
victim block selection and hot/cold page classification. Since
the youngest block and oldest block can be retrieved from
head and tail pointers, respectively, the temporal overhead
during garbage collection is also very low.

D. When or How Often Perform the Garbage Collection?
In SSDs with SATA interface, I/O commands from a host

are queued in NCQ, and an I/O command at the head of NCQ
is handled first. If this simple observation is used for garbage
collection design, we can solve the problem of when and how
often garbage collection should be performed. If NCQ is
empty, the garbage collection may be continuously
performed until enough free space is obtained. When the free
space is enough, if many write commands unexpectedly rush
into SSDs from host, lots of write operations can be handled
without performing the garbage collection for some time. For
all that, garbage collection should not be performed
needlessly. If a victim block has few invalid pages, the gain
obtained by performing the garbage collection would be
small.

On the other hand, if there are many I/O commands in
NCQ, it is good to delay the execution of garbage collection
as late as possible in order to provide a fast response time for
each I/O command. Of course, the garbage collection should
be performed when there is no free space, even if NCQ is not
empty.

IV. EVALUATION RESULTS
To show the effectiveness of the proposed garbage

collection scheme, we implemented it on OpenSSD platform
[2]. OpenSSD platform is based on the commercially
successful controller, and it is used to develop the SSD
firmware. We compared our garbage collection with greedy
algorithm that selects a block with the largest invalid pages as

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

453

victim. In our victim block selection policy, since α
determines how much weight is put on efficiency or
longevity, we experimented by varying the value of α.

To generate I/O workloads, we used the IOmeter
benchmark tool that is an I/O subsystem measurement and
characterization tool [11]. In our experiments, the SSD
capacity is 6GB and 26GB of data are written to the SSD with
a random pattern.

Fig. 4. Total copy-back count of valid pages.

Fig. 5. Total erase count.

Fig. 6. Average time of the garbage collection

TABLE I: SSDS BENCHMARK RESULTS.

Scheme Sequential
read

Sequential
write

4K Random
read

4K Random
write

Sc
ore

α=0.1 64.57 MB/s 17.93 MB/s 10.01 MB/s 1.74 MB/s 47

α=0.3 64.56 MB/s 18.80 MB/s 10.01 MB/s 1.77 MB/s 47

α=0.5 64.57 MB/s 18.47 MB/s 10.02 MB/s 1.78 MB/s 47

α=0.7 64.54 MB/s 18.79 MB/s 10.01 MB/s 1.78 MB/s 47

α=0.9 64.53 MB/s 18.88 MB/s 10.02 MB/s 1.78 MB/s 47

Greedy 64.54 MB/s 17.61 MB/s 10.02 MB/s 1.79 MB/s 47

Fig. 4 and 5 shows the total copy-back count of valid pages

and the total erase count that occurred during garbage
collection, respectively. Since these two metrics shows the
number of operations required during garbage collection, we
can say that they indicate the efficiency of garbage collection.

As can be seen, two results exhibit similar behavior. In both
results, the greedy algorithm has the smallest counts, and our
scheme shows a little larger counts. When α is close to 0,
longevity are much considered than efficiency, and thus both
copy-back count and erase count increase as the value of α
decreases. However, even when α is 0.1, the proposed
scheme shows just about 6% larger count than greedy
algorithm in both results. Note that the greedy algorithm
considers only efficiency. Therefore, we think that the 6%
gap is never large.

(a)=0.1

(a)=0.3

(a)=0.5

(d)=0.7

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

454

(f)=0.9

Fig. 7. Erase count distribution of all flash blocks.

Fig. 8. 6.2GB burst write test.

Fig. 6 shows the average time spent in the garbage

collection. As can be seen, our scheme shows low garbage
collection overhead as greedy algorithm. It is because our
several policies such victim block selection, hot/cold page
classification, and free block management has low temporal
overhead. Through these results, we can conclude that there
is little difference in terms of efficiency between greedy
algorithm and our scheme. In order to confirm this fact again,
we evaluated them with the AS-SSD benchmark tool [12]. As
can be seen in TABLE I, there is little difference between the
proposed scheme and greedy algorithm.

Fig. 7 shows the erase count distribution of all blocks
when different schemes are used. This distribution shows
how the garbage collection schemes evenly wear out all
blocks. As can be seen in Fig. 6 (a), when α is 0.1, the erase
counts are almost uniformly distributed. As the value of α
increases, the distribution of erase counts becomes spread
out.

Through the previous results, we could find that an
appropriate value of α is 0.3 or 0.5 for both efficiency and
longevity. The reason is that α does not make a large effect on
efficiency except that α is 0.1. On the other hand, when α is
0.3 or 0.5, the proposed scheme shows better performance in
terms of longevity.

Finally, we performed another experiment to see the
effectiveness of considering the SSD’s internal architecture
for garbage collection design. For this experiment, we made a
simple workload that writes 6.2GB of data with a bursty
random pattern. As can be seen in Fig. 8, our scheme shows
lower write operation time than greedy algorithm by 66%
when α is 0.5.

 V.

CONCLUSION

 In this paper, we presented a new garbage collection
scheme that can be practically used in SSDs. Our garbage
collection scheme successfully considers both efficiency and
longevity with low spatial and temporal overhead. In addition,
we introduced a method that exploits the internal architecture
of SSDs for garbage collection design. Through extensive
experiments, we demonstrated that the proposed scheme
exhibits good performance in terms of both efficiency and
longevity.

REFERENCES

 [1]

O. Kwon, K. Koh, J. Lee, and H. Bahn, "FeGC: An efficient garbage
collection scheme for flash memory based storage systems," Journal of
Systems and Software, vol. 84, no. 9, pp. 1507–1523, 2011.

[2]

The OpenSSD project. [Online]. Available:
http://www.openssd-project.org

[3]

M. Wu and W. Zwaenepoel, “eNVy: a non-volatile, main memory
storage system,” in Proc.

Architectural Support for Programming
Languages and Operating Systems(ASPLOS), San Jose, CA, 1994, pp.
86-97.

[4]

A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory based
File System," in Proc. USENIX Annual Technical Conference, New
Orleans, Louisiana, 1995, pp. 155-164.

[5]

M. L. Chiang and R. C. Chang, “Cleaning policies in mobile computers
using flash memory,” Journal of Systems and Software, vol. 48, no. 3,
pp. 213-231, 1999.

[6]

H. J. Kim, S. G. Lee, “A new flash memory management for flash
storage system,” in Proc. 23th Annual International Computer
Software and Applications Conference, Phoenix, Arizona, 1999, pp.
284-289.

[7]

M. C. Wookey, “YAFFS Specification,” 2001.
[8]

D. Shmidt, “TrueFFS wear-leveling mechanism,” Technical report,
M-Systems, 2002.

[9]

L. P. Chang, “On efficient wear leveling for large-scale flash-memory
storage systems,” in Proc. ACM symposium on Applied computing
(SAC ’07), New York, 2007, pp. 1126-1130.

[10]

R. Sykes, OCZ Technology, “Critical Role of Firmware and Flash
Translation Layers in Solid Stat Drive Design,” presented at the Flash
Memory Summit, Santa Clara, CA, 2012.

[11]

D. D. Levine, “Iometer User’s Guide,” Intel Server Architecture Lab,
2003.

[12]

ALEX Intelligent Software. [Online]. Available: www.
http://alex-is.de.

Taeho Nam is a student of the Department of Computer
engineering, Kwangwoon University, Seoul, Korea. He
is pursuing Bachelors in Computer engineering. His
research interests include operating systems, flash
memories and next-generation nonvolatile memories,
and embedded system.

Taeseok Kim received the BS, MS and PhD degrees in
computer science from Seoul National University,
Korea, in 2000, 2002, and 2007 respectively. He
iscurrently an assistant professor in the department of
computer engineering, Kwangwoon University, Seoul,
Korea. His research interests include multimedia
systems, operating systems, storage systems, and
embedded system.

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

455

