
  

  
Abstract—Due to out-of-place update property of NAND 

flash memory, garbage collection is required for NAND flash 
memory based SSDs (Solid-State Drives). In this paper, we 
discuss some practical issues on developing the garbage 
collection scheme. First, both efficiency and longevity should be 
considered together for garbage collection design. To this end, 
we present simple and effective victim block selection, hot/cold 
page classification, and free block management schemes. 
Second, the spatial and temporal overhead of garbage collection 
should be small for being employed on real systems. Finally, we 
discuss how to make use of the internal architecture of SSDs for 
garbage collection design. We implemented new garbage 
collection scheme that considers these all on real SSD platform. 
Through extensive experiments, we show that the proposed 
garbage collection scheme provides a good efficiency as well as 
expands the longevity of SSDs. 
 

Index Terms—NAND flash memory, garbage collection, solid 
state drives 
 

I. INTRODUCTION 
Due to several desirable properties such as low data 

latency, low power consumption, and shock resistance, 
NAND flash memory based SSDs are widely used in various 
computing environments. SSDs use electronic interfaces 
compatible with traditional block I/O hard disk drives, but 
they employ an array of NAND flash memories instead of 
any moving mechanical components. Therefore, SSDs have a 
critical weakness of inefficient in-place update operations, 
which is inherited from characteristics of NAND flash 
memory.  
 To address this problem, flash memory based SSDs 
usually employ out-of-update operations [1]. The 
out-of-update is an operation that writes an updated data to a 
new free place, and leaves the place containing obsolete data 
as garbage. When there is not enough free space, the garbage 
space should be collected and then translated into free space. 
This procedure is called garbage collection.  
 In this paper, we discuss several practical issues on 
developing a garbage collection scheme for NAND flash 
memory based SSDs. First of all, garbage collection scheme 
should provide a good efficiency. Since garbage collection 
consists of many erase and write operations, it is important to 
reduce the number of erase and write operations as many as 
possible. Another important requirement for garbage 
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collection design is to balance the erase count of all blocks. 
Since the erase count is limited to 100,000 for SLC (Single 
Level Cell) flash memory and 10,000 for MLC (Multi Level 
Cell) flash memory, respectively, the erase count should be 
carefully controlled.  
 In order to design a garbage collection scheme that 
satisfies two goals at the same time, we discuss the following 
four issues and present simple and effective policies, 
respectively. 
 

1) How to select a victim block? 
2) How to classify hot/cold pages? 
3) How to manage the free blocks? 
4) When or how often perform the garbage collection? 

 
First, for victim block selection, we develop a simple 

model that evaluates each block by using the number of valid 
pages and erase count. Once a victim block is selected, all 
valid pages in the victim block should be copied into a free 
block. To improve the efficiency and longevity, we classify 
the valid pages into hot and cold by considering their update 
frequency and recency. Finally, hot valid pages are copied 
into old block and cold valid pages are copied into young 
block in order to wear out all blocks evenly.  

Since other I/O commands are blocked during garbage 
collection, the spatial and temporal overhead of garbage 
collection should not be large. To this end, our victim block 
selection, hot/cold page classification, and free block 
management should not be complicated while improving 
both efficiency and longevity.  

Finally, the internal architecture of SSDs can be used for 
garbage collection design. In SSDs with SATA interface, I/O 
commands from a host are queued in NCQ. Therefore, we 
can estimate the burstness of write workload by observing the 
status of NCQ. If NCQ is empty, we can perform garbage 
collection actively, if NCQ has many I/O commands, garbage 
collection is conservatively performed.  
 We implemented our garbage collection scheme on 
OpenSSD platform [2]. Through extensive experiments, we 
show that our scheme shows a good performance in terms of 
efficiency and longevity. In Section II, related works on 
garbage collection and the internal architecture of SSDs are 
presented. In Section III and IV, the proposed garbage 
collection scheme and experimental results are presented, 
respectively. Finally, we make a concluding remark in 
Section V. 
 

II. RELATED WORKS AND BACKGROUND 

A. The Existing Garbage Collection Schemes 
When the free space is not enough in NAND flash memory, 
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garbage collection is performed. The garbage collection first 
selects a victim block, copies valid pages in the block into a 
free block, and finally erases the victim block. In order to 
provide the efficiency, it is effective to select a block with 
many invalid pages as victim. That is because, as many 
invalid pages exist in victim block, more free space can be 
obtained by erasing the block. In addition, the operation time 
for garbage collection is reduced because a relatively small 
number of valid pages are just copied. Therefore, the number 
of invalid pages should be necessarily considered for high 
efficiency of garbage collection. On the other hand, the erase 
count of block should be also considered for victim selection. 
If a block with high erase count is selected as victim, it may 
affect the longevity of NAND flash memory. In conclusion, 
both longevity and efficiency should be appropriately 
considered for victim block selection. 

Until now, many garbage collection schemes considering 
both longevity and efficiency have been proposed. Unlike the 
other schemes that will be introduced later, greedy algorithm 
only focuses on the efficiency of garbage collection [3]. 
Since it selects a block with the largest number of invalid 
pages as victim, it can be used as an indicator that provides an 
upper bound of efficiency. Cost Benefit (CB) algorithm is a 
first one that considers both efficiency and longevity [4]. It 
considers the longevity of NAND flash memory by using a 
value a, which means the elapsed time since the latest 
invalidation of a page in the block. Cost Age Time (CAT) is a 
similar approach with CB except that it uses the erase counts 
of blocks [5]. Hot/Cold Swapping (HC) technique that 
separates hot and cold data has been also proposed [6]. It 
periodically swaps the block with the largest erase count and 
the block with the smallest erase count for wear-leveling. It 
could increase the longevity of SSDs, but it has a significant 
swapping overhead. Turn-Based selection (TB) scheme has 
two phases; X and Y turn [7]. In X turn, TB selects a victim 
block using the greedy algorithm, while it selects a victim 
block according to some wear-leveling rules in Y turn. 
Static-Dynamic (SD) that employed in TrueFFS file system 
selects victims with a chain of physical flash blocks called 
Virtual Erase Unit (VEU) [8]. When garbage collection is 
needed, SD selects a VEU in a round-robin order. SD 
consists of dynamic and static phases for wear-leveling; in 
the dynamic phase, garbage collection is performed from the 
round-robin VEU queue, and in the static phase, hot-cold 
VEU swapping is performed. Dual-Pool (DP) performs data 
swapping between a young block and an old block similar to 
the Hot/Cold Swapping for wear-leveling [9]. Finally, Fast 
and endurant Garbage Collection (FeGC) has been proposed 
recently [1]. It considers the invalidated time of all invalid 
pages in a block for selecting a victim block and then 
redistributes valid pages by their update intervals. Moreover, 
FeGC manages free blocks efficiently and allocates them 
appropriately based on the characteristics of I/O workloads. 
By doing this, FeGC reduces garbage collection time and 
prolongs the lifetime of SSDs. They presented a significantly 
elaborate model for garbage collection, but the overhead is 
never low. It performs too many operations to select just one 
victim block and tries to classify all valid pages as hot or cold. 
For this reason, it may incur too large spatial and temporal 
overhead in large capacity of NAND flash memory based 

SSDs. As a matter of fact, our work has been started from this 
FeGC. We tried to minimize the temporal and spatial 
overheads of FeGC while providing a good efficiency and 
extending the longevity of SSDs.  

B. SSD Architecture 
In addition to the traditional considerations such as 

efficiency and longevity, we consider the architecture of 
SSDs for garbage collection design. To understand our 
approach that will be described later, it is necessary to 
carefully observe the internal architecture of SSDs. Fig. 1 
shows an internal architecture of SSDs [2], [10]. 

 

 
Fig. 1. An architecture of the SSDs. 

 
The SSD can be largely divided into three layers. In the 

HIL (Host Interface Layer), I/O commands come from the 
host are queued in NCQ (Native Command Queuing). Once 
servicing a previous I/O command is completely finished, I/O 
command at the head of NCQ is dispatched. Finally, it is 
served from NAND flash memories via FTL (Flash 
Translation Layer). The main role of the FTL is to translate 
logical addresses to physical addresses. In addition, garbage 
collection, bad block management, and wear-leveling are 
performed in FTL. In this work, we focus on garbage 
collection in FTL, and make use of I/O commands 
information in NCQ for garbage collection design. 

 

III. THE PROPOSED GARBAGE COLLECTION 
In this section, we describe a new garbage collection 

scheme that considers the internal architecture of SSDs as 
well as longevity and efficiency. It is important to note that 
each procedure for garbage collection is designed with very 
low overhead, and thus it can be implemented on real SSD 
devices. 

A. How to select a victim block? 
As above mentioned, it is very important to select a victim 

block by considering both efficiency and longevity. To select 
the most suitable victim block, we calculate an evaluation 
value for each block.  

 

ii EαVα ⋅−+⋅ )(1                    (1) 
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Fig. 2. The HC values of four pages. 

 

 
Fig. 3. The structure for free block management. 

 
The value is calculated by (1), where Vi is the number of 

valid pages of ith block, and Ei is the erase count of the ith 
block. Then, a block with smallest evaluation value is 
selected as a victim. α is a constant between 0 and 1, which 
determines how much weight is put on efficiency or 
longevity. For example, when α is 0, only longevity is 
considered, and when α is 1, only efficiency is considered. 
Namely, by adjusting α, efficiency and longevity can be 
considered with an appropriate portion. 

In order to implement this victim block selection policy, it 
is sufficient to maintain only the number of valid pages and 
the erase count for each block. Moreover, selecting a victim 
can be performed in a constant time if all blocks are 
mainlined in the evaluation value order.  

B. How to classify Hot/Cold Pages? 
To increase efficiency and longevity of garbage collection, 

we classify all valid pages into hot and cold. After the 
classification of hot/cold pages, hot pages are copied into 
young block that has low erase count, and cold pages are 
copied into old block that has high erase count. The hot/cold 
page classification can be performed based on their update 
frequency and recency. In order to consider both frequency 
and recency of page update, we develop a simple and 
effective technique as follows.  

We associate each page with a HC (Hot/Cold) value that 
indicates its hot degree by analyzing update frequency and 
recency. We also maintain a clock, which is incremented for 
every page update. Whenever an update to a page is made, 
the value of clock is added to the HC value of the page. Fig. 2 
illustrates an example that calculates the HC values of four 
pages. In this example, the HC values of page A, B, C, and D 
are 18, 12, 6, and 9, respectively.  

Now, it is trivial to determine if a specific page is hot or 
cold. If the HC value of a page is higher than average of all 
valid pages, the page can be classified as hot, otherwise, can 
be classified as cold. In Fig. 2, since average of all HC values 
is 11.25, page A and B are hot pages, and page C and D are 
cold pages, respectively. 

In order to implement this hot/cold classification policy, 
the HC values of all valid pages and only one average value 
are maintained. Since these values are calculated only when 
page is updated, the computation cost is also very low. 
During garbage collection, it is sufficient to just compare the 
HC value of each valid page and the average value.  

C. How to Manage the Free Blocks? 
As mentioned in Section I, since the erase count is limited 

in SSDs, all blocks should be controlled to evenly worn out. 
To this end, we copies hot pages into young block and cold 
pages into old block like FeGC [1]. Fig. 3 illustrates data 
structure for free block management. There are several 
shaded node lists that contain a group of free blocks with the 
same erase count. The shaded node lists are also maintained 
in a linked list in ascending order of erase count. During 
garbage collection, if hot valid pages should be copied back, 
the oldest block is allocated for them. On the contrary, if cold 
valid pages should be copied back, the youngest block is 
allocated. 

The spatial overhead in the free block management is not 
large. In the worst case, namely, all free blocks have their 
own different erase counts, this scheme needs (2 * the 
number of free blocks) nodes. However, the situation does 
rarely happen because the wear-leveling is considered in both 
victim block selection and hot/cold page classification. Since 
the youngest block and oldest block can be retrieved from 
head and tail pointers, respectively, the temporal overhead 
during garbage collection is also very low.  

D. When or How Often Perform the Garbage Collection? 
In SSDs with SATA interface, I/O commands from a host 

are queued in NCQ, and an I/O command at the head of NCQ 
is handled first. If this simple observation is used for garbage 
collection design, we can solve the problem of when and how 
often garbage collection should be performed. If NCQ is 
empty, the garbage collection may be continuously 
performed until enough free space is obtained. When the free 
space is enough, if many write commands unexpectedly rush 
into SSDs from host, lots of write operations can be handled 
without performing the garbage collection for some time. For 
all that, garbage collection should not be performed 
needlessly. If a victim block has few invalid pages, the gain 
obtained by performing the garbage collection would be 
small.  

On the other hand, if there are many I/O commands in 
NCQ, it is good to delay the execution of garbage collection 
as late as possible in order to provide a fast response time for 
each I/O command. Of course, the garbage collection should 
be performed when there is no free space, even if NCQ is not 
empty.  

 

IV. EVALUATION RESULTS 
To show the effectiveness of the proposed garbage 

collection scheme, we implemented it on OpenSSD platform 
[2]. OpenSSD platform is based on the commercially 
successful controller, and it is used to develop the SSD 
firmware. We compared our garbage collection with greedy 
algorithm that selects a block with the largest invalid pages as 
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victim. In our victim block selection policy, since α 
determines how much weight is put on efficiency or 
longevity, we experimented by varying the value of α.  

To generate I/O workloads, we used the IOmeter 
benchmark tool that is an I/O subsystem measurement and 
characterization tool [11]. In our experiments, the SSD 
capacity is 6GB and 26GB of data are written to the SSD with 
a random pattern.  

 
Fig. 4. Total copy-back count of valid pages. 

 
Fig. 5. Total erase count. 

 
Fig. 6. Average time of the garbage collection 

 
TABLE I: SSDS BENCHMARK RESULTS. 

Scheme Sequential 
read 

Sequential 
write 

4K Random 
read 

4K Random 
write 

Sc
ore

α=0.1 64.57 MB/s 17.93 MB/s 10.01 MB/s 1.74 MB/s 47

α=0.3 64.56 MB/s 18.80 MB/s 10.01 MB/s 1.77 MB/s 47

α=0.5 64.57 MB/s 18.47 MB/s 10.02 MB/s 1.78 MB/s 47

α=0.7 64.54 MB/s 18.79 MB/s 10.01 MB/s 1.78 MB/s 47

α=0.9 64.53 MB/s 18.88 MB/s 10.02 MB/s 1.78 MB/s 47

Greedy 64.54 MB/s 17.61 MB/s 10.02 MB/s 1.79 MB/s 47

 
Fig. 4 and 5 shows the total copy-back count of valid pages 

and the total erase count that occurred during garbage 
collection, respectively. Since these two metrics shows the 
number of operations required during garbage collection, we 
can say that they indicate the efficiency of garbage collection. 

As can be seen, two results exhibit similar behavior. In both 
results, the greedy algorithm has the smallest counts, and our 
scheme shows a little larger counts. When α is close to 0, 
longevity are much considered than efficiency, and thus both 
copy-back count and erase count increase as the value of α 
decreases. However, even when α is 0.1, the proposed 
scheme shows just about 6% larger count than greedy 
algorithm in both results. Note that the greedy algorithm 
considers only efficiency. Therefore, we think that the 6% 
gap is never large. 

 

 
(a)=0.1 

 
(a)=0.3 

 
(a)=0.5 

 
(d)=0.7 
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(f)=0.9 

Fig. 7. Erase count distribution of all flash blocks. 

 
Fig. 8. 6.2GB burst write test. 

 
Fig. 6 shows the average time spent in the garbage 

collection. As can be seen, our scheme shows low garbage 
collection overhead as greedy algorithm. It is because our 
several policies such victim block selection, hot/cold page 
classification, and free block management has low temporal 
overhead. Through these results, we can conclude that there 
is little difference in terms of efficiency between greedy 
algorithm and our scheme. In order to confirm this fact again, 
we evaluated them with the AS-SSD benchmark tool [12]. As 
can be seen in TABLE I, there is little difference between the 
proposed scheme and greedy algorithm.  

Fig. 7 shows the erase count distribution of all blocks 
when different schemes are used. This distribution shows 
how the garbage collection schemes evenly wear out all 
blocks. As can be seen in Fig. 6 (a), when α is 0.1, the erase 
counts are almost uniformly distributed. As the value of α 
increases, the distribution of erase counts becomes spread 
out.  

Through the previous results, we could find that an 
appropriate value of α is 0.3 or 0.5 for both efficiency and 
longevity. The reason is that α does not make a large effect on 
efficiency except that α is 0.1. On the other hand, when α is 
0.3 or 0.5, the proposed scheme shows better performance in 
terms of longevity.  

Finally, we performed another experiment to see the 
effectiveness of considering the SSD’s internal architecture 
for garbage collection design. For this experiment, we made a 
simple workload that writes 6.2GB of data with a bursty 
random pattern. As can be seen in Fig. 8, our scheme shows 
lower write operation time than greedy algorithm by 66% 
when α is 0.5.  

 

 V.

 

CONCLUSION

 In this paper, we presented a new garbage collection 
scheme that can be practically used in SSDs. Our garbage 
collection scheme successfully considers both efficiency and 
longevity with low spatial and temporal overhead. In addition, 
we introduced a method that exploits the internal architecture 
of SSDs for garbage collection design. Through extensive 
experiments, we demonstrated that the proposed scheme 
exhibits good performance in terms of both efficiency and 
longevity.  
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