

Abstract—Distributed Hash Table (DHT) is a promising
approach for a distributed data management platform in a
large-scale network environment. In order to provide an
efficient query processing and resource sharing in information
discovery services, any DHT-based P2P system essentially needs
to build an efficient indexing scheme for supporting users’
desired queries (complex query, i.e., multi-dimensional and/or
range query). In this paper, multi-dimensional indexing scheme
is built by generating multi-dimensional keys. For this purpose,
k-dimensional tree (kd-tree) is proposed to be used in the
indexing scheme. This paper focuses on the performance of
kd-tree regarding to its splitting threshold value and evaluates
it by using three metrics: (1) number of empty nodes on tree (2)
number peers with data size zero, and (3) number of wrong
labels. According to the simulated results, this paper defines
that kd-tree is built at the splitting threshold value “200” and
builds a multi-dimensional indexing scheme over Chord. This
paper shows that how the proposed indexing scheme with the
usage of kd-tree supports the complex query processing over
Chord.

Index Terms—Indexing over DHT, complex query processing
over DHT, DHT-based P2P query processing

I. INTRODUCTION
DHT technique is popular in many distributed applications

including resource sharing, network monitoring services, and
event notification services. In DHTs, data items are spread
over networked computers such as Chord [1], Tapestry [2],
Pastry [3] and CAN [4]. It allows fast locating of data and can
support exact match lookup when a key is given. But it is
only a one-dimensional indexing mechanism. For an efficient
searching in information discovery service, complex query
processing is a major challenge for DHTs.

In this paper, we use kd-tree to build a multi-dimensional
index over DHT. Firstly, balanced kd-tree is built to partition
the entire resources. Secondly resources on kd-tree are
distributed among peers of overlay network. When a query is
requested, our indexing scheme produces multi-dimensional
keys for the desired query. As our indexing scheme is based
on kd-tree, we focus on the performance of kd-tree and
evaluate it to show how it can affect on the indexing scheme.

II. RELATED WORKS
 A balance data structure can balance the distribution of

resources among peers [5]. Therefore recent DHT-based
indexing systems for handling complex query by using a data
structure such tree, graph, and grid.

Manuescript received December 19, 2012; revised January 27, 2013.
The authors are with the University Computer Studies, Yangon,

Myanmar (e-mail: yyimar@gmail.co, unghteinmaw@gmail.com,
kmnweucsy@gmail.com).

Prefix Hash Tree, PHT [6] is the first indexing scheme
over DHT that is efficient for one-dimensional range query. It
proposed two algorithms for range query processing. The
first resulted in high latency because all leaves are
sequentially traversed until the query is completely solved. In
second one, query processing is done in parallel and the query
is recursively forwarded until the leaf nodes are overlapping
the query. When the requested range is small, it may lead
overloading.

To solve the overhead in PHT, DST [7] fills the internal
nodes with data to violate traversing down to leaf node. So it
stores keys in both leaf nodes and internal nodes. To process
a range query, firstly, this query is decomposed into a union
of minimum node intervals of segment tree. Finally the query
is solved by the union of keys returned from the
corresponding DST nodes. It may lead maintenance overhead
because keys are replicated over leaves and internal nodes.

DAST [8] is built for range query processing. It firstly
constructs an arbitrary segment tree and encapsulate the (key,
data) pairs with segmentIds. When processing range query, it
divides the requested query into the segments as in AST
(arbitrary segment tree). And then it retrieves the data related
with segmentIds. DAST can reduce the number of DHT
retrievals. But AOR (accuracy of range) can drop because the
union of segmentIds can also contain the irrelevant
segmentIds.

DHR-trees [9] provide range query processing structure
for P2P systems. It can achieve efficient query processing.
But it cannot handle multidimensional query with one index,
whereas it reduces the m dimensions to one dimension.

 In [10], m-LIGHT also used kd-tree to build an indexing
scheme over DHT. It proposes a new data aware splitting
strategy to distribute data on kd-tree. And then it also
proposed a new mechanism to map data from kd-tree to peer
nodes. It is high efficient in query processing but still has the
drawback of bandwidth and latency consuming.

In the above approaches, complex query is provided by a
single index which is created by replicating and combining of
all attributes and a multiple-index created by combining the
results of each attribute’s index.

III. INDEXING SYSTEM WITH KD-TREE
The architecture of the proposed index system is designed

with a three-tier model as shown in Fig. 1. The first layer is
the application layer and it is for the interactions among peers.
The second layer is the indexing layer over DHT which
mainly handles the query processes. At the third layer or
storage layer, content data such as files like mp3, video, and
application related information are stored.

At the application layer, each peer interfaces through an
application system. User can send their desired queries and
receive the results via this application interface. When a
query is requested, then the query is sent to one peer in the

Yi Yi Mar, Aung Htein Maw, and Khine Moe Nwe

Usage of Kd-Tree in DHT-Based Indexing Scheme

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

456DOI: 10.7763/IJFCC.2013.V2.205

network from this application layer. When a peer receives a
query, it starts searching the data at the indexing layer of this
peer’s side. The searching process is handled by the proposed
indexing scheme at this indexing layer. The indexing scheme
at the peer starts to search data at its local storage. If the value
is not found in the peer’s own storage, then this peer forwards
the query to other peers in the network. According to this
architecture, the search process is only handled at the
indexing layer. The searching or indexing scheme is efficient
if it is clearly desirable to find the desired data in a minimal
number of interactions with the system and the information
returned by the system should be as concise and relevant as
possible. The indexing process should also be simple and
need to handle user desired queries.

Fig.1. Three-tier architecture of proposed index system

In this paper, we focus on the indexing layer to support the

efficient searching process for complex query. DHT is very
efficient in key word search or exact match query because
keys of data are stored at the peers with the same or close IDs
in their identifier space. We use this lookup efficiency of
DHT to get efficient lookup operation for complex query
processing. Therefore we need to define keys of data to be
multi-dimensional in order to build a multi-dimensional
indexing scheme for storing and retrieving of data. The
proposed indexing scheme is described in the following parts:
(A) labeling of data to generate multi-dimensional keys (B)
distributing data to peers (C) indexing mechanism. In this
paper, the real dataset, DBLP [11] is used to test the
performance of the proposed indexing scheme.

A. Data Labeling
In this paper, data labeling is the process of generating

multi-dimensional keys for data. In most pure DHT systems,
keys of data are represented by using one dimension. In this
proposed system, keys of data are generated in the
multi-dimensional forms. In this paper, kd-tree is used to
generate multi-dimensional keys. K-d tree is a data structure
extended from binary search tree of one-dimension to
k-dimensions. It is very useful in several applications, such as
multi-dimensional and range query processing [12], [13],
geographic information systems and computer graphic
systems. Fig. 2 shows the simple construction of kd-tree by
using two dimensions namely as d1 and d2. It can be
constructed by recursively partitioning the entire dataset
evenly along each dimension in an alternative fashion. The
partitioning process will be stopped as soon as the number of
data in each tree node is no more than the predefined splitting
threshold. In this paper, this splitting threshold is defined as
TSP which is the maximum loads of each node in kd-tree. A
major drawback is that kd-tree may be highly imbalanced
[14]. An adaptive solution is to divide the data to two
subgroups with equal amounts of data [15]. So TSP essentially

needs to be considered to be an optimal value. TSP value is
defined via simulated results discussed in section V.

Fig. 2. Data partitioning on kd-tree

In this paper, labels of data are defined while building

kd-tree for the purpose of generating multi-dimensional keys
for data. As shown in Fig. 2, label of root node is “#” and the
label of branch and leaf nodes are the concatenation of its
own label (0/1) and the label of parent’s node label. The label
of left child is label of parent’s plus “0” and right child has
the label of parent’s plus “1”.

Fig. 3. Two-dimensional cell regions

In Fig. 3, leaf nodes of kd-tree are represented in the form

of rectangular cell regions. Each cell contains the related data
(records) regarding with 2D partitioning. While building
kd-tree, half points of each dimension are generated while
building kd-tree. Data are only stored in leaf nodes of kd-tree.
Data labels are keys and leaf nodes with data are values. In
this proposed system, kd-tree info with half points of
dimensions is recorded in tree info list TIF, and TIF is stored
in each peer.

B. Distributing Data to Peers
The section shows how to distribute the data from leaves of

kd –tree to peers. In this paper, the proposed indexing scheme
is built over a DHT overlay network, Chord. In order to
distribute data among peers, data keys need to be mapped
among the peers. In any P2P, data sharing needs to be
balanced. Random choice can provide balanced distribution
[16]. For this purpose, standard hash function SHA-1 [17] is
used. In this paper, peer IDs are computed by hashing the IP
address and data IDs by hashing of data keys. Then data IDs
are distributed to the peers whose IDs are closest (less than)
or equal to the peer IDs. In this paper, we consider load on
each node is balanced while each peer has the load no more
than Tpl, where Tpl is the maximum load on each peer. Tpl is
calculated by using (1), where Tr is the total amount of data in
the system and N is the total number of peers in network.

 Tpl = Tr /N (1)

C. Indexing Mechanism
In most DHTs, key of requested data is the queries itself,

i.e., file name of a file or author name of a book which is
searched. They only handle one-dimensional query. A P2P

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

457

auction network [18] for real estate frequently needs to
answer a complex query such as ‘select five available
buildings closest to the airport’. This query is
multi-dimensional range query (complex query). In this
proposed indexing mechanism at a peer is shown in Fig.4.

Fig. 4. Indexing mechanism at a peer

When a complex query is requested, a peer starts searching
process as an initiator. Before starting searching process,
multi-dimensional data keys are generated for a requested
complex query by building the local kd-tree. The local
kd-tree is built by using the half points stored at TIF. And
then the peer checks which nodes of this local kd-tree the
requested query can exist. If the peer found the nodes which
can cover the requested query, labels of these nodes are used
as keys of data for searching process. This searching process
is the same as the exact match DHT lookup operation.
Therefore our indexing scheme is as efficient as the DHTs’
efficient lookup and can also handle the complex query over
Chord while DHTs cannot handle such query.

IV. EXPERIMENTAL SETUP
The proposed indexing scheme is simulated by using Java

language. Required parameters for simulation are shown in
Table I.

TABLE I: PARAMETERS FOR SIMULATION

number of peers 1000 peers

three sizes of DBLP
dataset

-DBLP1 with 200 000 records
-DBLP2 with 500 000 records
-DBLP3 with 700 000 records

 TSP 1 to 1000
number of dimensions multi dimensions

In this simulation, the system uses peers (network size) in

the range of 1 to 1000. DBLP dataset is used as DBLP1,
DBLP2, and DBLP3. We use three different dimensions such
as 2 dimensions (2D), 3 dimensions (3D) and 4 dimensions
(4D). The reason why we use up to 4D in this paper is
according to the simulated results shown in table II and table
III. TSP value is also assigned with various values between 1
and 1000. Before the evaluating the performance of kd-tree,
this paper firstly describes the tree depths of kd-tree and
number of data keys generated from kd-tree are shown in Fig.

5 and Fig. 6.

(a) Kd- tree with 2D

(b) Kd-tree with 3D

(c) Kd-tree with 4D

Fig. 5. Leaf depths in kd-tree

(a) Kd-tree with 2D

(b) Kd-tree with 3D

(c) Kd-tree with 4D

Fig. 6. Key generation

 As shown in Fig. 5, tree depths are different when the
value of TSP varies between 1and 1000. Kd-tree is built by
using 2D, 3D, and 4D as shown in Fig.5 (a), (b), and (c). In all
these figures, tree depths are getting lower when the value of
TSP is greater. Fig.6 shows the number of data keys which
are obtained after kd-tree has been built with 2D, 3D, and 4D.
The data keys are the labels of leaf nodes in kd-tree. From the

Start

End

Complex
query

Build local
kd-tree

Generate data
keys

TIF

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

458

simulation, it can be observed that the greater the value of TSP,
the less number of data keys are generated.

V. PERFORMANCE EVALUATION OF KD-TREE
The performance of kd-tree is evaluated via simulations

with three metrics (1) number of empty nodes on kd-tree (2)
number peers with data size zero, and (3) number of wrong
labels. After partitioning data on kd-tree, a large number of
empty nodes can make it imbalance. To keep kd-tree balance,
the optimal TSP value is required to define.

(a) Kd-tree with 2D

(b) Kd-tree with 3D

(c) Kd-tree with 4D

Fig. 7. Percentage of empty nodes in kd-tree

(a) Kd-tree with 2D

(b) Kd-tree with 3D

(c) Kd-tree with 4D

Fig. 8. Percentage of peers with zero data size

As a first step, TSP is evaluated based on the number of
empty nodes on kd-tree. Fig.7 shows the percentage of
empty nodes on kd-tree using 2D, 3D, and 4D. As shown in
Fig.7 (a), the percentage of empty nodes is the least when TSP
is 200 and dataset is DBLP2. In DBLP1, 100 is the optimal
TSP value. In DBLP3, 300 is the optimal value. In Fig. 7(b),
TSP is optimal at 100 in all dataset sizes. Fig. 7(c) shows that
TSP value is stable at the value of 200. Secondly, TSP is
evaluated by showing how it can affect the load balancing
among peers. Load balancing is an important issue in P2P
system. One important point is that any indexing scheme in a
P2P system should keep load balancing among peers. While
mapping data among peers, some of peer nodes do not have
data. The higher number of peers with data size zero can
unbalance the underlying P2P network. Fig. 8 (a), (b) and (c)
show that the greater the value of TSP, the higher the
percentage of empty peer nodes. For this case, the value of
TSP is optimal at the value100.

TABLE II: # WRONG LABELS WITH 2D

TSP #Wrong
label (DBLP1)

#Wrong
label (DBLP2)

#Wrong
label (DBLP3)

100 1 3 4
200 0 1 1
300 0 1 1
400 0 1 1
500 0 0 0
600 0 0 0
700 0 0 0
800 0 0 0
900 0 0 0
1000 0 0 0

TABLE III: # WRONG LABELS WITH 3D

TSP #Wrong
label (DBLP1)

#Wrong
label (DBLP2)

#Wrong
label (DBLP3)

100 1 1 1
200 0 1 1
300 0 1 1
400 0 0 1
500 0 0 1
600 0 0 0
700 0 0 0
800 0 0 0
900 0 0 0
1000 0 0 0

Generating labels or data keys or data locations is an

important step in our indexing scheme. According to the
number of wrong labels, the performance of the proposed
indexing system can become bad. Therefore the number of
wrong labels is the most important factor in this proposed
indexing system. Table II and table III show that how TSP can
affect the generating of wrong labels while kd-tree is built
with 2 dimensions and 3 dimensions. This proposed indexing

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

459

system can generate the various numbers of wrong labels
according to the value of TSP. According to this results in TSP
value at 100 always generate wrong labels. When using
kd-tree with 4 dimensions, the indexing system does not
produce wrong labels. According the above Fig.7, Fig.8,
Table II, and table III, TSP is optimal at the value “200”.

VI. CONCLUSION
In this paper, kd-tree is proposed to use in the portion of

data management to build a multi-dimensional indexing
scheme over Chord. It can provide data with
multi-dimensional keys for the purpose of storing and
retrieving data to meet the user’s desired queries. According
to the simulated results, the proposed indexing scheme can
handle multi-dimension by a single multi-dimensional
indexing scheme by using kd-tree. This proposed indexing
scheme can be applied in large data management applications,
including file sharing, communication, and live video
streaming.

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: a scalable peer-to-peer lookup service for internet
applications,” in Proc. ACM SIGCOMM Conference, 2001.

[2] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.
Kubiatowicz, “Tapestry: a resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications, vol.
22, no. 1, January 2004.

[3] A. Rowstron and P. Druschel, “ Pastry: scalable, decentralized object
location and routing for large-scale peer-to-peer systems,” in Proc. of
the 18th IFIP/ACM International Conference on Distributed Systems
Platforms, Heideblerg, Germany, November 2001.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in Proc. on the Conference on
Applications, technologies, architectures, and protocols for computer
communications, USA, 2001.

[5] L. Lymberopoulos, S. Papavassiliou and V. Maglaris, “A novel load
balancing mechanism for P2P networking,” in Grid Nets, Lyon, France,
2007.

[6] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S. Shenker,
“Prefix hash tree: an indexing data structure over distributed hash
tables,” in Proceedings of Conference on Applications, technologies,
architectures, and protocols for computer communications, USA,
2005.

[7] C. Zhen, G. Shen, S. Li, and S. Shenker, “Distributed segment tree:
support of range query and cover query over DHT,” in Proceedings of
the 5th International Workshop on Peer-to-Peer Systems, February
2006.

[8] X. Chen and S. A. Jarvis, “Distributed arbitrary segment trees:
providing efficient range query support over public DHT services,” in
Proceeding of the 18th Annual IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications, 2007.

[9] X. Wei and K. Sezaki, “DHR-TREES: a distributed multi-dimensional
indexing structure for P2P systems,” Scalable Computing: Practice
and Experience, vol. 8, November 2007.

[10] Y. Tang, J. Xu, S. Zhou, and W. Lee, “m-LIGHT: Indexing
multi-dimensional data over DHTs,” in Proceeding of 29th IEEE
International Conference on Distributed Computing System, 2009.

[11] DBLP. [Online]. Available: http://dblp.uni-trier.de/xml

[12] F. P. Preparata and M. I. Shamos, Computational Geometry- An
Introduction, Springer-Verlag, USA.

[13] A. W. Moore, “An introductory tutorial on Kd-Trees,” Ph.D.
dissertation, University of Cambridge, 1991.

[14] S. Sarmady, “A peer-to-peer dictionary using chord DHT,” University
of Sains Malaysia, Technical Report, 2007.

[15] M. Wu, “On R-tree index structures and nearest neighbor queries,” MS
Thesis, University of Houston, December, 2006.

[16] I. Stoica, R. Morris, D. L. Nowell, D. R. Karger, M. F. Kaashoek, F.
Dabek, and H. Balarishnan, “Chord: A scalabel peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Transactions on
Networking, vol. 11, pp. 17-32, February 2003.

[17] FIPS PUBS 180-2.Secure Hash Standard. U.S. Department of
Commerce/NIST, August 1, 2002.

[18] E. Tanin, A. Harwood, and H. Samet, “A distributed quadtree index for
peer-to-peer setting,” in Proceedings of the 21st International
Conference on Data Engineering, April 5-8, 2005, Tokyo, Japan.

Yi Yi Mar received the master degree in computer
science (M.C.Sc) from University of Computer
Studies, Yangon (UCSY), Myanmar, in 2008. She is
currently working toward the PhD degree in UCSY.
Her research interests include Internet computing,
data management, peer-to-peer networks and
distributed systems.

Aung Htein Maw received the Master of Information
Science (M.I.Sc) degree from University of Computer
Studies, Yangon (UCSY), in 2001, the master degree
in Engineering Physics (Electronics) from Yangon
Technological University (YTU), Myanmar, in 2002,
and the PhD degree in Information Technology from
UCSY, in 2009. He is a lecturer and head of

department of Physics, UCSY. His research interests include wireless sensor
network, virtualization technology and distributed computing environment.
He has published technical papers in these areas, in the conference
proceedings, including the International Conerence on GeoInformation
Technology for Natural Disaster management and Rehabilitation, Bangkok,
Thailand and International Conference on Computer Application, Yangon,
Myanmar. He has been cooperated at ICTTI (Information and
Communication Training Institute) in 2009 founded by JICA and UCSY as a
network counterpart. He is also a member of operation committee of SOI
Asia in UCSY site and cooperates in e-learning courses and workshop.

Khine Moe Nwe received the Master of Information
Science (M.I.Sc) degree from University of Computer
Studies, Yangon (UCSY), Myanmar, in 1998 and the
PhD degree in Information Technology from UCSY in
2004. She is an associate professor in the department
of Software, UCSY. She has published technical
papers related with netwrok security in the proceedngs
of International Conference on Computer Application,

Yangon, Myanmar. Her research interests inclue network security, cloud
computing, OS and distributed systems.

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

460

