

Abstract—As the amount of data in the today’s storage

systems has been growing over times, the ideas to expand the
new resources are being considered to meet the system’s
requirement. Adding or removing resources will make
throughput of the current state changes. To lower cost or make
efficiency in maintaining the system’s balance, one trial by
another that serve nothing before is being replaced. B+
tree-based indexing algorithm is widely being popular for
managing data dynamically in today’s storage systems. Fast
data insertion, deletion and searching are also concerned with
the system’s performance. Those criteria are heavily dependent
on the order size and height of the tree used because it
determines how large a B+ Tree will become and how much the
system can hold data and throughput. The proposed system
modifies the traditional B+ Tree in the form power of 2-based
for data expansion and it is designed on object-based file
system.

Index Terms—B+ tree, power of 2-based clustering

I. INTRODUCTION
In modern storage systems, changes have occurred over

time as new requirements are added on demand to supply
needed capacity or bandwidth. Those file systems have been
making storage management simplified and try to hide most
of the complexities behind in order to get the systems
performance high. More importantly, distributed file system
workloads are inherently dynamic, with significant variation
in data and metadata access as active applications and data
sets change over time. Consequently, the performance of the
storage system depends on the way objects included in the
file system’s attributes which can be managed by using
appropriate method [1].

But, the higher the desired level to get, the more storage
overheads will be cost and the longer the time to maintain
data consistency. Even RAID-based storage systems get
longer time to rebuild as increases in disk capacity outpace
increases in bandwidth. These may be challenging to ensure
high reliability and scalability for large-scale storage systems
[2].

The B+ tree is easy to implement for being balanced
structure in which all path from root to the nodes are same.
Besides, the algorithm “B+ Tree” mostly used by the file
system usually has been grown by splitting nodes (internal or
leaf) in the tree and such expansion causes the tree level to be
high. This results in frequent I/O operations to be taken much
longer time throughout the whole process. Being raised more
levels, system scales logarithmically and then storage’s

Manuscript received February 1, 2013; revised March 12, 2013.
The authors are with the University of Computer Studies, Yangon,

Republic of Union of Myanmar (e-mail: ohnmaraung2008@gmail.com,
nilarthein@gmail.com)

useful capacity grows more slowly as it gets larger. Such
natures are now being facing in those systems deploying
tree-based approach for data storage, which becomes a major
problem to be solved. This has resulted from increasing B+
Tree size associated with its order. Until now, there is no
system based on B+ tree indexing structure with limited order
and height for getting performance better. The more new
resources are required to be added, the more complicated the
workload for exercising equally or greater in proportion to
the number of I/O events directed toward the contents of each
targeted file to be found.

The proposed system stores files as objects in the form of
B+ tree. In contrast with traditional tree, the order of the tree
will grow based on power of 2-based expansion as the system
needs. Contrary from those having unknown order and height
approaches, the system can scale well over whenever
resource demands and takes no longer than those found in
nature from theoretical point of view. And it also can
promises to the complexity not being higher than usual.

Section II describes about some related work in the current
storage systems. The theoretical background used in the
proposed system is explained in Section III. The overview of
the proposed system is described in Section IV. The
discussion of the proposed system is concluded in Section V.
[1], [2]

II. RELATED WORK
Due to continual surveys, modern storage designs have

been moved to OSD approach (Object-based Storage
Devices). The concept is to access files in the form of objects
in which both data and metadata are encapsulated which
makes storage system simple as well as management feasible.

Hadoop is one of the most popular file systems intended
for providing only one name-node which has to store the
entire file system namespace in main memory. Having single
name-node creates a single point of failure and a potential
performance bottleneck for workloads which require multiple
operations of huge amount of metadata [1].

Ceph, a scalable distributed object-based file system,
emphasis on their object’s replication under scalable hashing
using three fundamental features: decoupled data and
metadata, dynamic metadata sub-tree partition and automatic
distributed object store. The system has gained both of
scalable and replication to the certain level in which
rebalancing the system state is achieved via CRUSH
(Controlled Replication under Scalable Hashing).
Recovering the system state depends on the weight of the
underlying nodes. The higher the applied storage tree level
reaches, the longer the time to be completed [1].

Cluster file systems such as Lustre, Gluster, relies on the

A Framework for Power of 2 Based Scalable Data Storage
in Object-Based File System

Ohnmar Aung and Nilar Thein

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

510DOI: 10.7763/IJFCC.2013.V2.216

powerful, dedicated metadata servers for conducting all file
metadata operations, leading to a hierarchical structure that
scales well only in combination with high-speed, low-latency
and symmetric network links [3].

One distributed network file system like Wofs that splits a
file into many small objects, stores these objects in remote
file servers, and uses a special B+ tree to manage the
metadata of these objects. Besides, it uses the object-range
locking policy to avoid data incoherence and improve
performance [4].

Consider to limiting the order and height of B+ Tree
becomes critical issue for system performance. The proposed
system deeply takes into account “the order and height” of
the tree for resource expansion and it also reduce unnecessary
spaces whenever the system expands. Besides, the system
can promise the complexity due to frequent insertion and
deletion not being higher than original B+ tree. [1], [3], [4]

III. BACKGROUND THEORY

A. Storage Managements
The tasks involved in the traditional storage management

systems partition available storage space into LUNs (i.e.,
logical units that are one or more disks or a subset of a RAID
array), assign LUN ownership to different hosts, configure
RAID parameters, create file systems or databases on LUNs,
and connect clients to the correct server for their storage. This
can be a labor-intensive scenario. Seeking to provide a
simplified model for managing spaces is one of the major
research issues in today’s storage system [5].

Object-based Storage Device (OSD) is the most popular
trend which can provide the file sharing capability needed for
scientific and technical applications while delivering the
performance and scalability needed to make the Linux cluster
architecture effective. The unique design of the OSD differs
substantially from standard storage devices such as Fibre
Channel (FC) or Integrated Drive Electronics (IDE), with
their traditional block-based interface. This is accomplished
by moving low-level storage functions into the storage device
and accessing the device through a standard object interface
[6].

B. Tree-based Data Storage
Many tree-based algorithms are used to store data;

however, they cannot handle the entire tree status of
balancing after some operations like insertion and deletion.
Those might store for fast efficient insertion well, but bad
ending in deletion. Consequently, maintaining system’s
balance after deletion becomes a major problem in today’s
tree-based storage area.

Other balanced trees such as AVL trees and Red-Black
Trees use the height of the sub-trees for balancing whereas
WBT (Weighted Balanced Trees) is based on the size of the
sub-trees below each node. RUSH is designed to make
distributed storage by decentralized approach where the
algorithm works as mapping replicated objects to a scalable
collection of storage or disk. Yet, as changes occur which
make the storage deeper and the round trip time to up and
down across the tree depth cause complexity problem. In

addition, where to place data in the tree makes time
consumption which appears a problem that needs to be
tackled [7]. [5], [6], [7]

IV. OVERVIEW OF THE PROPOSED SYSTEM
In this section, we briefly discuss about the workflow of

the proposed system. Firstly, the input data must be grouped
into specific clusters according to its weight. Then, those
objects are dynamically placed using the algorithm within
their clusters.

A. Objects
Early storage systems are based on block units which later

overhead quickly mounts up since metadata server has to
manage each individual blocks and also have limited
intelligence. Again, storage trend moves data to be striped as
files across multiple file servers. This requires that each of the
file servers still act as both metadata and data storage for the
files. A problem comes with metadata bottleneck resulting
from scaling up the systems or if security is important.

Being found difficulties treating with both of files and
blocks, a new approach is adopted in which files are broken
into smaller chunks called objects identified by unique
numbers rather than traditional path names. This simplifies
and speeds accessing the objects. The proposed system is
designed to store files as objects and allow the storage
systems to scale performance and capacity in the same
manner as compute clusters [8].

B. Weight-Based Allocation
Frequent data insertion and deletion can make the system

different from the current state and it also requires the system
to be load balance. Since B+ tree is self-balanced structure,
which is suitable to weight-based object allocation for the
proposed system. Accessing the object is only to use the
object id which is calculated based on particular weights and
locates where to place in the tree.

All objects IDs in the system are organized by a B+ tree.
The object index is derived from the calculation of its weight.
Therefore, a single attribute < object id> is supported as an
index which points to the actual location of the object in the
cluster.

 Since B+ tree consists of two types of nodes: internal
nodes and leaf nodes. Internal points to other nodes in the tree
whereas the leaf node stores the actual address of the object
and internal nodes points to the index of the child nodes
which are allocated by their weight. The placement of the leaf
node points to actual data using data pointers. In addition, the
leaf node also contains an additional pointer, called the
sibling pointer, which is used to improve the efficiency of
certain types of search [9].

Let consider, there may be any number of objects with
varied size to be placed. The input sequence may be like that:
28, 50, 12, 45, 24, 60, 58 and 30 in KB. The algorithm starts
as a single leaf node, L1, which is empty and hence, the key
value 28 must be placed in leaf node L1. Again, search for the
location where key value 50 is expected to be found. This is
in leaf node L1. There is room in L1 so insert the new key.

Searching for where the key value 12 should appear also
results in L1 but L1 is now full. By algorithm, there must be a

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

511

m
sp
of
th

th
rig
in

on

up
of
ba
is
lin
m

D

B+
th
in
re

tra

maximum of tw
plit into two n
f the keys and
he keys.

However, it
hese nodes and
ghtmost key fr

n the first sub-

Input

C. Scaling L
Scaling stora

n the surface s

Traditional B
p. The perform
f the tree. The
ased on the de

designed to
nearly depend

maintain the co

D. Proposed
As for data i

+ tree can take
he tree gets lon
ncreased. No o
esult in delayin

In afford to r
aversing; the

wo keys in eac
nodes. The firs
d second node

requires a ne
d so, creates a
from node L1.
cluster is illus

t Sequence (KB):
Fig. 1. Object

Linearly with P
age linearly se
since it is so e

Fig

B+ algorithm e
mance of the al

systems whic
epth. Contrary
 scale by m
ding upon th

omplexity at co

d B+ Tree
insertion in th
e at least two s
nger and long
one can tell h
ng access time
educe the load
proposed sys

ch leaf node an
st node will co
e will contain

w root node t
new root nod
A complete al

strated in Fig.

 28, 50, 12, 45, 2
allocation in B+

Power of 2-Ba
eems somewha
easy to simply

g. 2. (a) Object all

expands tree b
lgorithm depe

ch used B+ tre
y from this, th

making fixed
he order of t
onstant level.

he existing me
steps (levels)

ger as the num
how large the
e.
d traffic result
stem makes li

nd thus, L1 mu
ontain the firs
the second h

to point to ea
de and promote
llocation of ob
1. [8], [9]

24, 60, 58, 30
Tree

ased Scheme
at counter-intu
y purchase an

location in traditi

by making one
ends upon the d
e can scale lin

he proposed sy
height and g

the tree. This
[10][11]

edia, the tradit
for initial and

mber of stored
tree depth and

ting from large
ttle changes t

ust be
st half
alf of

ach of
es the
bjects

uitive
nother

set o
Capa
those
perip
scale
num

Th
capa
inter
node
so th
to ha
B+ tr
betw
Leaf
num
the s
one n

onal B+ tree, (b)

e level
depth

nearly
ystem
grows
s can

tional
then,

d item
d can

e data
to the

origi
of th
be ne
near
objec
seco
view
whet
is on
new
Afte
incre
contr
avail
frequ
expe
again

of disks to d
acity expansio
e disks for sca
pherals like C
e to support

mber of clients
he order, or br
acity of nodes
rnal nodes in th
e, referred to h
hat ┌ b/2 ┐ ≤ m
ave as few as t
ree is 7, each i

ween 4 and 7 ch
f nodes have n

mber of keys m
situation wher
node, which i

Object allocation

inal tree to be
he proposed sy
eeded to know
est value to th
ct into accoun
nd step of the

w. The bucke
ther it is full o

nly placed. Oth
leaf’s smalle

r passing two
easing order
ribution of th
lable and rem
uent data inse
erienced in the
n and creates n

double the siz
on requires th
aling as well. T
CPU capacity

the added d
accessing tho
ranching facto
s (i.e. the nu
he tree. The a
here as m, is c

m ≤ b. The root
two children.
internal node (
hildren; the ro
no children, b

must be at leas
e a B+ tree is
s a leaf node [

n in proposed B+

e getting bette
ystem are arra
w which object
he new object
nt for searchin
 algorithm is n
t found in th
r not. If the co
herwise, bucke
est key is add
o steps, the ne

of the pare
e proposed sy
moving unne
ertion and se
e former B+ T
new keys and

ze of availab
he existing sy
There must be
as well as fi

data and mee
ose disks.
or b of a B+ tr
umber of child
ctual number
constrained fo
t is an excepti
For example,
(except for the

oot may have b
but are constra
st └ b/2┘ and a
nearly empty,
[11].

+ tree

er performanc
anged by their
t in the presen
to place. Step

ng nearest nei
not different f
he previous s
ondition is “ok
et separation i
dressed into t
ext one is only
ent node whi
ystem for achi
ecessary netw
arching time.

Tree, parent no
cause the tree

le storage [1
ystem to man
e enough syste
file system mu
et the increas

ree measures t
dren nodes) f
of children fo

or internal nod
ion: it is allow
if the order o

e root) may ha
between 2 and
ained so that t
at most b − 1.
, it only contai

ce. Since obje
r weight, it mu
nt system has t
p 1 is taken ne
ighborhood. T
from the origin
step is check
k” (not full), da
is performed a
the parent nod
y considered f
ich is a maj
ieving high da

work traffic f
. In those cas
odes is also sp
e level high. Th

0].
nge
em
ust
sed

the
for

or a
des

wed
of a
ave
d 7.
the
In

ins

cts
ust
the
ew

The
nal
ked
ata

and
de.
for
jor
ata
for
ses
plit
his

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

512

can be searching time further and further in parallel with the
node number increased. The proposed B+ Tree simplifies it
by only raising the tree order according to power of 2-based
form. Having increased the order by 2 power, much more
parent nodes as well as child nodes can be handled and also
the time complexity remains stable.

E. Resource Expansion with Proposed B+ Tree
Beginning from the base 2 of the order (b), there must be at

most one search key value (b-1) and two child pointer
(b<=n<=b) for each internal node as well as the root node.
When new objects are requested to be stored, the tree requires
expanding. However, node allocation starting from 21 is too
short to be explained and thus, it will be more clear in the
example with 22 of the order value.

 Therefore, it raised the order by power of 2-based form
and now, the order value becomes 22 (b=4) and the number of
children grows up to 4 whereas 3 for search key value in each
internal node.

 As shown in Fig 2(a), input sequences (i=1 to 31 times for
example) comes 20, 29, 21... Etc at random and they are
stored in the tree by ordering of their weights. When input
count reaches to the certain value (e.g i=3, 14 and 31) that
exceeds the level or number of children restricted for each
node to handle, the next data insertion will cause splitting the
existing node and creates one level up by forming new root.
Traditional B+ tree is kept self-balancing (all path from the
root to the leaf is same) rising the depth of the tree. This last
longer searching time and access time for both of next
insertion and deletion data will suffer from it. Node may be
between b/2 and at most b like in the usual B+ tree. As for
high, there must be at most 2 for the whole tree and no level
improvement is allowed. Only the value of the order can be
promoted up to power of 2-based for resource expansion. The
reason for this is the following: In ordinary B+ tree model, if
b is threshold for each node to have, then adding new record
which exceeds the specified threshold makes node splitting in
two conditions, either of parents or child node. Regular
splitting of those two nodes is explained in Section 3.2.
Instead of splitting parent node, increasing the order size can
be the level of complexity constant and no high is raised. For
input count i=31, depth of the tree becomes upper one level.

F. Sub-Cluster Selection and Weighting
Whenever new servers or resources are required in the

systems, the capacity or throughput of the servers will be
different from that of the existing servers. To make fast data
lookup and reorganization in large distributed storage
systems, they must allow the received nodes to reweight. In
the proposed system, the users are allowed to insert data of
any size as well as to delete. Objects in the same cluster
should be related to each other. Suppose there may be objects
o1, o2…..to on and each with varied sizes. The allocation
scheme is based on per-object weight value.

Storage clusters are assigned by object’s weights to control
the relative amount of data using the selection algorithm in
which clusters are specified like a set; C={c1,c2,….,cn} and
the integer input to the algorithm, w, is typically an object’s
weight for those objects belongs to the related or similar
weighted groups. The select<c,w> where c is the cluster
types and w means the weight of the object iterates over each
element c € C and chooses one of the sub-cluster ‘c’ suitable
for the current object to be collected. Data is placed in the

hierarchy by recursively selection nested items (sub-clusters)
in the respective sub-clusters locally. Sub-cluster
classification is done with a simple selection algorithm and
that won’t be long O(log n) for the worst case. This results in
fast data insertion and deletion for a large storage system as
shown in Fig 2.

G. Assigning Object ID
Having carried two attributes <c,w> across the tree, it can

calculate the current object id in which OID= h(w) mod n for
fast data deletion and retrieval. It first decides in which
sub-cluster an object has to be placed by weighting the
object’s size. If one of the sub-cluster suited for the object to
be grouped is found, it started to find the position in the tree.

Since placing data in the B+ tree begins from the root, it
compares its weight and the current root’s weight. Based on
the situation of either less than or greater than the current size,
it descends down the tree until the node reaches the leaf.
Once it is settled in the tree, the object id is computed.

H. Theoretical Complexities
Fig 3 shows the average time complexity for basic I/O

operations like insertion, deletion and retrieving objects
within a tree over ordinary variable depth versus the proposed
fixed two level hierarchies. B+ tree performance is
logarithmic with respect to the number of height. The vertical
line represents the value of complexity whereas level, B+ tree
scale as O (logb n)- linearly with the hierarchy depth. When
and where fixed level is defined, there is a slight performance
advantage over normal range. The total time complexity of
the tree takes O (logb n) in general for b (order) of the tree
with h (level) index. When increasing height, the depth
becomes longer and it is taken time complexity more
complicated.

Fig. 3. Complexities comparison of traditional B+ tree and proposed

approach
TABLE I: THE ARRANGEMENT OF CHANNELS PROPOSED B+ TREE BASED

DATA INSERTION ALGORITHM

0

10

20

30

40 Variable
Order with
Fixed
Height

Variable
Order with
Variable
Height

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

513

The upper line that rose exponentially shows the results of
value settings at variable order (increasing with power of
2-based form: b=21, 22, 23,…,2n) with variable height (one
level increases whenever there is node splitting occurred)
and it is shown that the algorithm complexity becomes higher
and higher as the level increases. Different from those, the
lower line remained stable proves that variable order (based
on power of 2) with fixed height (up most two level hierarchy)
can maintain the complexity constant. Whatever the order
value changes, the proposed system complexity remain
steady by handling with fixed height.

V. CONCLUSION
The Object Storage Architecture provides a

single-system-image file system with the traditional sharing
and management features of NAS systems and improves on
the resource consolidation and scalable performance of SAN
systems. Conventional distributed file systems has been
seeking ways of reducing bottlenecks during accessing to the
storage server. Managing the underlying storage system
efficiently is a major research issue in modern storage areas.
The proposed system overcomes these barriers by limiting
the order and height of the B+ tree for data expansion. And
object allocation is weighted by their sizes and this can match
with the nature of B+ tree. The proposed approach can
perform better than traditional B+ tree for efficient data
insertion and deletion. It is shown that the modified B+ tree
data storage hierarchy can maintain total time complexity of
the algorithm stable.

REFERENCES
[1] E. M. Estolano, C. Maltzahn, A. Khurana, A. Nelson, S. Brandt, and

S. Weil, “Ceph as a Scalable Alternative to the Hadoop Distributed File
System,” vol. 35, no. 4, August 2 010, pp. 38-49.

[2] E. L Miller, Q. Xin T. J. E. Schwarz, and S. J, “Evaluation of
Distributed Recovery in Large-Scale Storage Systems,” Computer
Engineering Dept. Santa Clara University and Storage Systems
Research Center, University of California, Santa Cruz, 2004.

[3] G. Parissis and T. Apostolopoulos, “A distributed hash table-based
approach for providing a file system neutral, robust and resilient
storage infrastructure,” Research Project, Department of Informatics,
Athens, Greece, 2009.

[4] W. C. Chia and H. Yarsun, “Wofs: A Distributed Network File System
Supporting Fast Data Insertion and Truncation,” presented at
International Workshop on Storage Network Architecture and Parallel
I/Os, 2010.

[5] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J.
Zelenka, and B. Zhou, "Scalable Performance of the Panasas Parallel
File System," in Proc. 6th USENIX Conference on File and Storage
Technologies (FAST'08), San Jose, California, February 26-29, 2008.

[6] Panasa White Paper: Object Storage Architecture. [Online]. Available:
http://www.panasas.com

[7] E. L. Miller and R. J. Honicky., “RUSH: Balanced Decentralized
Distribution for Replication Data in Scalable Storage Clusters,”
Storage Systems Research Center, Jack Baskin School of Engineering,
University of California, Santa Cruz ,2004.

[8] R. Harris. Parallel NFS: Finally. NFS Optimized for Clusters. [Online].
Available: www.datamobilitygroup.com.

[9] B+-TREE. [Online]. Available:
http://www.mec.ac.in/resources/notes/notes/ds/bplus.htm

[10] Gluser White Paper: Gluster File System Architecture. [Online].
Available: www.gluster.com

[11] Wikipedia. [Online]. Available: http://www.wikipedia.bplus.html

Ohnmar Aung is now making research related with
object-based file system. She is also a phd student as
well as a staff of Republic of Union of Myanmar. She
got Master of Computer Science in 2009 from
University of Computer Studies, Yangon, Myanmar.

International Journal of Future Computer and Communication, Vol. 2, No. 5, October 2013

514

