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III. PROBLEM SOLUTION 
A system which has an efficient feature extraction caliber, 

a well-organized processor, a versatile, resourceful classifier 
and a competent architecture which facilitates optimization 
of the objective function and takes into consideration factors 
applicable to the patient will be able to provide adequate 
intuition to the medical practitioners and thus deal with the 
challenges that impede the seizure’s prediction and its 
prevention. 

 

 
Fig. 2. Deployment diagram of CBESM-Neuro-Nimbuzz 

 
Fig. 3. Component diagram of CBESM-Neuro-Nimbuzz 

 
The Deployment Diagram [1] as shown in Fig. 2 

comprises:  
1) Brain Computer Interface: A brain–computer interface 

[5] is a communication system that does not depend on 
the brain’s normal output pathways of peripheral nerves 
and muscles. It instead conducts operations on the basis 
of interaction between the patient’s brain and the system 
itself. The patient’s brain is responsible for providing 
conclusive data on the activity particulars of the patient 
which is duly measured by the BCI system while the BCI 
system is responsible for the translation of these activity 
particulars into readable commands. The input is 

recorded by the Electrode Array in the form of an EEG 
Recording and a translation algorithm gets invoked 
which works on this data. The Data Transmitter transfers 
this EEG Recording from the Client side to the Cloud 
environment.  

2) Seizure Prediction Environment: The proposed Seizure 
Predictor is an executable environment which will be 
deployed by utilization of a Cloud driven Architectural 
Model.  

3) Preventive device:  The Prevention Techniques proposed 
will employ an envisioning concept wherein the 
proposed medication will take into account the 
stimulation parameters which are specific to the patient, 
the medical history of the patient and the so far preferred 
treatment plan for the patient. The model also takes into 
consideration recommendations made by the medical 
practitioner.  

 
The Component Diagram [1] as represented in Fig. 3 

consists of the Client and the Cloud components. The Client 
contains the Brain Computer Interface-which provides the 
input feed to the Cloud component and the Actuator 
Component- which provides the patient with appropriate 
medication as recommended by the Cloud component while 
also notifying the medical practitioner by means of an alarm 
trigger. The Cloud Component contains the Data 
Preprocessor- which will scale the data so that the features of 
multiple EEG records will be normalized for better 
computation analysis and performance efficiency, the 
Classifier [6]- which will utilize an ensemble to create a 
compact state representation for epileptic patients  boosting 
concurrency and reducing conflict relations and an Epileptic 
Seizure Predictor-which will suggest the optimal preferential 
treatment for the patient exact to the patient’s history 
providing customizability and flexibility to the system. 

The three classes which form part of the Cloud component 
are the Data PreProcessor (Fig.  4), (Fig. 5) the Classifier (Fig. 
6) and the Epileptic Seizure Predictor (Fig. 6).   

 

 
Fig. 4. Entity diagram of data PreProcessor system 

 
The Data PreProcessor will serve to normalize [6] the EEG 
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data samples to a prefixed scale. The DataNormalizer() 
suitably modifies the statistical features which characterize 
every EEG record so that further understanding of this data is 
unhindered by gross influences- implying that every EEG 
record will be influenced to a similar degree when we revise 
the objective function. The FeatureExtractor() [6] will make 
use of pertinent information from the EEG Sample 
by accurately determining feature intensities and feature 
ratios, flagging outliers and calculating statistical 
confidences. The FeatureAggregator() [6] will then extort 
data from the EEG record while taking into consideration the 
patient’s specifics and compile the list of features which 
would be most relevant to the patient’s condition.  

The Classifier Class consists of an Ensemble [6] and a 
Recommender System [7].  

 
Fig. 5. Entity diagram of seizure prediction system 

 

 
Fig. 6. Entity diagram of classifier 

A. Ensemble 
The Ensemble will train several models from the samples 

of the PatientEEGHistory dataset and combine the output 
predictions by aggregation of the output values for the seizure 
prediction problem. We will be training the Ensemble by 
making use of Boosting [6] which is an iterative process of 
adding more weights to the cases which have been classified 
incorrectly by the Classifier. This is followed by combining 
all the models generated during the process. The results 

obtained after Boosting are then used to produce significant 
model variations, improve model accuracies and reduce 
model variance in the Ensemble.  In Neuro-Nimbuzz we 
propose the utilization of Support Vector Machines [6], 
Naïve Bayes Algorithm [6] and Convolutional Neural 
Networks [8] in the Ensemble. 

Assume L training points, where each input xi has D 
attributes (i.e. is of dimensionality D) and is in one of two 
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catheters are linked to the affected sites in the brain. The 
Targeted Drug Delivery technique will feed seizure-halting 
medications directly to the specific areas of the brain tissue 
whenever need be. Since 2/3rds of epileptic patients can be 
treated by means of anti-epileptic drugs, this method is 
deemed fit for a large number of epileptic patients. This 
procedure unlike oral medication has no systemic side effects. 
In fact, this medication has been able to maintain seizure 
control in patients over months. However, this process would 
require monitoring in terms of dosage and an infusion 
schedule by a trained medical practitioner. Its application in a 
linked, responsive, autonomous system could result in 
miscalculations and risks. (Table I) 

 
TABLE I: DESCRIPTION OF FIG. 8 FOR CBESM-NEURO-NIMBUZZ 
Prevention 
Technique A B C 

Targeted Drug 
Delivery 

Affected 
Site(s) Catheters Infusion 

Pump 
Deep Brain 
Stimulation 

Affected 
Site(s) Electrode Pulse 

Generator 
Responsive 
Neurostimulation 

Seizure 
Focus Electrode Neurostimul

ator 

Focal Cooling Seizure 
Focus 

Thermo-electronic 
cooling device  Cooling Sink

B. Deep Brain Stimulation [14] 
The device contains leads, electrodes and a pulse generator 

device. The pulse generator will kindle the anterior nucleus 
of the thalamus, which helps control the electrical excitability 
of the cortex hence preventing the onset of seizures. This 
method makes it possible to provide a prospective treatment 
in case of patients where seizures have the tendency to engulf 
the entire brain. Moreover, this form of prevention permits 
the stimulation of discreet networks in very close proximity 
to the seizure generator. The provision for multiple 
implantation sites adds to the individualization of this 
technique. However, this practice carries the risk of 
hemorrhage and infection. Also, determination of the best 
site for electrode placement adds to the complexity of this 
method.  

C. Responsive Neurostimulation[15] 
The device contains leads, electrodes and a 

neurostimulator. The electrodes are placed in the brain at the 
seizure focus. The RNS will deliver electrical stimulation to 
interrupt this electrical activity from progressing thereby 
arresting the possibility of the seizure. This method provides 
a lot of versatility in its implementation. This process can be 
modified to accommodate programmable restimulations in 
cases of persistent seizure activity. The stimulation 
parameters also can be adjusted as per requirement with the 
option of combining this form of therapy with other physical 
approaches. However, the mechanical effects and the 
electrolysis near the electrodes could affect seizure frequency. 
Furthermore, determination of the best site for electrode 
placement is critical in this method.  

D. Focal Cooling [16] 
The device contains a cooling sink. This cooling sink is 

connected to the seizure focus of the patient. The Focal 
Cooling mechanism will respond by triggering impulses 
which serve to rapidly cool the stimulated region and thus 
halt the occurrence of the seizure. This method finds its utility 

especially in cases where patients have undergone or have a 
tendency to be susceptible to neuronal injury or excessive 
electrical activity in the affected sites. The potential clinical 
utility of therapeutic cooling or hypothermia for neurological 
disorders comes across as a major benefit in these situations 
as this cooling is neuroprotective. Like RNS, this technique 
too can be combined with other physical approaches. 
However, monitoring this system is tedious. Also, excessive 
focal cooling can result in tissue damage. Currently the 
systemic effect on other body organs is not entirely 
conclusive.  

 

IV. CONCLUSION 
Epilepsy is a neurological disorder which requires a high 

degree of customization due to the large extent of variation in 
every epileptic person’s condition. The design proposed 
takes into account this need for individualization by 
referencing the patient’s previous medical records and the 
preferred proposed treatments for the patient before 
assembling the favored treatments in an order of preference. 
As the model will learn continuously from the data it works 
on, it becomes essential to introduce an on-line training 
element to the design. Dynamic computations and updates 
are crucial for such a system where the performance on 
training data needs to be optimized to fullest capacity. A 
Standalone application will add to the weight of the 
application and increase overheads in terms of data storage 
and costs. Thus, deploying the application onto a Cloud 
executable environment will help incorporate several features 
which re-instate its suitability for usage. The usage of the 
Feature Extraction, Ensemble and Recommender Systems 
will serve to leverage accuracy and resourcefulness to the 
design as the model will be retrained after every simulation 
with updates being made to the sample data as per 
requirement. 

The challenges which we may face during the 
implementation of the Neuro-Nimbuzz are as follows. The 
conceptualization of the Ensemble technique may result in a 
lower performance on the testing data as opposed to the 
performance acquired on the training model. The prevention 
techniques proposed involve inherent risks as they are 
invasive and could result in an infection. Also, the prevention 
methodologies cannot be fully customized to suit the 
patient’s needs due to limitations in their design.  In the case 
of an impending seizure, monitoring the patient’s health by a 
medical professional may still be essential as these 
procedures do not function to their optimal capacity as 
autonomous devices. Finally the connections can get dropped 
due to lack of network availability for a small period of time 
such as in cases of cloud outage and we may have to extend 
the design to an offline alternative to ensure seamless 
operations.  
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