

Abstract—The main purpose of this paper is to analyze the

state of the art of search engines in e-learning platforms, and to
elaborate a new model that exploits its best suggestions to
perform an efficient and precise search. The algorithms,
architecture and system use of this model are discussed,
presenting a global vision of the search component.

Index Terms—E-learning, search engine, pre-query,
post-query, ranking metrics, search modules.

I. INTRODUCTION
In the last decade, the e-learning technology grew and

developed notably. This new way of teaching, made of online
courses and multimedia material, exploits the potential of the
Internet to supply a personalized and interactive learning, and
is placing side by side the traditional one.

The whole e-learning system is built on a platform called
Learning Management System (LMS), which is installed on a
server and manages the contents through a Learning Content
Management System (LCMS). Every elementary didactic
unit is a Learning Object (LO): text documents, multimedia
contents and audio/video streaming are examples of it. It is
the basic component that allows the student to learn.

When a LMS platform starts increasing and gaining
importance, the existence of a precise and efficient search
engine becomes necessary. The system must be able to
provide, after a user’s query, the most significant LOs about a
certain argument. This is not only a form of help to the user,
but also an interdisciplinary instrument: the search connects
contents of different subjects, making the student’s culture
richer.

This work will analyze the existing search engines in
Section II (State of the Art), and will develop the structure of
a new one, discussing its algorithms in Section III
(Methodology) and its architecture in Section IV
(Architecture). Section V (System Use) presents a global
vision of the system, and Section VI (Conclusions and Future
Work) concludes the paper.

II. STATE OF THE ART
In order to make an efficient search, several operations

must be performed. Some of them are needed to organize the
LOs, so they must be executed before the user’s query (we
can call them pre-query operations); some others carry out
the search on these LOs, and are executed after the query
(post-query operations).

We will now analyze these operations, as they have been

Manuscript received March 17, 2013; revised April 25, 2013.
Gianni Fenu is with the Computer Science at University of Cagliari, Italy

(e-mail: fenu@unica.it)

proposed by different authors, pointing out various principles
and summing up the state of the art.

The pre-query operations arrange and catalogue the LOs in
a data structure that allows an easy and quick search for them.

The first thing to do is to create semantics of the e-learning
domain. As [1] suggests, the ideal is to use a tree structure
based on the resources hierarchy: in this way, LOs will be in a
kinship. It is also possible to use the reusability [2] trees
described by [3] to register as child nodes LOs obtained
modifying others.

Once the domain semantics is created, a weight to each
object must be assigned. [3] and [4] proposed some weight
metrics based both on metadata inserted by the authors
(information about the file) and on citation of users during
the time (e.g. download frequency). Combining these values,
it is possible to compute the importance degree of a LO [5].
On the objects that are text documents, [6] and [7] suggest a
series of operations turned to extract the most significant
terms: the phases of tokenization, stop words filtration and
stemming. The n terms with the highest frequencies are
selected and added to the LOs metadata.

[1], [7] and [8] consider fundamental a clusterization of the
LOs in macro-groups. Some specific clustering algorithms
exist that measure similarities among different objects and
group them into categories.

Lastly, it is useful to trace a profile of the registered users,
noting down interests and consulted documents, so that the
sorting of the search results will be personalized. [1]
proposes to create this profile with a “Bottom-up Pruning”
algorithm, that selects the visited LOs from the e-learning
tree; [8] suggests to generate the semantics as an ontology [9].
[1] uses than these information to find a recommended
cluster for the user. Also, in [10]’s opinion, user’s
performance must be registered in the profile; in order to
supply additional material and strengthen the study program
in case it is needed.

The post-query operations have to look for the LOs that
most satisfy the query, and sort them by significance.

Before the search, [11] proposes a pre-processing of the
query similar to that one made on text documents, in order to
extract the terms and validate them in the dictionary. Also,
synonyms of the words can be implicitly added to the query
or suggested to the user [3], in order to amplify the search. [6]
Suggests weighing the keywords on their appearance order,
in order to give more importance to the firsts.

This modified query must be matched with the LOs; all the
documents that have keywords in common with it must be
selected, and then sorted by significance. This last operation
is called re-ranking [12] and, according to [3], has to be based
on different factors: similarity with the query, number of
occurrences, weight of the LO, interests in the user profile
and recommended cluster. The ordered results are finally

A Search Engine to Categorize LOs

Gianni Fenu

673

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

DOI: 10.7763/IJFCC.2013.V2.250

returned to the user that carried out the search [13].
The user’s profile must now be updated, in order to trace

an evolution of it [8]. [7] also proposes to monitor it
periodically, to detect possible shifts of interests.

Finally, in order to test the quality of the search engine, it is
possible to follow the suggestion of [3], consisting in asking
to the user some feedback about the relevance and precision
of the search.

III. METHODOLOGY
Analyzed this state of the art, we exploit now its best

suggestions to elaborate an algorithmic procedure that will
perform the search. We distinguish between the cataloguing
operations and the search of LOs.

A. Pre-Query Operation
The first step in the pre-query phase consists of

cataloguing the LOs in a ordered structure. To represent the
domain, we use a tree like that in Fig. 1.

The college is the root, so there is a tree for each different
university. Inside the college, we distinguish between
different disciplinary fields, that are composed of one or
more courses. Every course supplies didactic material, the
LOs [14]. Usually a LO is a leaf node of the tree, but it can
also have children if there are other objects obtained deriving
or modifying it.

To assign a weight to the LOs, we make use of the
following metrics:

 A just inserted object has weight 0
 The more a document is downloaded, the more it

weights
 The more time passes without a download, the more

the weight decreases
 at the same weight, a parent weighs more than its

child

The cases a and d are assigned at the beginning, whereas

the other two must be periodically updated in the platform.
So, it is necessary to establish the following weights:

 α: weight increased after a download
 β: weight decreased after the going over of a temporal

limit t
 γ: how much a parent weighs compared to its child
 t: temporal value after which a LO starts to lose

weight
Every learning document is characterized by some

keywords, terms inserted by the author as metadata [15] and
considered representative of the content.

In the case of text documents, the keywords list can be
extended adding the n most significant terms of the content.
This process is called text segmentation and it is composed of
the following phases:

 Tokenization: all the adjacent strings of
alphanumerical characters, called tokens, are
extracted from the document

 Stop words extraction: all the words that are not
significant for the document content are deleted

 Stemming: the terms are reduced to their root form

An example of application of this process is shown in Fig.
2. After it, the most recurring terms must be added to the LO
keywords.

We represent in the domain tree disciplinary fields and
courses; however, there would be a better indexing grouping
the LOs in some macro-arguments inside the courses too. We
use clusters for this.

We create them manually rather than automatically: an
expert of the disciplinary field (a professor) is able to identify
some macro-arguments in its subject better than those that
would find an algorithm based on keywords extraction.

So, once created the clusters, the LOs must be catalogued
among them. We propose an algorithm based on a
comparison between keywords, that assigns a document to
the cluster with which it finds more similarities.

Fig. 1. The domain tree

Every user that is registered in the platform has a profile

containing the list of the documents that he consulted or
downloaded and a list of weighed keywords. The purpose of
the profile is to mark the user’s interests, in order to be able to
consider them during the re-ranking of the query results [12].

Fig. 2. The process of text segmentation

The list of the user’s interests is updated with the metadata

of the consulted LOs after the search. Once created it, the
clusterization algorithm can be applied to assign a
recommended cluster to the user. During the post-query
re-ranking, the objects that belong to that cluster will weigh
more [16], and this will personalize further on the search.

If the e-learning system registers the grades in single
courses too, the student’s performance can be measured in
the profile. If these performance result inferior to the average,
it is possible to give emphasis to material considered
integrative by the professor. The functioning is described in
Fig. 3.

674

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

B. Post-Query
The phases up to now analyze organized the environment

in which to execute the searches. Now we must focus on the
real search, made on the user’s queries in the constructed
environment.

Before examining the objects, the query must be processed
in a way similar to the one applied to the text documents: the
phases of stop words elimination and stemming.

To check if the user wrote correctly the terms, the obtained
words must be validated in a dictionary. There, synonyms of
the terms can be found too, and added to the keywords of the
query: the search range will be wider.

The matching phase is simply a comparison between the
keywords extracted from the query and the keywords that
characterize every LO.

Every time that a document has got at least one
correspondence with the query, it is selected. In this way, we
get a not-ordered list of results.

Fig. 3. Operations on performances

Fig. 4. Query pre-processing

The list of results returned from the matching phase must

be ordered by relevance. This operation is called re-ranking.
We want to order considering the following metrics:
Number of similarities between the keywords of the query

and those of the object
Weight of the query keywords

Kinship among the LOs
Weight of the Los
Interests in the user profile
Belonging of the LO to the recommended cluster
Let us use the following parameters:
count_query: integer number that counts how many of the

n query words are present in the document
count_occ: number that counts the occurrences of query

words in the document, considering their weight based on the
order in the query

LO_weight: field present in every LO that shows its weight
considering kinship and number of downloads

usr_intrs: variable that indicates the percentage of
similarities among the LOs keywords and those in the user
profile

rec_cluster: variable that is equal to 1 if the LO belongs to
the recommended cluster; 0 otherwise.

Most variables can be easily calculated. About count_occ,
let us suppose that the query term has a weight w converted in
a range between 0 and 1, and that every occurrence occ of the
term in the document weighs 1. Now we perform the search
for all terms and compute count_occ as ∑ ⋅

terms
vocc)(

urs_intrs, instead, is a variable between 0 and α, where α can
be 1 or a different number depending on the importance that
one wants to give to the user profile.

Connecting all these parameters, we compute a new
weight for each object:

r)rec_cluste(γusr_inrs)(βLO_weight)(α
count_occ)ry(count_queightranking_we

⋅+⋅+⋅+
+⋅= (1)

where α, β and γ can change depending on how much weight
one wants to give to each parameter.

Once calculated the ranking weight for each LO, we use a
generic sorting algorithm to order the results from the highest
to the lowest, and the resulting list is returned.

At the end of the search, the metadata of the consulted LOs
must be added to the user profile.

To trace an evolution of it and detect possible shifts of
interest, it is possible to count in a variable the time spent
from inserting the keyword in the profile, and decrease by a
factor of α keyword weight every time that a certain time
limit is reached.

To analyze the efficiency of the search engine, it is
possible to ask for feedback from the users.

We determine two kinds of feedback:
Most significant result: the user is asked to indicate the

most significant result, and the weight of this result is
updated adding a factor of α

Quality of the result: the user is asked to give a positive or
negative opinion about the given results; in case of negative
the weight of the first n returned results is decreased by a
factor of β

Conclusions can be taken also computing the top-n recall
and top-n precision parameters, defined in the following
way:

675

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

In the end, following the suggestion of [3], we assign to the
keywords a weight w(i), where i is the position of the word
among n terms, counting from the last one: in this manner a
term will have much more emphasis the earlier it has been
inserted in the query. An example of application of the query
pre-processing is shown in Fig. 4.

entsvant documer of reletotal numb
tsts n resuln the firsocuments irelevant dnumber of n recalltop =−

 (2)

n
tsts n resuln the firsocuments irelevant dnumber of isiontop_n prec = (3)

IV. ARCHITECTURE
The LMS platform in which to execute the search is

supposed to be already implemented. It can have different
architectural styles; the most common for the e-learning
systems are repositories, the client-server architecture and the
n-tier architecture.

The chosen architecture is composed by different modules.
Their choice depends on the author of the platform, but some
of them can be found in every e-learning system: the database,
the Learning Content Management System, the LMS, the
web server and the user interface.

We implement the search engine module as a component
that belongs both to the LMS and the LCMS. It is made of
three modules, as shown in Fig. 5: the LOs cataloguing,
which is a part of the LCMS because needs to interact with
the database, the effective search engine and the user profile,
that belong to the LMS.

The cataloguing module must organize the LOs in the
database: it creates the domain tree, assigns a weight to the
objects, performs the text segmentation and the clusterization.
It should be independent and separate from the others, and it
should come into action after every alteration of the domain.

The user profile module is independent too. It contains
personal data and marks of the exams, and is connected to
several other modules of the system. The search engine
module exploits it adding interests, inserted queries and the
recommended cluster, and use them in the re-ranking phase.

In the end, the search engine module is the most important
component for the search. It processes the query and then
enters in the database (which has been ordered by the
cataloguing module) through the LCMS. The results are
ordered depending on LOs weights and contents in the user
profile, and the profile is evolved.

Fig. 5. The search engine architecture

Most of the steps of these three modules are hidden to the

user, because of the information hiding principle. The student
can consult his profile, the LOs and the result of the search,
but all the implementation details are not showed to him.

V. SYSTEM USE
Fig. 6 summarizes the steps of our article. We now make

an example of how our search engine altogether works,
showing the interactions between the different components.
We have a platform with some catalogued e-learning material,
and a list of users registered on it; each one of them has its
own profile.

Let us consider a user that writes a query in the search
engine bar, through a specific interface. Our system receives
it as a list of terms, and processes them extracting the
significant words, checking their correctness, adding
synonyms and weighting them.

The result is a set of keywords, that must be matched with
our whole e-learning system. We organized colleges, courses
and didactic material in a tree, and gave to each LO a weight,
a list of keywords and a cluster. The task of the system now is
to browse these objects and to select those that have
keywords in common with the terms processed from the
query.

These are our first, partial results. Now they must be
re-ranked, i.e. sorted in order to give more importance to the
most relevant and significant ones. Our re-ranking algorithm
is based on five parameters: similarities between the LO and
the query, weight of the object, kinship of objects, pertinence
with the user profile and belonging to the recommended
cluster.

What we get now is a ordered list of results, that is returned
to the user.

In the end, we will update the user profile and ask for
feedback that will in case re-distribute the LOs weights.

From the user’s point of view, the e-learning platform
received his query and returned to him the list of the most
relevant, related LOs.

Fig. 6. The whole search engine process

676

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

VI. CONCLUSION AND FUTURE WORKS
We have described the phases and architectures of a search

engine whose purpose is to return precise and relevant results
in e-learning systems.

The “UnitelSardegna” Consortium, in collaboration with
the University of Cagliari (Italy), is actually developing an
e-learning system that supplies online distance courses and
promotes formation activities and long life learning courses.
The existent platform will be integrated soon with the search
engine that we are creating, based on the principles discussed
in this paper. The purpose is to improve the search that in the
e-learning platforms is usually wanting in precision and
details.

The next step of our research is to implement it, in order to
analyze the quality of the results and to compare it with the
performance of other search engine systems. Future
progresses will be treated in our next articles.

REFERENCES
[1] L. Zhuhadar, O. Nasraoui, R. Wyatt, and E. Romero, “Automated

Discovery, Categorization and Retrieval of Personalized Semantically
Enriched E-learning Resources,” in Proc. IEEE International
Conference on Semantic Computing, 2009

[2] T. K. Shih, C. C. Chang, and H. W. Lin, “Reusability on Learning
Object Repository,” in Proc. of the 5th Int. Conf. on Web-based
Learning, pp. 203-214, 2006

[3] N. Y. Ten, T. K. Shih, L. R. Chao, and Q. Jin, “Ranking Metrics and
Search Guidance for Learning Object Repository,” IEEE Transactions
on Learning Technologies, 2010

[4] H.W. Lin, M. T. Tzou, T. K.Shih, C. C. Wang, and L. C. Lin, “Metadata
Wizard Design for Searchable and Reusable Repository,” in Proc. of
Int. Conf. on SCORM, 2006

[5] J. R. Hilera, S. Oton, A. Ortiz, L. D. Marcos, J. J. Martinez, J. A.
Gutierrez, J. M. Gutierrez, and R. Barchino, “Evaluating Simple Query
Interface Compliance in Public Repositories,” in Proc. of the 9th IEEE
Int. Conf. on Advanced Learning Technologies, pp. 306-310, 2009

[6] Y. Anistyasari and R. Sarno, “Weighted Ontology for Subject Search in
Learning Content Management System,” in Proc. International
Conference on Electrical Engineering and Informatics, 2011

[7] J. C. Prates and S. S. M. Siqueira, “Using educational resources to
improve the efficiency of the Web searches for additional learning

material,” in Proc. of 11th IEEE International Conference on Advanced
Learning Technologies, 2011

[8] O. Nasraoui and L. Zhuhadar, “Improving Recall and Precision of a
Personalized Semantic Search Engine for E-learning,” in Proc. of
Fourth International Conference on Digital Society, 2010

[9] M. Roya, R .Chang, and X. Qi, “Learning From Relevance Feedback
Sessions Using A K-Nearest-Neighbor-Based Semantic Repository,”
IEEE Int. Conf. on Multimedia and Expo, pp. 1994-1997, 2007

[10] D. Celik, A. Elci, and E. Elverici, “Finding Suitable Course Material
through a Semantic Search Agent for Learning Management Systems
of Distance Education,” in Proc. of 35th IEEE Annual Computer
Software and Applications Conference Workshops, 2011

[11] A. N. Segura, M. M. Prieto, and C. C. Vidal, “Query Expansion based
on Domain Ontology for Learning Objects Search,” 2010

[12] X. Ochoa and E. Duval,; “Relevance Ranking Metrics for Learning
Object,” IEEE Tran. on Learning Technologies, vol. 1, no. 1, 2008

[13] V. Raykar, R. Duraiswami, and B. Krishnapuram, “A Fast Algorithm
for Learning Large Scale Preference Relations,” in Proc. 11th Int’l
Conf. Artificial Intelligence and Statistics (AISTATS ’07), vol. 2, pp.
388-395, 2007

[14] A. E. Saddik, S. Fischer, and R. Steinmetz, “Reusable Multimedia
Content in Web-Based Learning Systems,” IEEE Multimedia, vol. 8,
no. 3, pp. 30-38, 2001

[15] M. Kastner and G. Furtmüller, “Operationalization of the Metadata
Element “Difficulty”,” in Proc. of the 7th IEEE Int. Conf. on Advanced
Learning Technologies, pp. 608-612, 2007

[16] N. Y. Yen and L. R. Chao, “Re-Ranking Mechanism for Learning
Resources,” in Proc. Int. Conf. on Hybrid Learning, 2009

 was born in Cagliari, Italy on December,
9 1960. He received the Dr. Ing. degree in engineering
(cum laude) in 1985 from University of Cagliari, Italy.
Currently is an Associate Professor of Computer
Science at University of Cagliari (Italy), Director of
UnitelSardegna Consortium and Head of the degree
course of Computer Science at University of Cagliari.
He is Coordinator of National and European
Development Projects. He has research interests
actually in the area of Computer Network, Cloud

Computing and E-learning.
Prof. Fenu has authored about 80 scientific articles in national and

international conferences and journals.

677

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

Gianni Fenu

