
  

  
Abstract—Frequency analysis plays vital role in the 

applications like cryptanalysis, steganalysis, system 
identification, controller tuning, speech recognition, noise filters, 
etc. Discrete Fourier Transform (DFT) is a principal 
mathematical method for the frequency analysis. The way of 
splitting the DFT gives out various fast algorithms. In this paper, 
we present the implementation of two fast algorithms for the 
DFT for evaluating their performance. One of them is the 
popular radix-2 Cooley-Tukey fast Fourier transform 
algorithm (FFT) [1] and the other one is the Grigoryan FFT 
based on the splitting by the paired transform [2]. We evaluate 
the performance of these algorithms by implementing them on 
the TMS320C62x DSP and also on the Virtex-II pro FPGAs. 
Finally we show that the paired-transform based algorithm of 
the FFT is faster than the radix-2 FFT, consequently it is useful 
for higher sampling rates. 
 

Index Terms—Frequency analysis, fast algorithms, DFT, 
FFT, paired transforms. 
 

I. INTRODUCTION 
In the past decade, fast orthogonal transforms have been 

widely used in areas of data compression, pattern recognition 
and image reconstruction, interpolation, linear filtering, and 
spectral analysis. The suitability of unitary transforms in each 
of the above applications depends on the properties of their 
basis functions as well as on the existence of fast algorithms, 
including parallel ones. Since the introduction of the Fast 
Fourier Transform (FFT), Fourier analysis has become one of 
the most frequently used tool in signal/image processing and 
communication systems; The main problem when calculating 
the transform relates to construction of the decomposition, 
namely, the transition to the short DFT’s with minimal 
computational complexity [5]. The computation of unitary 
transforms is complicated and time consuming process. Since 
the decomposition of the DFT is not unique, it is natural to 
ask how to manage splittings and how to obtain the fastest 
algorithm of the DFT. The difference between the lower 
bound of arithmetical operations and the complexity of fast 
transform algorithms shows that it is possible to obtain FFT 
algorithms of various speed [2]. One approach is to design 
efficient manageable split algorithms. Indeed, many 
algorithms make different assumptions about the transform 
length. The signal/image processing related to engineering 
research becomes increasingly dependent on the 
development and implementation of the algorithms of 
orthogonal or non-orthogonal transforms and convolution 
operations in modern computer systems [5]. The increasing 
importance of processing large vectors and parallel 
computing in many scientific and engineering applications 
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require new ideas for designing super-efficient algorithms of 
the transforms and their implementations [2].  

In this paper we present the implementation techniques 
and their results for two different fast DFT algorithms. The 
difference between the algorithm developments lies in the 
way the two algorithms use the splitting of the DFT. The two 
fast algorithms considered are radix-2 and paired transform 
[2] algorithms. The implementation of the algorithms is done 
both on the TMS320C62x digital signal processor and also 
on the Xilinx Viretx-II FPGAs.  The performance of the two 
algorithms is compared in terms of their sampling rates and 
also in terms of their hardware resource utilization.  

Section II presents the paired transform decomposition 
used in paired transform in the development of Grigoryan 
FFT. Section III presents the implementation techniques for 
the radix-2 and paired transform algorithms on FPGAs. 
Section IV presents the results. Finally with the Section V we 
conclude the work and put forward some suggestions for 
further sampling rate improvements. 

 

II. DECOMPOSITION ALGORITHM OF THE FAST DFT USING 
PAIRED TRANSFORM 

In this algorithm the decomposition of the DFT is done by 
using the paired transform [2]. Let { )(nx }, n = 0:(N-1) be 
an input signal, N>1. Then the DFT of the input sequence 

)(nx  is  
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which is in matrix form 
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Which shows the applying transform is decomposed into 
short transforms NiF , i = 1: k. Let FS  be the domain of the 

transform F  the set of sequences f over which F  is defined. 
Let (D;σ ) be a class of unitary transforms revealed by a 
partition σ . For any transform ∈F  (D; σ ), the 
computation is performed by using paired transform in this 
particular algorithm. To denote this type of transform, we 
introduce “paired functions [2].” 

Let ∈tp,  period N, and let  
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Let L be a non trivial factor of the number N, and LW  = 

Le /2Π , then the complex function 
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T = 0: ( )1/ −LN , p€ to the period 0: N-1 
Is called L-paired function [2]. Basing on these paired 

functions the complete system of paired functions can be 
constructed. The totality of the paired functions in the case of 
N=2r  is 
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Now considering the case of N = 2r N1, where N1 is odd, r ≥ 

1 for the application of the paired transform. 
 

 The totality of the partitions is 
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 The splitting of NF  by the partition 'σ  is 
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 The matrix of the transform can be represented as  
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where the [W ] is diagonal matrix of the twiddle factors. The 
steps involved in finding the DFT using the paired transform 
are given below: 
 

1) Perform the L-paired transform g = )(' xNχ  over the 
input x  

2) Compose r vectors by dividing the set of outputs so that 
the first 1−rL  elements g1,g2,…..,gL

r-1 compose the first 
vector X1, the next Lr-2 elements gLr-1+1,…..,gLr-1+Lr-2 
compose the second vector X2, etc. 

3) Calculate the new vectors Yk, k=1:(r-1) by multiplying 
element-wise the vectors Xk by the corresponding 
turned factors1  

4) , )(,,...,, 1/2 krLt
ttt LtWWW −− = ,(t=Lr-k). Take Yr=Xr 

5) Perform the Lr-k-point DFT’s over Yk, k=1: r 
6) Make the permutation of outputs, if needed. 
 

III. IMPLEMENTATION TECHNIQUES 
We have implemented various architectures for radix-2 

and paired transform processors on Virtex-II pro FPGAs [3]. 
As there are embedded multipliers [3] and embedded block 
RAMs [3] available, we can use them without using 
distributed logic, which economize some of the CLBs [3]. As 

most of the transforms are applied on complex data, the 
arithmetic unit always needs two data points at a time for 
each operand (real part and complex part), dualport RAMs 
are very useful in all these implementation techniques.  

In the Fast Fourier Transform process the butterfly 
operation is the main unit on which the speed of the whole 
process of the FFT depends. So the faster the butterfly 
operation, the faster the FFT process. The adders and 
subtractors are implemented using the LUTs (distributed 
arithmetic). The inputs and outputs of all the arithmetic units 
can be registered or non-registered.  

Various possible implementations of multipliers one can 
consider are:   

Embedded multiplier:  

 With non-registered inputs and outputs  
 With registered inputs or outputs, and 
 With registered inputs and outputs.    

 
Distributed multiplier: Distributed multipliers are 

implemented using the LUTs in the CLBs. These can also be 
implemented with the above three possible ways. Various 
considerations made to implement butterfly operation for its 
speed improvement and resource requirements. The results of 
these techniques are tabulated in Table I. 

 
TABLE I: THE RESULTS OF VARIOUS BUTTERFLY IMPLEMENTATIONS. 

 
By observing the results we can say that the butterfly 

operation with pipelined multipliers (pipelined to maximum 
extent possible (4)), distributed arithmetic operations, and 
registering all the inputs and outputs of the all arithmetic 
units provides the fastest butterfly operation. The various 
architectures proposed for implementing radix-2 and paired 
transform processors are single memory (pair) architecture, 
dual memory (pair) architecture and multiple memory (pair) 
architectures. We applied the following two best butterfly 
techniques for the implementation of the processors on the 
Virtex-II pro FPGAs [3].  

One with Distributed multipliers, with fully pipelined 
stages. (Best in case of performance) 

One with embedded multipliers and one level pipelining. 
(Best in case of resource utilization)  

Single memory (pair) architecture (shown in Fig. 1) is 
suitable for single snapshot applications, where samples are 
acquired and processed thereafter. The processing time is 
typically greater than the acquisition time. The main 
disadvantage in this architecture is while doing the transform 
process we cannot load the next coming data. We have to 
wait until the current data is processed.  So we proposed dual 
memory (pair) architecture for faster sampling rate 
applications (shown in Fig. 2). In this architecture there are 
three main processes for the transformation of the sampled 
data. Loading the sampled data into the memories, 
Processing the loaded data, Reading out the processed data. 
As there are two pairs of dual port memories available, one 
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pair can be used for loading the incoming sampled data, while 
at the same time the other pair can be used for processing the 
previously loaded sampled data. For further sampling rate 
improvements we proposed multiple memory (pair) 
architecture (shown in Fig. 3). This is the best of all 
architectures in case of very high sampling rate applications, 
but in case of hardware utilization it uses lot more resources 
than any other architecture. In this model there is a memory 
set, one arithmetic unit for each iteration. The advantage of 
this model over the previous models is that we do not need to 
wait until the end of all iterations (i.e. whole FFT process), to 
take the next set of samples to get the FFT process to be 
started again. We just need to wait until the end of the first 
iteration and then load the memory with the next set of 
samples and start the process again. After the first iteration 
the processed data is transferred to the next set of RAMs, so 
the previous set of RAMs can be loaded with the next coming 
new data samples. This leads to the increased sampling rate.   

 

 
Fig. 1. Single memory (pair) architecture 

 

 
Fig. 2. Dual memory (pair) architecture 

 
Fig. 3. Multiple memory (pair) architecture 

(Transform length = N = 2n) 
(1,2);(3,4);(5,6) ---- (-,-) memory pairs for each iteration. 

Coming to the implementation of the paired transform 
based DFT algorithm, there is no complete butterfly 
operation, as that in case of radix-2 algorithm. According to 
the mathematical description given in the Section II, the 
arithmetic unit is divided into two parts, addition part and 
multiplication part. This makes the main difference between 
the two algorithms, which causes the process of the DFT 
completes earlier than the radix-2 algorithm.  The addition 
part of the algorithm for 8-point transform is shown in Fig 4. 
The architectures are implemented for the 8-point and 
64-point transforms. The radix-2 FFT algorithm is efficient in 
case of resource utilization and the paired transform 
algorithm is very efficient in case of higher sampling rate 
applications. 

 

 
Fig. 4. Figure showing the addition part of the 8-point paired transform based 

DFT 
 

IV. THE IMPLEMENTATION RESULTS  
Results obtained on TMS320C62x digital signal processor: 

The software used for implementing on the DSP is Texas 
instruments code composer studio [4]. We used C 
programming language for implementation. TABLE II and 
Table III show the implementation results and the 
comparison between the two algorithms on the DSP 
processor.  

Table II shows that the paired algorithm of DFT is much 
faster than the radix-2 algorithm. Going to higher transform 
lengths, paired algorithm gives the higher percentage 
improvement over the radix-2 algorithm. TABLE III shows 
the time required and the sampling rates that the two 
algorithms can be operated at.   

 
TABLE II: PERFORMANCE COMPARISION OF THE TWO ALGORITHMS ON DSP 

PROCESSOR. 

 
 
Results obtained on Virtex-II pro FPGAs: The hardware 

modeling of the algorithms is done by using Xilinx’s system 
generator plug-in software tool running under SIMULINK 
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environment provided under the Mathworks’s MATLAB 
software. The functionality of the model is verified using the 
SIMULINK  

Simulator and the MODELSIM software as well. The 
implementation is done using the Xilinx project navigator 
backend software tools. 
 

TABLE III: TABLE SHOWING THE SAMPLING RATE OF BOTH THE 
ALGORITHMS (STARTING FROM N = 8 TO N = 1024) 

 
 

TABLE IV: TABLE SHOWING THE SAMPLING RATES AND THE RESOURCE 
UTILIZATION SUMMARIES FOR BOTH THE ALGORITHMS, 

IMPLEMENTED ON THE VIRTEX-II PRO FPGAS 

 
 
Table IV shows the implementation results of the two 

algorithms on the Virtex-II pro FPGAs. From TABLE II, III, 
IV we can see that paired transform is always faster than the 
radix-2 algorithm. Thus paired-transform based algorithm 
can be used for higher sampling rate applications. In military 
applications, while doing the process, only some of the DFT 
coefficients are needed at a time. For this type of applications 
paired transform can be used as it generates some of the 
coefficients earlier, and also it is very fast.  

 

V. CONCLUSION 
In this paper we have shown that both on DSPs and also on 

FPGAs the paired transform based algorithm is faster and can 
be used at higher sampling rates than the radix-2 FFT at an 
expense of high resource utilization.  

1) In all implementations on FPGAs, the number of bits 
used for the data is 16-bits. So all the multipliers here are 
used as 16-bit multipliers. The size of the multipliers used 

was 18-bit multipliers.  For instance, if there are some 
applications using only 8-bit data, then one can use the 40 
dedicated multipliers as 80 multipliers, as two multiplications 
can be implemented by using a single embedded multiplier as 
long as the sum of the two products bits is less than 36 bits. 

2)  In the implementations on the DSP if the MAC engines 
are used explicitly, then there may be a possibility of better 
comparison between the algorithms. Also one can see some 
more speed improvement in the DFT processes. 
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