

Abstract—Frequency analysis plays vital role in the

applications like cryptanalysis, steganalysis, system
identification, controller tuning, speech recognition, noise filters,
etc. Discrete Fourier Transform (DFT) is a principal
mathematical method for the frequency analysis. The way of
splitting the DFT gives out various fast algorithms. In this paper,
we present the implementation of two fast algorithms for the
DFT for evaluating their performance. One of them is the
popular radix-2 Cooley-Tukey fast Fourier transform
algorithm (FFT) [1] and the other one is the Grigoryan FFT
based on the splitting by the paired transform [2]. We evaluate
the performance of these algorithms by implementing them on
the TMS320C62x DSP and also on the Virtex-II pro FPGAs.
Finally we show that the paired-transform based algorithm of
the FFT is faster than the radix-2 FFT, consequently it is useful
for higher sampling rates.

Index Terms—Frequency analysis, fast algorithms, DFT,
FFT, paired transforms.

I. INTRODUCTION
In the past decade, fast orthogonal transforms have been

widely used in areas of data compression, pattern recognition
and image reconstruction, interpolation, linear filtering, and
spectral analysis. The suitability of unitary transforms in each
of the above applications depends on the properties of their
basis functions as well as on the existence of fast algorithms,
including parallel ones. Since the introduction of the Fast
Fourier Transform (FFT), Fourier analysis has become one of
the most frequently used tool in signal/image processing and
communication systems; The main problem when calculating
the transform relates to construction of the decomposition,
namely, the transition to the short DFT’s with minimal
computational complexity [5]. The computation of unitary
transforms is complicated and time consuming process. Since
the decomposition of the DFT is not unique, it is natural to
ask how to manage splittings and how to obtain the fastest
algorithm of the DFT. The difference between the lower
bound of arithmetical operations and the complexity of fast
transform algorithms shows that it is possible to obtain FFT
algorithms of various speed [2]. One approach is to design
efficient manageable split algorithms. Indeed, many
algorithms make different assumptions about the transform
length. The signal/image processing related to engineering
research becomes increasingly dependent on the
development and implementation of the algorithms of
orthogonal or non-orthogonal transforms and convolution
operations in modern computer systems [5]. The increasing
importance of processing large vectors and parallel
computing in many scientific and engineering applications

Manuscript received December 19, 2012; revised February 23, 2013.
Narayanam Ranganadh is with the Department of Electrical Engineering,

The University of Texas at San Antonio (e-mail:
ranganadh.narayanam@gmail.com).

require new ideas for designing super-efficient algorithms of
the transforms and their implementations [2].

In this paper we present the implementation techniques
and their results for two different fast DFT algorithms. The
difference between the algorithm developments lies in the
way the two algorithms use the splitting of the DFT. The two
fast algorithms considered are radix-2 and paired transform
[2] algorithms. The implementation of the algorithms is done
both on the TMS320C62x digital signal processor and also
on the Xilinx Viretx-II FPGAs. The performance of the two
algorithms is compared in terms of their sampling rates and
also in terms of their hardware resource utilization.

Section II presents the paired transform decomposition
used in paired transform in the development of Grigoryan
FFT. Section III presents the implementation techniques for
the radix-2 and paired transform algorithms on FPGAs.
Section IV presents the results. Finally with the Section V we
conclude the work and put forward some suggestions for
further sampling rate improvements.

II. DECOMPOSITION ALGORITHM OF THE FAST DFT USING
PAIRED TRANSFORM

In this algorithm the decomposition of the DFT is done by
using the paired transform [2]. Let {)(nx }, n = 0:(N-1) be
an input signal, N>1. Then the DFT of the input sequence

)(nx is

 X(k) = ∑
−

=

1

0
)(

N

n

nk
NWnx , k =0:(N-1) (1)

which is in matrix form

 X = xFN][(2)

where X(k) and)(nx are column vectors, the matrix NF =

)1:0(, −= Nkn

nk
NW , is a permutation of X.

]][]}[[],.....,[],{['
21 NNkNNN WFFFdiagF χ

−−−−

= (3)

Which shows the applying transform is decomposed into
short transforms NiF , i = 1: k. Let FS be the domain of the

transform F the set of sequences f over which F is defined.
Let (D;σ) be a class of unitary transforms revealed by a
partition σ . For any transform ∈F (D; σ), the
computation is performed by using paired transform in this
particular algorithm. To denote this type of transform, we
introduce “paired functions [2].”

Let ∈tp, period N, and let

Case Study of Grigoryan FFT onto FPGAs and DSPs

Narayanam Ranganadh, Parimal A Patel, and Artyom M. Grigoryan

678

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

DOI: 10.7763/IJFCC.2013.V2.251

⎩
⎨
⎧ =

=
.;0

);(mod;1
)(, otherwise

Ntnp
ntpχ n = 0: (N-1) (4)

Let L be a non trivial factor of the number N, and LW =

Le /2Π , then the complex function

 lkNtp

L

k

k
LLtptp W /,

1

0

'
;,

,
, +

−

=
∑== χχχ (5)

T = 0: ()1/ −LN , p€ to the period 0: N-1
Is called L-paired function [2]. Basing on these paired

functions the complete system of paired functions can be
constructed. The totality of the paired functions in the case of
N=2r is

{{ }1)},1(:0),12(:0; 1
2,2 −=−= −− rnt nr

tnnχ (6)

Now considering the case of N = 2r N1, where N1 is odd, r ≥

1 for the application of the paired transform.

 The totality of the partitions is
),.....,,,('

2;2
'
2;4

'
2;2

'
2;1

'
rTTTT=σ

 The splitting of NF by the partition 'σ is

{ },,.....,, 12/4/2/ NNNN FFFF r
 The matrix of the transform can be represented as

[NF] =
1

[]
r

n
LnF

=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
⊕ [W]['

nχ]

.,2/ 1
1 NLNL r

n
n == +

where the [W] is diagonal matrix of the twiddle factors. The
steps involved in finding the DFT using the paired transform
are given below:

1) Perform the L-paired transform g =)(' xNχ over the
input x

2) Compose r vectors by dividing the set of outputs so that
the first 1−rL elements g1,g2,…..,gL

r-1 compose the first
vector X1, the next Lr-2 elements gLr-1+1,…..,gLr-1+Lr-2
compose the second vector X2, etc.

3) Calculate the new vectors Yk, k=1:(r-1) by multiplying
element-wise the vectors Xk by the corresponding
turned factors1

4) ,)(,,...,, 1/2 krLt
ttt LtWWW −− = ,(t=Lr-k). Take Yr=Xr

5) Perform the Lr-k-point DFT’s over Yk, k=1: r
6) Make the permutation of outputs, if needed.

III. IMPLEMENTATION TECHNIQUES
We have implemented various architectures for radix-2

and paired transform processors on Virtex-II pro FPGAs [3].
As there are embedded multipliers [3] and embedded block
RAMs [3] available, we can use them without using
distributed logic, which economize some of the CLBs [3]. As

most of the transforms are applied on complex data, the
arithmetic unit always needs two data points at a time for
each operand (real part and complex part), dualport RAMs
are very useful in all these implementation techniques.

In the Fast Fourier Transform process the butterfly
operation is the main unit on which the speed of the whole
process of the FFT depends. So the faster the butterfly
operation, the faster the FFT process. The adders and
subtractors are implemented using the LUTs (distributed
arithmetic). The inputs and outputs of all the arithmetic units
can be registered or non-registered.

Various possible implementations of multipliers one can
consider are:

Embedded multiplier:

 With non-registered inputs and outputs
 With registered inputs or outputs, and
 With registered inputs and outputs.

Distributed multiplier: Distributed multipliers are

implemented using the LUTs in the CLBs. These can also be
implemented with the above three possible ways. Various
considerations made to implement butterfly operation for its
speed improvement and resource requirements. The results of
these techniques are tabulated in Table I.

TABLE I: THE RESULTS OF VARIOUS BUTTERFLY IMPLEMENTATIONS.

By observing the results we can say that the butterfly

operation with pipelined multipliers (pipelined to maximum
extent possible (4)), distributed arithmetic operations, and
registering all the inputs and outputs of the all arithmetic
units provides the fastest butterfly operation. The various
architectures proposed for implementing radix-2 and paired
transform processors are single memory (pair) architecture,
dual memory (pair) architecture and multiple memory (pair)
architectures. We applied the following two best butterfly
techniques for the implementation of the processors on the
Virtex-II pro FPGAs [3].

One with Distributed multipliers, with fully pipelined
stages. (Best in case of performance)

One with embedded multipliers and one level pipelining.
(Best in case of resource utilization)

Single memory (pair) architecture (shown in Fig. 1) is
suitable for single snapshot applications, where samples are
acquired and processed thereafter. The processing time is
typically greater than the acquisition time. The main
disadvantage in this architecture is while doing the transform
process we cannot load the next coming data. We have to
wait until the current data is processed. So we proposed dual
memory (pair) architecture for faster sampling rate
applications (shown in Fig. 2). In this architecture there are
three main processes for the transformation of the sampled
data. Loading the sampled data into the memories,
Processing the loaded data, Reading out the processed data.
As there are two pairs of dual port memories available, one

679

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

pair can be used for loading the incoming sampled data, while
at the same time the other pair can be used for processing the
previously loaded sampled data. For further sampling rate
improvements we proposed multiple memory (pair)
architecture (shown in Fig. 3). This is the best of all
architectures in case of very high sampling rate applications,
but in case of hardware utilization it uses lot more resources
than any other architecture. In this model there is a memory
set, one arithmetic unit for each iteration. The advantage of
this model over the previous models is that we do not need to
wait until the end of all iterations (i.e. whole FFT process), to
take the next set of samples to get the FFT process to be
started again. We just need to wait until the end of the first
iteration and then load the memory with the next set of
samples and start the process again. After the first iteration
the processed data is transferred to the next set of RAMs, so
the previous set of RAMs can be loaded with the next coming
new data samples. This leads to the increased sampling rate.

Fig. 1. Single memory (pair) architecture

Fig. 2. Dual memory (pair) architecture

Fig. 3. Multiple memory (pair) architecture

(Transform length = N = 2n)
(1,2);(3,4);(5,6) ---- (-,-) memory pairs for each iteration.

Coming to the implementation of the paired transform
based DFT algorithm, there is no complete butterfly
operation, as that in case of radix-2 algorithm. According to
the mathematical description given in the Section II, the
arithmetic unit is divided into two parts, addition part and
multiplication part. This makes the main difference between
the two algorithms, which causes the process of the DFT
completes earlier than the radix-2 algorithm. The addition
part of the algorithm for 8-point transform is shown in Fig 4.
The architectures are implemented for the 8-point and
64-point transforms. The radix-2 FFT algorithm is efficient in
case of resource utilization and the paired transform
algorithm is very efficient in case of higher sampling rate
applications.

Fig. 4. Figure showing the addition part of the 8-point paired transform based

DFT

IV. THE IMPLEMENTATION RESULTS
Results obtained on TMS320C62x digital signal processor:

The software used for implementing on the DSP is Texas
instruments code composer studio [4]. We used C
programming language for implementation. TABLE II and
Table III show the implementation results and the
comparison between the two algorithms on the DSP
processor.

Table II shows that the paired algorithm of DFT is much
faster than the radix-2 algorithm. Going to higher transform
lengths, paired algorithm gives the higher percentage
improvement over the radix-2 algorithm. TABLE III shows
the time required and the sampling rates that the two
algorithms can be operated at.

TABLE II: PERFORMANCE COMPARISION OF THE TWO ALGORITHMS ON DSP

PROCESSOR.

Results obtained on Virtex-II pro FPGAs: The hardware

modeling of the algorithms is done by using Xilinx’s system
generator plug-in software tool running under SIMULINK

680

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

environment provided under the Mathworks’s MATLAB
software. The functionality of the model is verified using the
SIMULINK

Simulator and the MODELSIM software as well. The
implementation is done using the Xilinx project navigator
backend software tools.

TABLE III: TABLE SHOWING THE SAMPLING RATE OF BOTH THE
ALGORITHMS (STARTING FROM N = 8 TO N = 1024)

TABLE IV: TABLE SHOWING THE SAMPLING RATES AND THE RESOURCE
UTILIZATION SUMMARIES FOR BOTH THE ALGORITHMS,

IMPLEMENTED ON THE VIRTEX-II PRO FPGAS

Table IV shows the implementation results of the two

algorithms on the Virtex-II pro FPGAs. From TABLE II, III,
IV we can see that paired transform is always faster than the
radix-2 algorithm. Thus paired-transform based algorithm
can be used for higher sampling rate applications. In military
applications, while doing the process, only some of the DFT
coefficients are needed at a time. For this type of applications
paired transform can be used as it generates some of the
coefficients earlier, and also it is very fast.

V. CONCLUSION
In this paper we have shown that both on DSPs and also on

FPGAs the paired transform based algorithm is faster and can
be used at higher sampling rates than the radix-2 FFT at an
expense of high resource utilization.

1) In all implementations on FPGAs, the number of bits
used for the data is 16-bits. So all the multipliers here are
used as 16-bit multipliers. The size of the multipliers used

was 18-bit multipliers. For instance, if there are some
applications using only 8-bit data, then one can use the 40
dedicated multipliers as 80 multipliers, as two multiplications
can be implemented by using a single embedded multiplier as
long as the sum of the two products bits is less than 36 bits.

2) In the implementations on the DSP if the MAC engines
are used explicitly, then there may be a possibility of better
comparison between the algorithms. Also one can see some
more speed improvement in the DFT processes.

REFERENCES
[1] J.W. Cooley and J.W. Tukey, “An algorithm for the machine

calculation of complex Fourier Series,” Math. comput. vol. 19, pp.
297-301, 1965.

[2] A. M. Grigoryan and S. S. Agaian, “Split Manageable Efficient
Algorithm for Fourier and Hadamard transforms,” Signal Processing,
IEEE Transactions on, vol. 48, no. 1, pp. 172 – 183, Jan.2000.

[3] Virtex-II pro platform FPGAs: detailed description. [Online].
Available: http://direct.xilinx.com/bvdocs/publications/ds031-2.pdf

[4] CC Studio getting started guide, TMS320C62x.
[5] S. W. Smith, The scientist and engineer’s guide to Digital Signal

Processing, California Technical Publishing.

Ranganadh Narayanam is an assistant professor in
the department of Electronics & Communications
Engineering in Bharat Institute of Engineering &
Technology (BIET). This research is continuation of
the research done in the Univeristy of Texas at San
Antonio under the guidance of Dr. Parimal A. Patel,
Dr. Artyom M. Grigoryan, as my master’s thesis.
Mr.Narayanam, a research student in the area of
“Brain Stem Speech Evoked Potentials” under the

guidance of Dr. Hilmi Dajani of University of Ottawa,Canada. He was also a
research student in The University of Texas at San Antonio under Dr. Parimal
A Patel,Dr. Artyom M. Grigoryan, Dr Sos Again, Dr. CJ Qian,. in the areas of
signal processing and digital systems, control systems. He worked in the area
of Brian Imaging in University of California Berkeley. Mr. Narayanam has
done some advanced learning in the areas of DNA computing, String theory
and Unification of forces, Faster than the speed of light theory with
worldwide reputed persons and world’s top ranked universities. Mr.
Narayanam’s research interests include neurological Signal & Image
processing, DSP software & Hardware design and implementations,
neurotechnologies. Mr. Narayanam can also be contacted at
rnara100@gmail.com, rnara100@biet.ac.in,
ranganadh.narayanam@gmail.com, rnara100@uottawa.ca

Parimal A. Patel did his doctoral studies in UT Austin. He was a professor
and Chair of the department of Electrical and Computer Engineering in UT
San Antonio. He has been a Xilinx, California Consultant while being as the
chair at UT San Antonio. He is currently a key Global Trainer of Xilinx,
California.

Artyom M. Grigoryan is an associate professor in department of electrical
and computer engineering at UT San Antonio. He is an inventor and patents
holder.

681

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

