

Abstract—Mobile Agents no longer is limited to simple

message communication but finds its applications in
applications like distributed computing and network
monitoring systems. The two key features expected from mobile
agents are Location Transparency & Distributed Decision
Making. Location Transparency is achieved through
Inter-Agent communication protocol by ensuring the message is
delivered to the remote host irrespective of its location on a
network. At the same time agents can be programmed with
limited amount intelligence so that the agents can take decisions
on their own and react to certain situations while they are
touring a remote host without depending on the instructions
from the agent server. This paper explains how adaptive agents
capable of performing multiple tasks on a single visit to remote
host can communicate with other agents attached to the same or
a different agent server. The complete protocol is explained
along with each scenario based on the agent state on a host or a
remote server. The paper also explains how agents can take
decisions on their own without involving the agent servers.

Index Terms—Mobile agents, agent communication, JADE
agents, adaptive agents, distributed decision making.

I. INTRODUCTION
Mobile agents are designed to perform simple tasks or

collect a bid/message from a remote system and its features
like mobility, autonomy and size bring several advantages to
mobile agents and find its applications in many applications
related to distributed computing and e-business applications.
However, the current day expectations from mobile agents
are far beyond simple tasks and communication. As the size
of the agent and network bandwidth is not constraints
anymore, the agents can be programmed with limited
intelligence to take decisions on their own. This feature
would further be transformed into a major utility by mobile
agents called Distributed Decision Making. Decision Making
is the sole responsibility of the monitoring system and
adaptive agents were simply used to communicate the status.
Now, with the agents having the capability to make decisions,
the agents need not wait for the monitoring system to give
instructions and the agents can by themselves react to certain
situations and take decisions.

The other feature of major interest in this paper is Location
Transparency of mobile agents. Location transparency can be

Manuscript received January 14, 2013; revised April 2, 2013.
V. Sreekanth is with Jawaharlal Nehru Technological University

Hyderabad, Hyderabad, AP 500085 India (e-mail:
mail4sreekanth@gmail.com).

S. Ramchandram is with University College of Engineering, Osmania
University and also chairman, BOE, Department of Computer Science &
Engineering, Osmania University, Hyderabad, AP. 500007 (e-mail:
schandram@gmail.com).

A. Govardhan is with Computer Science & Engineering and Director of
Evaluations at Jawaharlal Nehru Technological University Hyderabad,
Hyderabad. AP 500085. India (e-mail: govardhan_cse@yahoo.co.in).

achieved if the agents irrespective of their state and location
can perform a given task and communicate on its own. The
agents when on a remote networks should be able to
communicate with the local agents and the required
information. The example is a weather forecasting
application on a mobile phone which is designed to show
local weather of the location it’s residing in. As the user
moves from one location to the other, the agent should be
able to detect its position through communicating with other
trusted local agents or using Global Positioning System (GPS)
and show the local weather rather than the weather from the
location which the user configures.

The other example where location transparency of agents
finds a good implementation is a simple search engine. The
search results by the engine make more sense to the user who
is trying to find a local restaurant or gas station if the mobile
application can sort the search by location rather than the
static search. The current location is always retained by the
search engine and can be updated manually by the user when
changes his location. The Fig. 1 shows how the search engine
retains its location and the current location is used for the
search. Both the examples would need the agent to
communicate with other local agents and get the data through
location transparency. Inter-agent communication requires a
mobile agent platform that can be used to implement agents
and set up inter agent communication protocol. Jade [1] is a
convenient tool to be used for setting up the agent platform.

Fig. 1. Location services on search engines

II. MODELING ADAPTIVE AGENTS
Adaptive Agents are programmed with intelligence to

carry multiple operations during a single visit [2]. The agents
can further programmed to perform limited action at a host as

Inter-Agent Communication Protocol for Adaptive Agents

Sreekanth V., S. Ramchandram, and A. Govardhan

692

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

DOI: 10.7763/IJFCC.2013.V2.254

need be. The structure of a Dynamic Adaptive Mobile Agent
is represented in the Fig. 2. The Data, Execution State and
Code section of the agent remains similar to a conventional
mobile agent. However, the message section is configured as
a dynamic queue. In the structure shown, the agent
dynamically stores the data from 4 ports on host H1, 2 ports
as it visits Host 2, 3 hosts when it visits host 3 and so on.

Fig. 2. Structure of adaptive agent

A. Inter Agent Communication
Agents need to communicate to facilitate faster decision

making [3]. The modern day mobile agents are subjective,
that are designed and programmed to accomplish a task.
Agents communicate through agent servers. Though the
virtual path of the agents appears to communicate to each
other, the physical path of the message is always through an
agent server [4]. Agents pass the message to its home agent
server, which in turn identifies the address of the remote
agent server and pass the message. The responsibility of the
remote agent server is to pass the message to the mobile
agent. The physical and virtual communication path of
messages between agents is depicted in the Fig. 3.

Fig. 3. Inter-agent communication

In order to implement the location-transparency and the

reliability of message delivery, the peer agent must be located
by some mechanism that maps an agent’s unique name onto
its current location; this mechanism is called Address
Resolution. In a general way, addressing modes which are
usually used include: searching mode, forwarding mode and
registration mode [5], [6] and so on.

 Searching Mode: An agent usually is dispatched to visit
all possible hosts or broadcasts the message to all the
hosts on a network to search the target agent. This
overhead is unaffordable when considering a large
enterprise networks.

 Forwarding Mode: Because the agent leaves its
migration track on the hosts when it passed by, its
current location should be attained via following its
trail. If the trail information is lost or if one of the hosts
is down, the target agent would no longer be found.

 Registration Mode: An agent needs to update its
location in a predefined directory server (e.g., its home
host) that allows agent to be registered, deregistered or
located.

The directory server can be either a central node, which
may become the bottleneck of the system performance and/or
a single Point of failure, or the agent’s home host, which
follows the idea of Mobile IP [7].

B. Agent Message Boxes
The messages to and from the agents are stored in a buffer

on agent server called Agent Message Box (AMB) [3]. Agent
message boxes have two sections of buffers allocated
separately from a single buffer queue for incoming and
outgoing messages called Receive Message Buffer (RMB)
and Send Message Buffer (SMB). The incoming messages
are saved in the Agent Message Box first and once the agent
is located, the messages are sent to the agent either by a Pull
mechanism or a Push mechanism. In short, the three
assumptions being made in this section are

 Communication by means of asynchronous message
delivering.

 Fault free in communication links and network hosts.
 Message not loss or damage during its transfer.

Fig. 4 shows the communication between two agents. The
rectangle represents a host. Agent A located in Host1, Agent
B located in Host2, and Bm is the message box of Agent B.
When A sends a message to B, it sends the message to B's
message box Bm, and then B uses a pull operation to fetch the
message from its message box Bm.

Fig. 4. Message box based agent communication

III. INTER-AGENT COMMUNICATION PROTOCOL
The mechanism for Inter-Agent communication is to send

messages between two different agents either on a same or a
different enterprise network loops. In both cases, the
messages are delivered to the destination agent servers
through the destination agent routing tables. The agents are
empowered to encrypt [8] the messages it receives using the
public key of the remote host and are delivered to the remote
agent. Both the agents (local and remote) can cooperate to
form a multi agent system [9]. The physical representation of
agent communication between two different network loops
through agent servers is shown in the Fig. 5.

693

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

Fig. 5. Inter-agent communication through agent servers

A. The Setup
Algorithm:
Originator Agent

 When an agent is initiated, it would create Sending
Message Box & Receiving Message Box along with the
Host Message Routing Tables.

 The agent ID and the Agent Server information is
communicated to the other agent servers already active
in the enterprise network.

 When an originator agent has to send a message to
another agent, the agent saves it current execution state,
and then send the message

sendMsg(Dest Agt, Msg, Priority)
waitforAck()

 Once the message is received by the agent server, the
server sends the acknowledgement to the agent before it
moves to the next host.

B. Case – 1 Destination Agent in Dormant State
Once the message is received by the destination server and

the agent server updates the Destination Agent Routing Table
and starts looking for the agent. The agent is in dormant state
at the agent server, the message is directly delivered to the
agent after decryption. Fig 6 shows the agent is at the
destination agent server and ready to take the message
addressed for the agent. When the agent is in dormant state,
the agent periodically checks the destination routing table if
there are any messages available for the agent.

Fig. 6. Destination agent in dormant state

Algorithm:
Originator Mobile Agent sends the encrypted message to

Agent Server with appropriate priority and the destination
address

 Originator Agent Server decrypts the message and
populates the Destination Agent Routing Table for the
Destination Mobile Agent

 The Originator Server encrypts the message in the
HMRT with Destination Servers RSA key that is already
shared between the two servers

 The encrypted message is sent to the Destination Agent
Server

 As the Destination Agent is in dormant state and at the
Agent Server, the message is pushed to the Agent

pushMsg(Src, AgtID, Message,Exptime)

The Push Mechanism is used to push the message to the
agent without considering the priority of the message since in
dormant state, the host address is always the agent server and
the valid flag is set to 1 (active). So in order to make the agent
active, the message is pushed to the agent. The agent
determines the action to be performed either by itself or
through a set of instructions from the server and performs the
action.

C. Case – 2 Destination Agent at Remote Host
The agent moves from originator to each of the host to

perform a defined task at each host. When the host is at a
remote host away from the agent server, the message
intended for the agent arrives in the agent message box. Fig 7
represents the agent is at a remot host and to deliver this
message to the agent the agent server takes into consideration
the priority of the message and also the address flag validity.
The priority of the message would define whether it would
employ a push or pull mechanism to deliver the message. The
valid flag would determine if the agent is stationary on a host
or mobile. A message cannot be delivered to an agent when it
is mobile.

Each message arriving at the agent server message box
would first be loaded into the Receiving Message Box (RMB)
and the data is updated in the Destination Agent Routing
Table (DART). The important parameters that would be
updated are the priority of the message and the timestamp
along with the pointer to the message from RMB. The
address of the agent is currently located is available in the
Destination Agent Server ID field. When the agent is at the
agent server, the agent server location is loaded into the
column and when it migrates to a remote host, the remote
host address is available in the column.

A low priority message would be saved in the DART until
agent pulls the message from the message box. Agent
periodically communicates its position to its agent server and
would also check if there are any unread messages in its
message box. All the unread low priority messages would be
read by the agent using pull mechanism periodically. When a
high priority message arrives at the agent message box, the
agent server checks the valid flag, if the address is valid the
message is pushed to the agent. If the valid flag is set to 0
(inactive), the agent server has to wait till the address field is
set to 1 (active) and deliver the messages to the host.

The Algorithm:
 When the Destination Agent Server receives a message,

the Destination Agent Server gets the Address of the
Remote Host and the Valid Flag.

 If (Valid_Flag = ‘Active’)

 then

694

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

 If (Priority = ‘High’)
 pushMsg(SrcAgtID, Message, Exptime)
 else
 waitForPull()
 else
 ## If the agent is in Transit Valid Flag is Inactive
 waitForValidFlag()

Two wait functions are designed for the agent server to
hold on the message before passing it to the agent. The
function waitForPull() is used in this section that would wait
for the message to be pulled by the agent either when the
message priority is low. Similarly when the Valid flag is
inactive, the function waitForValidFlag() will wait for the
valid flag to be active. The high priority messages are pushed
using the same function pushMsg(SrcAgtID, Message,
Exptime) discussed in the earlier section.

Fig. 7. Case 2- agent on remote host

Fig. 8. Case 3- agent in transit

D. Case –3 Destination Agent in Transit
When an agent moves from one host to the other, it

performs the set of operations viz., save the current state of
execution, encrypt the message collected from the host using
the host RSA key, then communicate to the agent server that
the agent would be moving to the next location, set the Valid
flag to inactive then migrate to a new host. The first two
operations are part of the generic agent operations; however,
the next steps are designed as part of this algorithm. The
agent is aware of the next host to visit, and this need to be
communicated to the agent server. Hence before moving to
the new host, the agent server sends the current and next host
address to the agent server, set the Valid flag to ‘Inactive’ and
wait for the acknowledgement from the agent server. Once
the agent receives the acknowledgement the agent migrates
to the new host and retrieves it execution state. Now the agent
sends another message to the agent server with the new host
address and instructions to set the Valid flag to ‘Active’. The

agent server sets the new address location and Valid flag and
send acknowledgement to the agent. The agent wait for the
acknowledgement and once it is received; the agent pulls the
messages from the agent server message box. As discussed
earlier, first the high priority messages are pulled followed by
the lower priority once. Fig 8 describes the agent migration
from Host 2 to Host 3 and the algorithm represents the steps
to be taken during the migration.
The Algorithm:

 Agent sets Valid Flag to Inactive

 setInactive(AgentID, prevHostID, newHostID)
 waitforAck()

 Once the Agent reaches the new host,

 setActive(AgentID, newHostID)
 Agent Server responds

 setAck(ack, msgCount)
 Pull the messages from Agent Message Box ordered by

priority

 while (msgCount <> 0)
 pullMsg(SrcAgtID, Message, Exptime)

The valid flag is set to inactive and reset by two functions
setInactive(AgentID, currHostID, newHostID) &
setActive(AgentID, newHostID) The setInactive function
would require both current host id and the new host id sent to
make sure agent server understands the current and new
locations of the agent. This new address is validated when the
setActive message is sent by the agent. The waitforAck()
function would make the agent wait at the current host until it
receives the acknowledgement from the agent server. If the
acknowledgement is not received in a specified period of
time, the agent would resend the setInactive() message.

Once the agent migrates to the new host, the setActive()
message would be sent to the agent server to make the flag
valid. The acknowledgement message sent by the agent
server would have both acknowledgement as well as the
unread message count. The agent before going ahead with the
its next set of operations at the host, will pull all the unread
messages from the agent server message box using the
function
pullMsg(SrcAgtID, Message, Exptime).

Fig. 9. Case 4- agent is dead

E. Case –4 Destination Agent is Dead
When a message is received by an agent server for an agent

695

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

that is no longer active, the agent server would respond back
to the originator that the agent is dead. The dead agent cannot
be seen on the network as represented in Fig 9. The agent
server first checks the Destination Agent Routing Table
(DART), for the address of the agent. If the agent is not found,
a negative acknowledgement is sent to the originator. The
originator on receiving the negative message would update
its Host Message Routing Table (HRMT) by deleting the
address associated with the agent. Though the agent the agent
server is looking for is dead, the other agents that use the
same Agent Server could still be operational and performing
their task.
The Algorithm:

When destination Agent Server receives a message
intended for an Agent,

 Agent Server looks for the Agent ID in the Destination

Agent Routing Table (DART)
 When the Agent doesn’t exist in the DART

sendNegative(OrgAgentServerID)
 Wait till the expiry time of the message,

delMsg(MsgID)

The message is restored in the Receiving message box till
the expiry time and then deleted from both the message box
and the DART using the fuction delMsg(MsgID).

IV. CONCLUSION AND FUTURE SCOPE
The demonstration Inter-Agent communication protocol is

tested on a trusted network where a standard RSA Key
encryption protocol is used and the keys are exchanged
between trusted hosts in advance. However, the
implementation in real time would require the keys to be
exchanged over internet which is risky. The protocol would
undergo few changes while implementing on public network.

REFERENCES
[1] Jade. Java Agent Development Framework. [Online]. Available:

http://jade.cselt.it
[2] V. Sreekanth, S. Ramchandram, and A. Govardhan, “A novel approach

for security and integrity of mobile agents,” in Proc. ICCBN 2008, IISc,
Bangalore, India.

[3] J. Cao, X. Feng, J. Lu, and K. Sajal, “Mailbox based scheme for mobile
agent communications,” IEEE Computer, vol. 35, no. 9, pp. 54-60,
September 2002.

[4] P. Braun and W. Rossak, Mobile Agents Basic Concepts, Mobility
Models, and the Tracy Toolkit, Morgan Kaufmann Publishers, 2004.

[5] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code
mobility,” IEEE Transactions on Software Engineering, vol. 24, no. 5,
1998.

[6] P. Braun, D. Trinh, and R. Kowalczyk, “Integrating a new mobility
service into the jade agent toolkit,” in Proceedings of the Second
International Workshop on Mobility Aware Technologies and
Applications, Montreal/Canada, 2005, Springer, Montreal/Canada.

[7] M. Lunge and D. B. Oshima, Programming and Deploying Java
Mobile Agents with Aglets, Addison Wesley, 1998.

[8] Roth, “Empowering mobile software agents,” in Proc. 6th IEEE
Mobile Agents Conference, vol. 2535 of Lecture Notes in Computer
Science, pp. 47-63, Springer.

[9] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Journal of Autonomous Agents and Multi-Agent Systems, vol.
11, no. 3, 2005, pp. 387-434.

V. Sreekanth hails from Warangal, AP, India. He
completed his Diploma in Electronics &
Communication Engineering in 1996 in Distinction
from Govt. Polytechnic, Warangal and then his BE in
Computer Technology in year 2000 from Nagpur
University, Nagpur. Later he worked as Lecturer at
Kakatiya Institute of Technology & Sciences,
Warangal for 2 Years. He joined Acharya Nagarjuna
University for his M.Tech in Computer Science &

Engineering and completed with Distinction in year 2005.
The authors’ zeal towards Networki ng and mobile computing from the

days of graduation has encouraged him to take up research in the field of
mobile computing. During the same period, the author met with Professor
S.Ramchandram and Dr. A Govardhan and shared his research Ideas and
was readily accepted and encouraged by both and accepted to guide him in
the research program. The Author registered as a research scholar in JNTU
Hyderabad in year 2006 and had published 5 papers in different
International Conferences and Journals.

696

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

