

Abstract—This paper proposes implementation of linear

observer and full state feedback controller using pole placement
method for second order system. System consists of two 1st
order differential equations, solved using Euler and Runge
Kutta-2(RK-2) method and linear observer implemented on
FPGA Vietex-5 platform. Sampling rate of 0.1 millisecond is
achieved for hardware co-simulation of linear observer. Direct
comparison of resource utilisation to implement linear observer,
accuracy and complexity for Euler and RK-2 methods is
presented.

Index Terms—FPGA, linear observer, euler, runge kutta-2,
system generator.

I. INTRODUCTION
FPGAs have become more resourceful with recent

developments in VLSI technology. It has qualities such as
parallel processing capability, high sampling rates, flexibility
in design and reliability. Not surprisingly, FPGA chips
appear more frequently in controller designs [1], [2]. Solving
ordinary differential equations is essential in control field [3].
Now in embedded world one of the important ways is use of
an FPGA which is suitable for fast implementation and quick
hardware verification. The FPGA consists of three major
configurable elements: configurable logic blocks (CLBs)
arranged in an array that provide the functional elements and
implements most of the logic in an FPGA, input-output
blocks (IOBs) that provide the interface between the package
pins and internal signal lines, and programmable interconnect
resources that provide routing path to connect inputs and
outputs of CLBs and IOBs onto to the appropriate network. A
digital design can be created by using schematic digital
design editor that uses graphic symbols of the circuit or by
using hardware description languages such as Verilog, Very
High Speed Integrated Circuit Hardware Description
Language (VHDL).

Controller algorithms could be implemented on FPGAs
with a combination of hardwired logic and a floating point
arithmetic unit (FPU) without the use of an embedded
processor in the design [4]. Chan et al [5] have conducted a
study on PID controller implementation on an FPGA and
they managed to decrease the resources required by a
multiplier-based design significantly. What they propose is to
replace the multipliers by a distributed arithmetic based
design utilizing look up tables and they managed to decrease
the resource requirement down to 4 to 13% of the former
design. However they increased the computation time from 1

Manuscript received February 5, 2013; revised April 23, 2013.
The authors are with the College of Engineering Pune, India (e-mail:

ranaravindra08@gmail.com,: atmaja.thakur1@gmail.com).

cycle to 13 to 26 cycles. A very similar study by Tao et al [6]
managed to decrease the logic element requirement from
51.7% to 0.8-1.5%, increasing the computation cycle from 1
to 64-33 cycles.

In this paper an approach to implement linear observer
with state feedback controller is proposed for 2nd order plant.
Euler and RK-2 methods are used to solve differential
equations. Plant states are estimated using both numerical
methods and state feedback controller calculated in system
generator. Comparison for hardware resource utilization is
done to implement observer using both methods. In Section II
theory for linear observer, Euler and RK-2 method is given.
Implementation and results are discussed in Section III.
Hardware co-simulation results are concluded in Section IV.

II. THEORY

Adopting this point of view, that an approximate state
vector will be substituted for the unavailable state, results in
the decomposition of a control design problem into two
phases. The first phase is design of the control law assuming
that the state vector is available. The second phase is the

FPGA Implementation of Linear Observer

Ravindra S. Rana and Bharti Kumari

International Journal of Future Computer and Communication, Vol. 3, No. 1, February 2014

14

A. Linear Observer
It is often convenient when designing feedback control

systems to assume initially that the entire state vector of the
system to be controlled is available through measurement.
Thus for the linear time-invariant system governed

),()(txButAxx += (1)

where x(t) is an 1×n state vector, u(x, t) is an 1×m input
vector, A is an nn × system matrix, and B is an mn×
distribution matrix, one might, design a feedback law of the
form

u(x, t) = -Kx(t) (2)

Which could be implemented if x(t) were available. This is,
for example, precisely the form of control law that resu1ts
from design techniques that place poles at pre-specified
location and from other technique that, insure stability and in
some sense improve system performance.

If the entire state vector cannot be measured, as is typical
in most complex systems, the control law deduced in the form
u(x, t) = -Kx(t) cannot be implemented. Thus either a new
approach that, direct accounts for the nonavailabi1ity of the
entire state vector must be devised, or a suitable
approximation to the state vector must be determined that can
be substituted into the control law. In almost every situation
the latter approach, that of developing and using an
approximate state vector, is vastly simpler than a new direct
attack on the design problem.

DOI: 10.7763/IJFCC.2014.V3.258

design of a system that produces an approximation to the
state vector. Such system in a deterministic setting is called
an observer. The observer is a dynamic system whose
characteristics are somewhat free to be determined by the
designer, and it is through its introduction that dynamics
enter the overall two-phase design procedure when the entire
state is not available.

The observer is governed by

)ˆ(),()(ˆˆ yyLtxButxAx −++= (3)

where y available measured output, ŷ estimated output, L
user designed constant gain matrix, x̂ estimated states.
Observer can be designed to have arbitrary dynamics if the
original system is completely observable. System is
completely observer if the matrix

])([1CACAC n ′′′′′ −

B. Euler Method
Euler's method is the simplest approach to computing a

numerical solution of an initial value problem. However, it
has about the lowest possible accuracy. If we wish to
compute very accurate solutions, or solutions that are
accurate over a long interval, then Euler's method requires a
large number of small steps. Consider the first order
differential equations:

)ˆ(ˆˆ 121 yyLxx −+= (4)

)ˆ(),(ˆˆˆ 222112 yyLtxbuxaxax −++−−= (5)

Combining above two equations in matrix form,

)ˆ(ˆˆ yyLbuxAx −++= (6)

where A = ⎥
⎦

⎤
⎢
⎣

⎡
−− 11

10
aa

 , B = ⎥
⎦

⎤
⎢
⎣

⎡
b
0

 , L = ⎥
⎦

⎤
⎢
⎣

⎡

2

1

L
L

 , ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

ˆ
ˆ

ˆ
x
x

x

Starting at some time to, the value of)(ˆ 0 htx + can then be

approximated by the value of)(ˆ 0tx plus the time step
multiplied by the slope of the function, which is the
derivative of)(ˆ 0tx

))(ˆ,()(ˆ)(ˆ 00 txthftxhtx +≈+ (7)

where h = step size

We will call this approximate value x̂∗

111 ˆˆ kxx +=∗ (8)

222 ˆˆ kxx +=∗ (9)
)}ˆ(ˆ{ 121 yyLxhk −+= (10)

)}ˆ(ˆ)(ˆ){(22221112 yyLrxkaxkahk −++−−+−−= (11)

For numerical solutions of an initial value problem there
are two ways to measure the error. The first is the error of
each step. This is called the Local Truncation Error or LTE.
The other is the total error for the whole interval [a, b]. We
call this the Global Truncation Error or GTE. For the Euler
method the LTE is of order)(2hO , i.e. the error is

comparable to 2h . We can roughly get the GTE from the
LTE by considering the number of steps times the LTE. For
any method, if [a, b] is the interval and h is the step size, then

h
abn)(−= is the number of steps. Thus for any method, the

GTE is one power lower in h than the LTE. Thus the GTE for
Euler is)(hO .

Suppose that you need to solve an IVP with an error of less
than .10 4− If you use the Euler method, which has GTE of
order O(h), then you would need 410−≈h . So you would
need about 410)(−×−≈ abn steps to find the solution.

C. Runge Kutta 2 Method
The RK2 method acts to increase the accuracy by getting a

more accurate estimate for the slope throughout the interval.
In this case the GTE is)(2hO , so we would need to use

210−≈h . This would require about 210
)(abn −= steps.

The equations are then:

),(1 nn yxhfk = (12)

)
2
1,

2
1(12 kyhxhfk nn ++= (13)

)(2
21 hOkyy nn ++=+ (14)

Let, the same system as shown in equation (6), We will call
this approximate value x̂∗

2111 ˆˆ kxx +=∗ (15)

2222 ˆˆ kxx +=∗ (16)
)}ˆ(ˆ{ 1211 yyLxhk −+= (17)

)}ˆ(
2
1ˆ{ 111221 yyLkxhk −++= (18)

)}ˆ(ˆ)(ˆ){(222211112 yyLrxkaxkahk −++−−+−−= (19)

)}ˆ(
2
1ˆ(

)()
2
1ˆ)({(

2122

221111122

yyLrkx

kakxkahk

−+++

−−++−−=
 (20)

When the time step was increased the position error
exhibited sigmoidal behavior and with further increase,
gathered error approximately linearly with time. Thus, time
steps in the range of ten times greater than the Euler’s can be
used while preserving a reasonable degree of accuracy. Thus
the real advantage of higher order methods is that they can
run a lot faster at the same accuracy. This can be especially
important in applications where one is trying to make
real-time adjustments based on the calculations. Such is often
the case in robots and other applications with dynamic
controls.

International Journal of Future Computer and Communication, Vol. 3, No. 1, February 2014

15

has rank n. If an nn × matrix A and nm× matrix C satisfy
this condition we shall say pair (C, A) is completely
observable.

III. IMPLEMENTATION AND RESULT
The selection of the word size is up to the designer and is to

be chosen by considering both the system properties (such as
feedback resolution) as well as the features of the
implementation method.

Depending on the accuracy needed either for a given
system simulation or for ODE solving, we can define a
specific data type for modules and basic elements. For each
basic element such as subtraction, addition and multiplier we
define a fix-point data type with proper “integer” and
“precision” ranges.

The MSB (most significant bit) bit is for sign, and for
subtraction we use the 2’s complement method. We use 32
bits for sign registers and storing the values. All components
are synchronal and the system is operated by a common clock.
At its most basic level, a DSP48 is a multiplier with a
combination of adders and many optional operations. It has a
32-bit sign input signal and a 64-bit sign output result. This
result is then converted to 32-bits. For implementing a system
simulation or solving an ODE by a flow diagram, we need
some basic and fundamental arithmetic components, such as
summation, subtraction, and multiplier.

Still now, there is no general purpose architecture for
solving any type of ODE equations [7], but we propose a
method for designing a system and solving ODEs in a straight
forward process (flow diagram). The flow diagram is
consisting of many basic elements that are coupled together.
Fig.1 shows a flow diagram for solving the so-called linear
observer equation (see Equation (18) and (19)).

Fig. 1. Flow Diagram.

TABLE I: RESOURCES USED FOR IMPLEMENTING A 32-BIT ODE SOLVER
FOR LINEAR OBSERVER EQUATION

S. No. Devices EULER RK-2
1 DSP48Es (128) 26 32

2 Slice LUT- Flip Flop
pairs (44800) 1296 1118

3 Slice LUTs
(44800) 977 1059

4 route-thrus (89,600) 118 200

Pipeline registers are a unique advantage of the DSP48

block compared to other FPGA DSP architectures [8]-[10].
Xilinx has dedicated many DSP48 slice in Virtex-5 family
for speeding-up of calculations. The number of resources
used after synthesis for solving the Euler and RK-2 equations
in terms of DSP48 slices, Flip-Flop slices and LUT Slices is

shown in the Table I.
As shown in Table II RK-2 uses more multipliers, adders

etc. compared to Euler method. In Euler method, stable
estimated states are available after 7 clock cycles where as
using RK-2, it takes 10 clock cycles. State feedback
controller uses that estimated states to generate control action,
hence in RK-2 method control signal also delayed by 3 clock
cycle compared to Euler method.

TABLE II: SYNTHESIS REPORT
S. No. Devices EULER RK-2

1 Multipliers 8 11
2 Adder 8 10
3 Subtracter 1 1
4 Register(64 bit) 24 33
5 1- bit Xor 27 33

Fig. 2. Experimental setup.

Fig. 3. Shows the observer hardware co-simulation response using euler

method.

Fig. 4. Shows the observer hardware co-simulation response using RK-2

method

Fig. 5. Shows the observer hardware co-simulation response using Euler
method

)}ˆ(
2
1ˆ{ 111221 yyLkxhk −++=

1121 2
3 hkk =

z

12211122 ktktk ×+×=

)(
2

1),(
2 112111 kahtkaht −−+=−−=

International Journal of Future Computer and Communication, Vol. 3, No. 1, February 2014

16

Fig. 6. Shows the observer hardware co-simulation response using RK-2

method

IV. CONCLUSION
In this paper we implement Euler and RK-2 method for

linear observer. We have compared the implementation
results with respect to accuracy, complexity and resources
utilized to implement linear observer on FPGA. From the
results, we conclude that RK-2 method gives better accuracy
but utilizes more resources of FPGA compared to Euler
method.

[1] J. U. Cho, Q. N. Le, and J. W. Jeon, “An FPGA-Based Multiple-Axis
Motion Control Chip,” IEEE Trans. on Industrial Electronics, vol. 56,
no. 3, pp. 856-870, March 2009.

[2] Y. S. Kung, R. F. Fung, and T. Y. Tai, “Realization of a Motion Control
IC for X-Y Table Based on Novel FPGA Technology,” IEEE Trans. on
Industrial Electronics, vol. 56, no. 1, pp. 43-53 Jan. 2009

[3] B. F. Mullins. A Guide to Solving Simple Ordinary Differential
Equations (ODE’s). [Online]. Available:
http://www.physics.utoronto.ca/~poptor/Com00/ODEGuide.pdf

[5]

Y. F. Chan, M. Moallem, and W. Wang, “Efficient implementation of
PID control algorithm using FPGA technology,” in Proc. of 43rd IEEE
Conference on Decision and Control, vol. 5, pp. 4885-4890, Dec 2004.

[6]

Y. D. Tao, H. Lin, Y. Hu, X. H. Zhang, and Z. C. Wang, “Efficient
implementation of CNC Position Controller using FPGA,” in Proc. of
6th IEEE International Conference on Industrial Informatics (INDIN
2008), pp.1177-1182, 13-16, July 2008.

[7]

A. Stoica, X. Guo, R. S. Zebulum, D. Keymeulen, and M. I. Ferguson.
On-chip evolutionary synthesis of reconfigurable analog computing
circuits. [Online]. Available:
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/6434/1/030281.pdf

[8]

D. Phanthavong, “Designing with DSP48 Blocks Using Precision
Synthesis,” Mentor Graphics Corporation, 2005.

 Ravindra S. Rana belongs to Mehsana, Gujrat

(India). He graduated in Bachelors of Engineering,
Instrumentation and Control discipline from
Gujrat University in 2010 and then completed his
Masters in Process Instrumentation from College
of Engineering Pune, India in 2012.
As a student he has worked in digital control
systems. His research interest includes design of
advanced controllers and Observer-controller
combinations for uncertain systems.

Bharti Kumari belongs to Mumbai (India). She
graduated in Bachelors of Engineering,
Instrumentation and Control discipline from Pune
University in 2010 and then completed her
Masters in Process Instrumentation from College
of Engineering Pune, India in 2012.

As a student she has worked on fuel cell for
Master’s Thesis from her college, in association
with NCL Pune. Her research interests include
fuel cell and its control.

International Journal of Future Computer and Communication, Vol. 3, No. 1, February 2014

17

REFERENCE

[4] B. R. Mutlu, U. Yaman, M. Dolen, and A. B. Koku, “Performance
evaluation of different real-time motion controller topologies
implemented on a FPGA,” in Proc. International Conference on
Electrical Machines and Systems, 2009, pp. 1-6, 15-18, Nov 2009.

[9] G. S. Hyalij, A. U. Deshpande, P. D. Shendge, B. M. Patre, “Real
 Time Implementation of Time Delay Controller for DC Motor Speed
Control,” International Journal of Recent Trends in Engineering, vol.
1, no. 3, May 2009.

[10] V. Subasri, K. Lavanya, and B. Umamaheswari, “Implementation of
 Digital PID controller in Field Programmable Gate Array (FPGA),”
 in Proc. International Conference on Power Electronics, 2006

