
  

  
Abstract—This paper proposes implementation of linear 

observer and full state feedback controller using pole placement 
method for second order system. System consists of two 1st 
order differential equations, solved using Euler and Runge 
Kutta-2(RK-2) method and linear observer implemented on 
FPGA Vietex-5 platform. Sampling rate of 0.1 millisecond is 
achieved for hardware co-simulation of linear observer. Direct 
comparison of resource utilisation to implement linear observer, 
accuracy and complexity for Euler and RK-2 methods is 
presented. 
 

Index Terms—FPGA, linear observer, euler, runge kutta-2, 
system generator. 

 

I. INTRODUCTION 
FPGAs have become more resourceful with recent 

developments in VLSI technology. It has qualities such as 
parallel processing capability, high sampling rates, flexibility 
in design and reliability. Not surprisingly, FPGA chips 
appear more frequently in controller designs [1], [2]. Solving 
ordinary differential equations is essential in control field [3]. 
Now in embedded world one of the important ways is use of 
an FPGA which is suitable for fast implementation and quick 
hardware verification. The FPGA consists of three major 
configurable elements: configurable logic blocks (CLBs) 
arranged in an array that provide the functional elements and 
implements most of the logic in an FPGA, input-output 
blocks (IOBs) that provide the interface between the package 
pins and internal signal lines, and programmable interconnect 
resources that provide routing path to connect inputs and 
outputs of CLBs and IOBs onto to the appropriate network. A 
digital design can be created by using schematic digital 
design editor that uses graphic symbols of the circuit or by 
using hardware description languages such as Verilog, Very 
High Speed Integrated Circuit Hardware Description 
Language (VHDL).  

Controller algorithms could be implemented on FPGAs 
with a combination of hardwired logic and a floating point 
arithmetic unit (FPU) without the use of an embedded 
processor in the design [4]. Chan et al [5] have conducted a 
study on PID controller implementation on an FPGA and 
they managed to decrease the resources required by a 
multiplier-based design significantly. What they propose is to 
replace the multipliers by a distributed arithmetic based 
design utilizing look up tables and they managed to decrease 
the resource requirement down to 4 to 13% of the former 
design. However they increased the computation time from 1 
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cycle to 13 to 26 cycles. A very similar study by Tao et al [6] 
managed to decrease the logic element requirement from 
51.7% to 0.8-1.5%, increasing the computation cycle from 1 
to 64-33 cycles. 

In this paper an approach to implement linear observer 
with state feedback controller is proposed for 2nd order plant. 
Euler and RK-2 methods are used to solve differential 
equations. Plant states are estimated using both numerical 
methods and state feedback controller calculated in system 
generator. Comparison for hardware resource utilization is 
done to implement observer using both methods. In Section II 
theory for linear observer, Euler and RK-2 method is given. 
Implementation and results are discussed in Section III. 
Hardware co-simulation results are concluded in Section IV. 

 

II.   THEORY 

 

 

 
 
 

 

 

Adopting this point of view, that an approximate state 
vector will be substituted for the unavailable state, results in 
the decomposition of a control design problem into two 
phases. The first phase is design of the control law assuming 
that the state vector is available. The second phase is the 
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A. Linear Observer  
It is often convenient when designing feedback control 

systems to assume initially that the entire state vector of the 
system to be controlled is available through measurement. 
Thus for the linear time-invariant system governed  

   ),()( txButAxx +=                         (1) 

where x(t) is an 1×n  state vector, u(x, t) is an 1×m  input 
vector, A is an nn ×  system matrix, and B is an mn×
distribution matrix, one might, design a feedback law of the 
form 

u(x, t) = -Kx(t)             (2) 

Which could be implemented if x(t) were available. This is, 
for example, precisely the form of control law that resu1ts 
from design techniques that place poles at pre-specified 
location and from other technique that, insure stability and in 
some sense improve system performance. 

If the entire state vector cannot be measured, as is typical 
in most complex systems, the control law deduced in the form 
u(x, t) = -Kx(t) cannot be implemented. Thus either a new 
approach that, direct accounts for the nonavailabi1ity of the 
entire state vector must be devised, or a suitable 
approximation to the state vector must be determined that can 
be substituted into the control law. In almost every situation 
the latter approach, that of developing and using an 
approximate state vector, is vastly simpler than a new direct 
attack on the design problem. 
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design of a system that produces an approximation to the 
state vector. Such system in a deterministic setting is called 
an observer. The observer is a dynamic system whose 
characteristics are somewhat free to be determined by the 
designer, and it is through its introduction that dynamics 
enter the overall two-phase design procedure when the entire 
state is not available. 

The observer is governed by 

)ˆ(),()(ˆˆ yyLtxButxAx −++=                (3) 

where y available measured output, ŷ estimated output, L 
user designed constant gain matrix,  x̂  estimated states. 
Observer can be designed to have arbitrary dynamics if the 
original system is completely observable. System is 
completely observer if the matrix  
 

])([ 1CACAC n ′′′′′ −    
 

 

B.  Euler Method   
Euler's method is the simplest approach to computing a 

numerical solution of an initial value problem. However, it 
has about the lowest possible accuracy. If we wish to 
compute very accurate solutions, or solutions that are 
accurate over a long interval, then Euler's method requires a 
large number of small steps. Consider the first order 
differential equations: 
 

)ˆ(ˆˆ 121 yyLxx −+=                 (4) 

)ˆ(),(ˆˆˆ 222112 yyLtxbuxaxax −++−−=       (5) 
 

Combining above two equations in matrix form, 
 

)ˆ(ˆˆ yyLbuxAx −++=              (6) 
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Starting at some time to, the value of  )(ˆ 0 htx +  can then be 

approximated by the value of  )(ˆ 0tx  plus the time step 
multiplied by the slope of the function, which is the 
derivative of  )(ˆ 0tx   

 
))(ˆ,()(ˆ)(ˆ 00 txthftxhtx +≈+            (7) 

 
where h = step size 

We will call this approximate value x̂∗   
 

111 ˆˆ kxx +=∗           (8) 

222 ˆˆ kxx +=∗          (9) 
)}ˆ(ˆ{ 121 yyLxhk −+=       (10) 

)}ˆ(ˆ)(ˆ){( 22221112 yyLrxkaxkahk −++−−+−−=  (11) 

For numerical solutions of an initial value problem there 
are two ways to measure the error. The first is the error of 
each step. This is called the Local Truncation Error or LTE. 
The other is the total error for the whole interval [a, b]. We 
call this the Global Truncation Error or GTE. For the Euler 
method the LTE is of order )( 2hO , i.e. the error is 

comparable to 2h . We can roughly get the GTE from the 
LTE by considering the number of steps times the LTE. For 
any method, if [a, b] is the interval and h is the step size, then 

h
abn )( −=  is the number of steps. Thus for any method, the 

GTE is one power lower in h than the LTE. Thus the GTE for 
Euler is )(hO . 

Suppose that you need to solve an IVP with an error of less 
than .10 4−  If you use the Euler method, which has GTE of 
order O(h), then you would need 410−≈h . So you would 
need about 410)( −×−≈ abn   steps to find the solution. 

C.  Runge Kutta 2 Method 
The RK2 method acts to increase the accuracy by getting a 

more accurate estimate for the slope throughout the interval. 
In this case the GTE is )( 2hO , so we would need to use 

210−≈h . This would require about 210
)( abn −=   steps.  

The equations are then: 

),(1 nn yxhfk =          (12) 

)
2
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)( 2
21 hOkyy nn ++=+        (14) 

Let, the same system as shown in equation (6), We will call 
this approximate value x̂∗
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When the time step was increased the position error 
exhibited sigmoidal behavior and with further increase, 
gathered error approximately linearly with time. Thus, time 
steps in the range of ten times greater than the Euler’s can be 
used while preserving a reasonable degree of accuracy. Thus 
the real advantage of higher order methods is that they can 
run a lot faster at the same accuracy. This can be especially 
important in applications where one is trying to make 
real-time adjustments based on the calculations. Such is often 
the case in robots and other applications with dynamic 
controls. 
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has rank n. If an nn ×  matrix A and nm×  matrix C satisfy 
this condition we shall say pair (C, A) is completely 
observable. 



  

III.  IMPLEMENTATION AND RESULT 
The selection of the word size is up to the designer and is to 

be chosen by considering both the system properties (such as 
feedback resolution) as well as the features of the 
implementation method. 

Depending on the accuracy needed either for a given 
system simulation or for ODE solving, we can define a 
specific data type for modules and basic elements. For each 
basic element such as subtraction, addition and multiplier we 
define a fix-point data type with proper “integer” and 
“precision” ranges. 

The MSB (most significant bit) bit is for sign, and for 
subtraction we use the 2’s complement method. We use 32 
bits for sign registers and storing the values. All components 
are synchronal and the system is operated by a common clock. 
At its most basic level, a DSP48 is a multiplier with a 
combination of adders and many optional operations. It has a 
32-bit sign input signal and a 64-bit sign output result. This 
result is then converted to 32-bits. For implementing a system 
simulation or solving an ODE by a flow diagram, we need 
some basic and fundamental arithmetic components, such as 
summation, subtraction, and multiplier. 

Still now, there is no general purpose architecture for 
solving any type of ODE equations [7], but we propose a 
method for designing a system and solving ODEs in a straight 
forward process (flow diagram). The flow diagram is 
consisting of many basic elements that are coupled together. 
Fig.1 shows a flow diagram for solving the so-called linear 
observer equation (see Equation (18) and (19)). 

 
Fig. 1. Flow Diagram. 

TABLE I: RESOURCES USED FOR IMPLEMENTING A 32-BIT ODE SOLVER 
FOR LINEAR OBSERVER EQUATION 

S. No. Devices EULER RK-2
1 DSP48Es (128) 26 32 

2 Slice LUT- Flip Flop 
pairs (44800) 1296 1118

3 Slice LUTs 
(44800) 977 1059

4 route-thrus (89,600) 118 200 
 
Pipeline registers are a unique advantage of the DSP48 

block compared to other FPGA DSP architectures [8]-[10]. 
Xilinx has dedicated many DSP48 slice in Virtex-5 family 
for speeding-up of calculations. The number of resources 
used after synthesis for solving the Euler and RK-2 equations 
in terms of DSP48 slices, Flip-Flop slices and LUT Slices is 

shown in the Table I. 
As shown in Table II RK-2 uses more multipliers, adders 

etc. compared to Euler method. In Euler method, stable 
estimated states are available after 7 clock cycles where as 
using RK-2, it takes 10 clock cycles. State feedback 
controller uses that estimated states to generate control action, 
hence in RK-2 method control signal also delayed by 3 clock 
cycle compared to Euler method.    

TABLE II: SYNTHESIS REPORT  
S. No. Devices EULER RK-2

1 Multipliers 8 11 
2 Adder 8 10 
3 Subtracter 1 1 
4 Register(64 bit) 24 33 
5 1- bit Xor 27 33 

 

 
Fig. 2. Experimental setup. 

 
Fig. 3. Shows the observer hardware co-simulation response using euler 

method. 

 
Fig. 4. Shows the observer hardware co-simulation response using RK-2 

method 

 

Fig. 5. Shows the observer hardware co-simulation response using Euler 
method 
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Fig. 6. Shows the observer hardware co-simulation response using RK-2 

method 

 

IV. CONCLUSION 
In this paper we implement Euler and RK-2 method for 

linear observer. We have compared the implementation 
results with respect to accuracy, complexity and resources 
utilized to implement linear observer on FPGA. From the 
results, we conclude that RK-2 method gives better accuracy 
but utilizes more resources of FPGA compared to Euler 
method. 
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