
  

  
Abstract—Mining association rules is one of the most 

important and popular task in data mining. Current researches 
focus on discovering frequent itemsets that is an important step 
to it. Many algorithms for discovering frequent itemsets have 
been proposed. However, for a large database, an efficient 
mining algorithm must be a better balance in I/O cost and main 
memory load. Most traditional algorithms, like Aprioir 
[Agrawal, 1993], often take higher I/O cost because of 
multi-scan over the analyzed database. There have been a few of 
algorithms, like FP-Tree [Han, 2000], use a limited pass 
numbers to databases, but they could suffer from the shortage 
of main memory as there does not consider time constraints to 
association rules. In the paper, we first discuss the problem of 
mining temporal association rules in databases. Then, we create 
the necessary sub-operators between itemsets and interval 
operators between time intervals to mine temporal association 
rules. Finally, a new algorithm called MTAR_Sub for mining 
temporal association rules is designed and discussed. 
 

Index Terms—Association rule, data mining, frequent 
itemset, network traffic, temporal constraint. 
 

I. INTRODUCTION 
The Problem of mining association rules has widely been 

discussed since 1993[1]. The aim of mining association rules 
is to identify relationships between items in such databases as 
market basket databases. Many supermarkets, for example, 
need a better understanding of individuals' purchasing habits 
through customer transaction databases. To make a good 
decision, the uses of this information vary, including 
preparing purchasing plans, designing personalized 
marketing campaigns, organizing product placements and 
determining the timing of product promotions [1]. Similar 
facts may hides in network traffic, spatial or medical 
databases [2].  

As far as is network traffic data is concerned, a traffic 
record in the network traffic data is always made up of some 
useful values related to specific network attributes, e.g. the 
source IP address, the destination IP address, the source IP 
port, the destination IP port, the protocol type, the begin time, 
and the end time. Mining association rules from the network 
traffic data can help find out the regular patterns hides in 
network interaction activities. 

Indeed, many algorithms have been designed in the 
literatures for mining association rules. However, most 
previous algorithms have two key weaknesses. The first is 
that they require multi-pass the database, which would result 
in a bigger I/O cost. The second is that they simply see a 

 
Manuscript received March 9, 2013; revised May 6, 2013. This work was 

supported in part by the CHINA National Science Foundation under Grant 
61273293 and the Discipline Construction Foundation of CUFE.  

Guojun Mao is with the School of Information, Central University of 
Finance & Economics, Beijing, China, 100081 (e-mail: 
maximmao@hotmail.com). 

transaction as an itemset such that the appearing or ending 
time of an itemset is ignored. Mining in such data as network 
traffic ones need fight the above two weaknesses. First, the 
traffic data in a network system is relatively large, so it is 
necessary to use more efficient algorithms rather than 
multi-scan methods. Second, whether or not an association 
rule is available should be considered in the specific time 
intervals. 

In fact, considering a format of traffic records such that 
<SIP, DIP, Sp, Dp, Pro, Interval>, respectively denote  the 
source IP address, the destination IP address, the source IP 
port, the destination IP port, the protocol type and the 
durative time interval, we can handle it as follows: 

 
 According to <SIP, DIP, Sp, Dp, Pro >, all records can 

be divided into the different analyzing objects.  Such an 
object can be seen as term item as in transaction 
databases.   

 Attribute Interval reflects the time-related character of a 
record. This can help discover temporal association 
rules.  
 

In this paper, we design a one-scan algorithm, and based 
on this algorithm, we describe MTAR_Sub, an algorithm for 
mining temporal association rules by using sub-operators 
between itemsets in the database.    

The rest of this paper is organized as follows. In Section II, 
we give some concept descriptions such as the temporal 
association rule, and analyze precious relative work. Section 
III introduces a one-scan algorithm MAR_Sub that is based 
on sub-belong operator between itemsets. Section IV 
describe and interpret our new algorithm called MTAR_Sub, 
which may effectively mine time-related frequent itemsets in 
large databases. The performances of these algorithms are 
discussed in Section V. 

 

II. PROBLEM DESCRIPTION 

Based on Literature [1], this section gives the descriptions 
of temporal association rule and so on. 

Considering a time-related transaction database D = {di}, 
each transaction di has be organized into two attributes values 
related to the attributes of interval and itemset, respectively 
represents durative time interval and inclusion items of this 
transaction. Let I be an investigated set of items, and T be an 
interested time interval. Supposed for each tuple in D, its 
itemset contains in I and its interval falls in T, an temporal 
association rule in D is an implication of the form x => y in [t1, 
t2], where x, y ⊂ I, x ∩ y, and [t1, t2] ⊂ T is the time interval 
that x => y is available. 

A. Measures 
In general, mining association rules can be decomposed 

into two sub-problems, i.e. discovering frequent itemsets by 

Mining Temporal Association Rules in Network Traffic 
Data 

Guojun Mao  

International Journal of Future Computer and Communication, Vol. 3, No. 1, February 2014

55DOI: 10.7763/IJFCC.2014.V3.267



  

the support measure and creating association rules by the 
confidence measure. So is to mine the temporal association 
rules. 

Given an itemset x ⊆ I and time interval [t1, t2], the support 
count of x in [t1, t2] is defined as the number of transactions 
that contain x and occur during [t1, t2] in D, and the support of 
x in [t1, t2], support (x, [t1, t2]), is defined as the ratio of its 
support count to the number of transactions that occur during 
[t1, t2] in D. A temporal association rule can hold confidence 
(x => y, [t1, t2]), the confidence measure can be calculated by 
support(x union y, [t1, t2]) / support(x, [t1, t2]).  

The problem of mining temporal association rules is to 
find all association rules in the database that satisfies at least 
three user-specified constraints: minimum support, minimum 
confidence and time interval. 

B. Previous Work 
While generating rules after obtaining frequent itemsets is 

relatively straightforward, discovering frequent itemsets 
from a database is a more important and various task, and so 
more efforts were taken in mining frequent itemsets in 
databases. Apriori has been considered as the most classical 
algorithm for discovering frequent itemsets [1]. In order to 
make use of the limited main memory, Apriori algorithm 
employs an iterative approach to generate frequent itemsets. 
A frequent itemset with the size k can be generated just after 
all frequent itemsets with the size k-1 are found. Obviously, 
Apriori is multi-scan mining algorithm into the databases, so 
its I/O burden is a big problem. 

After Apriori, some new techniques were used to improve 
mining efficiency. For example, [3] uses partition technique 
to divide the database into a series of smaller dataset; [4] 
applies hash method to reduce the time of calculating the 
support measure; and [5] uses sampling method to reduce the 
size of the mined database. Obviously, this kind of 
algorithms cannot get expected mining efficiency because 
they still have to do multi-scan over the database.  

FP-Tree [6] is the first algorithm that mines frequent 
itemsets without generating candidate itemsets. It converts 
the information from the database into a tree in main memory 
and makes it possible to mine association rules by one or two 
passes over databases.  

Instant [7] presents a real one-scan algorithm to the 
database. It makes use of two linear data structures in main 
memory to make discovering frequent itemsets more efficient. 
Indeed, with increasing the sizes of databases, Instant will be 
faced with new challenge. This paper will design the new 
algorithm for mining rules from larger databases by using 
temporal constraints. 

Constraints can make the mining more effective and more 
efficient [8, 9]. If a database holds temporal attributes, they 
often play a critical role in processing information from the 
database [10]. In general, a specific user is always interested 
in the data within the specified time intervals rather than the 
full database. Also, an association rules can be available 
during specific a time interval. Therefore, making use of 
temporal constraints can become a better choice to some 
applications for mining associate rules in large databases. 

III. ONE-SCAN ALOGORITHM 
Neglecting the other factors such as appearing time, a tuple 

in a transaction database can simply be seen as an itemset, 
and so all transactions in the database can be seen as a set of 
itemsets. Behind our one-scan algorithm, we find out a new 
operator between itemsets, called sub-belong, rather than a 
traditional set operator.  

Definition 1(sub-belong operator). Let I = {i1, i2, … , im} 
be a set of items which determines the scope of items in the 
discussed project. Let x be an itemset with x ⊂  I, and Y be a 
set of itemsets that each itemset is contained in I. We define x 
sub-belongs to Y if x is contained by any itemset in Y, i.e. ∃ y 
∈ Y: x ⊆ y, denoted by x ∈sub Y. 

Example 1. If Y1 = {AB, CD} and Y2 = {ABCD, AD}, then 
according to the traditional set operator, AB ∈ Y1, but we 
cannot say AB ∈ Y2. However, as AB is a sub-itemset of 
itemset ABCD, then we can say AB ∈sub Y2.  

This operator between itemsets can make discovering 
frequent itemsets in databases more simple and efficient, so 
we will make use of it to construct our one-scan mining 
algorithm called MAR_Sub. 

MAR_Sub employs two main data structures in the 
memory called SIS and SIS* to record related sets.  The 
notation of some important structures is given in Table I. 
Algorithm 1 is pseudo-code of MAR_Sub. 

 
TABLE I: THE DATA OBJECTS FOR THE ALGORITHM 

Name Meanings 

SIS 
 
SIS* 
 
Support( IS) 

The set of itemsets obtained by scanning the 
database D that are useful in the future to 
MAR_Sub 
The set of frequent and available itemsets 
produced by MAR_Sub 
The support measure of itemset IS 

 
Algorithm 1.  MAR_Sub: Mining Association Rules with 

Sub-operators  
1)  input (min-support);  
2)  SIS ← Ø; SIS* ← Ø;  
3)  for all d∈D  do begin 
4)  IS ←  itemset of d;  
5)  Join (IS, SIS);  
6)   make_fre (IS, SIS, SIS*, min-support) ;  
7)  end 
8)  Answer←SIS*. 
 
In Algorithm 1, each of iterations is related with a tuple of 

the database and consists of three phases: 
 
 An itemset (called IS) is abstracted from the tuple of the 

database.  
 IS is tested and can be inserted into SIS, and its support 

can be recalculated when it is necessary.  
 SIS* can be updated through IS, new SIS and given 

min-support.  
 

We first discuss Procedure join(IS, SIS). If IS has not been 
in SIS, This process puts IS into SIS, and recalculates its 
support measure support(IS). That is: 

 
 If IS ∉ SISold, insert IS into SIS, support(IS) =1/ |D|;  

International Journal of Future Computer and Communication, Vol. 3, No. 1, February 2014

56



  

 If IS ∈ SISold, support(IS) = support(IS) old +1/ |D|. 
 
Procedure make_fre(IS, SIS, SIS*, min-support)  tries to 

find sub-itemsets of IS which can become new frequent ones. 
Its core idea is based on the following: ∀ IS* ∈sub {IS}, IS* 
may become a new frequent itemset if support (IS*) > 
min-support. Additionally, to reduce the size of SIS in 
memory, we insert such IS* only when IS does not exist in 
SIS*, and such a processing is effective and complete [1]. 

Procedure 1 gives the pseudo-code of make_fre(IS, SIS, 
SIS*, min-support). 

Procedure 1.  make_fre( IS, SIS, SIS*, min-support) 
for all IS*∈sub {IS} do begin 
    support (IS*) ← 0;  
    for all s∈ SIS do  
       if IS*∈sub{s} support(IS*)←support(IS*)+support 

(s); 
    if support (IS*) >= min-support 
       if IS*∉sub SIS*  do begin 
         prune(IS*, SIS*); //see the following Procedure 2 
         insert IS* into SIS*; 
       end 
  prune(IS*, SIS); //see  Procedure 2 
end; 
 
In Procedure 1, Procedure prune() are called to reduce 

memory usages. According to the Lemma in [1], all 
sub-itemsets of a frequent itemset are definitely frequent.  
Therefore, we only keep such frequent itemsets that are not 
contained by any other itemset in SIS*. It is reasonable to 
prune the sub-itemsets of IS* in SIS* before IS* is inserted 
into SIS*. Obviously, when IS* is frequent, its sub-itemsets 
should also be cut from SIS. This is because that since IS* is 
frequent, it and its sub-itemsets are surely frequent and so 
they no longer need to be checked in the future. These jobs 
can be done by using the above sub-belong operator. That is, 
for each itemset x in X, if x ∈sub {y}, then we can call 
Procedure prune(y, X) to delete x from X, and its description 
is omitted here 

Example 2. Given the transaction database shown in Table 
II. Table III provides the processing details by using 
MAR_Sub, where min-support = 40%, i.e. minimum support 
count is 2, and (ABCD, 1) represents that the itemset is 
ABCD and its support count is 1.  

 

IV. MTAR_SUB ALGORITHM 

In this section, we will discuss mined temporal association 
rules from the transaction databases with the temporal 
attributes. Such databases can be used as the particular kind 
of data organizations such as network traffic records.  

Table IV gives such a database sample that contains the 
attributes of interval and itemset. Such databases can be 
derived from original network traffic datasets.  

From such databases shown as Table IV, we can mine the 
temporal association rules as stated in Section 2.1. Note that 
the value of each interval attribute in Table IV has been 
formatted into an integer-interval to process in a normal way, 

and its implementation is easy to computers, so here its 
processing detail is omitted. 

 
TABLE II: THE DATA SAMPLE 

No. Items 
1 
2 
3 
4 
5 

A, B, C, D 
B, C, E 
A, B, C, E 
B, D, E 
A, B, C, D 
 

TABLE III: PROCESS OF THE SAMPLE 
# IS SIS SIS* 
0  Ø Ø 

1
2
3
4
5

ABCD
BCE 
ABCE 
BDE 
ABCD

{(ABCD, 1) } 
{(ABCD, 1) , (BCE, 1) } 
{(ABCD, 1) , (ABCE, 1) } 
{(ABCD, 1) , (ABCE, 1) , (BDE, 1) } 
{(ABCE, 1) , (BDE, 1) } 

Ø 
{BC} 
{BCE} 
{BCE, BD} 
{BCE, 
ABCD} 

 
TABLE IV: THE SAMPLE WITH TIME ATTRIBUTE 

No.1 Interval Itemset 
1 [10,50] 

[30,60] 
[70,80] 
[70,120] 
[70,90] 
[300,500] 

A, B, C, D 
B, C, E 
A, B, C, E 
B, D, E 
A, B, C, D 
A, B, C, D,E 

2 
3 
4 
5 
6 

 
Table IV considers such a database with the attributes 

interval and itemset, respectively provide interesting time 
interval and collected itemset within this interval. As far as 
interesting time interval is concerned, we need consider both 
user time focus and real data in the database. If the user 
specifies a time interval called Tuser, then for any itemset in 
the database, the interesting time intervals should be fell in 
Tuser.  For example, for Table IV, if Tuser = [20, 100], the 
interesting time interval of itemset ABCD should be [20, 90]. 
Following with this idea, we first give two operators between 
time intervals which are going to be used to preprocess time 
intervals before mining temporal association rules. 

 
Definition 2 (Interval operators).  Let t1 = [t1

-, t1
+] and t2 

= [t2
-, t2

+] be two variables of time intervals, then we define: 
 
 interval intersection(∏): If t1

+ >= t2
- or t2

+ >= t1
-, then 

t1∏ t2 =  [max(t1
-, t2

-), min(t1
+, t2

+)]; others, t1 ∏ t2 =Ø. 
  interval union (∑): If t1

+ >= t2
- or t2

+ >= t1
-, then t1 ∑ t2 = 

[min(t1
-, t2

-), max(t1
+, t2

+)]; others, t1 ∑ t2 =Ø.  
 
To make closer and more precise the time interval to a 

temporal association rule, we can use Operator ∏ to filter the 
database by Tuser that the user specifies. Filtering the 
database means removing the data that the user is not 
interested in, which can obviously improve the mining 
quality and efficiency. Procedure 2 is the pseudo-code for 
filtering process by using ∏.   

 
Procedure 2. filter(D, Tuser, D1 ) 
1)  for all d∈D  
2)    if (d.interval  ∏ Tuser ≠ Ø)  do begin 
3)    i ← d.interval ∏ Tuser; 
4)    j ← d.itemset; 

International Journal of Future Computer and Communication, Vol. 3, No. 1, February 2014

57



  

5)    Insert < i, j > into D1; 
7)    end; 

 
After filtering, the data not within Tuser are removed, but 

such fact may occur that intervals of tuples are scattered and 
crossed one another. Therefore, it is necessary to consider 
some suitable time intervals, called mining intervals, to 
discover time-related frequent itemsets or mine temporal 
association rules. We will explore Operator ∑ to merge 
correlative time intervals in the database into 
non-overlapping intervals, such that any time-related 
frequent itemset or rule will be associated with one of these 
non-overlapping intervals. Procedure 3 gives the 
pseudo-code for merging intervals by using ∑. 
 

Procedure 3. Merge (D1, TS)  
1)  TS ← Ø;  
2)  for all d∈ D1 
3)   i← d.interval; 
4)  if TS is not Ø  
5)  for all  j ∈ TS  
6)  if ( j ∑ i ≠ Ø)   do begin 
7)  i ← j ∑ i;  
8)   delete j from TS ;   
9)          end 
10) insert i into TS;   

 
Example 3. For the database in Table IV, supposed Tuser 

= [30, 100], the result to filter by Procedure 2 is shown in 
Table V. Also, by Procedure 3, we can obtain two 
non-overlapping mining intervals: [30, 60] and [70, 100]. 

 
TABLE V: FILTERING RESULT TO TABLE IV 

No.1 Interval Itemset 
1 [30,50] 

[30,60] 
[70,80] 
[70,100] 
[70,90] 

A, B, C, D 
B, C, E 
A, B, C, E 
B, D, E 
A, B, C, D 

2 
3 
4 
5 
 
Now, we can design our algorithm MTAR_Sub. Algorithm 

2 gives its pseudo-code description. 
Algorithm 2. MTAR_Sub: Mining Temporal association 

rules with Sub-operators  
1)  input (min-support, Tuser) ;  
2)  filter (D, Tuser,  D1);  
3)  Merge (D1, TS);  
4)  for all t ∈ TS do  
 //for each mining interval, mining time-related rules 
5) SIS ← Ø; SIS* ← Ø;  
6)  for d ∈ D1 do begin 
7)  if d.interval ∏ t ≠ Ø do begin  
8)  IS ← d.itemset; 
9)   Join ( IS,  SIS) ;  //see Sec. 3 
10)   make_fre( IS, SIS, SIS*, min-support); // see Sec. 3 
11)    end 
12)    add time flag t all itemsets in SIS*; 
13)end. 

 
In fact, in Algorithm MTAR_Sub, line 5) to 10) do mining 

within a mining interval, so found frequent itemsets are 

related to this time interval. Such that, all discovered frequent 
itemsets are time-related, so further mined rules are all 
temporal association rules.  

About how to mine temporal association rules after getting 
frequent itemsets,  it is relatively straightforward and often do 
the same work as most literatures [1]. Therefore, we will not 
provide a formal description in this paper. 

V.

 

EXPERIMENTS

 

We implemented the MTAR_Sub, MAR_Sub and Apriori 
[1] on a computer with Pentium

 

4 of 512M RAM.  
In our experiments, the tested datasets are extracted from 

some network traffic datasets with attributes <SIP, DIP, Sp,

 

Dp, Pro, Interval>. We arrange these datasets into the data 
tables containing the two attributes <interval, itemset>. 
According to the different values of <SIP, DIP, Sp, Dp, Pro>, 
the investigated items have 20 values, and the time interval 
scope is [20, 900]. To test the effectiveness and efficiencies 
of the methods, we used a series of time-related transaction 
databases, with 1000~10000 tuples, every itemset contains 
2~20 items.  

Using Tuser = [30, 500], min-support = 20% and 
min-confidence

 

= 80% in the database with 10000 tuples that 
each has less than 21 items represented by capital letters,  the 
following are some were found rules:  

<A,C> => D (24.13%, 98.24%, [30, 68])  

<D,F,J> => A (26.81%,91.60%, [30, 68])  

<I> => F (34.03%, 99.20, [82, 314])  

<F,H> => I (22.18%, 97.12, [82, 314])  

<B,C> => G (21.50%, 96.83, [421, 500])  

<B,G,S> => J (20.56%, 89.61, [421, 500]) 
The first experiment on MTAR_Sub was conducted to test 

the main memory spaces used by SIS and SIS* with 
increasing sizes of the datasets. If min-support is 20%, the 
memory usages of SIS and SIS* on some different data sizes 
are shown on Fig. 1. 

 
Fig. 1.  Changes of SIS and SIS* on different sizes of datasets in MTAR_Sub. 
Tuser = [30, 500], min-support = 20%. On the 10K database, three mining 

intervals are generated: [30, 68], [82, 314] and [421, 500]. 
 

The second experiment about MTAR_Sub was done on a 
dataset with 10000 tuples, using different min-support ranges. 
It aims at testing main usages to generate SIS and SIS* with 
different min-supports. Fig. 2 shows experimental results.  

The third experiment is the performance comparison 
MTAR_Sub with Apriori [1]. This experiment uses 
min-support of 20% on a series of datasets with 1000~9000 
tuples. Their execution times with increasing sizes of the 
datasets are shown on Fig. 3.  

These results tell us that MTAR_Sub has better availabilities 
in many situations. In summary, these experiment studies 

International Journal of Future Computer and Communication, Vol. 3, No. 1, February 2014

58



  

illustrate: (1) how MTAR_Sub can efficiently work as it uses 
limited  spaces of the main memory and take a little of time to 
run, and (2) how MTAR_Sub can effectively generate 
time-related association rules from the temporal transaction 
databases as it make mining goal into specific the temporal 
interval . These achievements are mainly from its effective 
operators for scanning and filtering to the investigated 
databases. 

 
Fig. 2.  Changes of SIS and SIS* on different min-supports in MTAR_Sub. 

Tuser = [30, 500]. Three mining intervals are generated: [30, 68], [82, 314] 
and [421, 500]. 

 

 
Fig. 3. Run times of Ariori and MTAR_Sub  on different sizes of databases. 

Tuser = [30, 500] in MTAR_Sub, min-supports = 20% in both. 
 

VI. CONCLUSION 
We have presented an algorithm to efficiently mine 

temporal association rules from transaction databases. In fact, 
we are facing two challenges in mining association rules 
from a large of databases:  (1) how to reduce the numbers to 
scan the database in order to make I/O cost lower, and (2) 
how to use constraints in order to make mine rules more 
effective. We solve the first issue using a new operator 
between itemsets called sub-belong that can help construct 
the one-scan mining algorithm. We address the second 
problem by exploiting temporal constrains that can make an 
association rule is related to a specific time interval.  

We did experiments to test our method with the case of 
network traffic data, and these experiments have shown this 
method how to work more effective and efficient.  

ACKNOWLEDGMENT 
Guojun Mao thanks the CHINA National Science 

Foundation and the Discipline Construction Foundation of 
CUFE to supports for this work.  

REFERENCES 
[1] R. Agrawal, T. Imielinki, and A. Swami, “Mining association rule 

between sets of items in large database,” in Proc. SIGMOD’93, 
Washington, DC, USA, May, 1993, pp. 207-216.  

[2] W. Ding, C. F. Eick,  X. Yuan, J. Wang, and J. P. Nicto, “A framework 
for regional association rule mining and scoping in spatial datasets,”  J. 
Geoinformatica, vol. 15, pp. 1-28, Jan. 2011. 

 
 

[4] J. S. Park, M. S. Chen, and P. S Yu, “An effective hash-based algorithm 
for mining association rules,” in Proc. SIGMOD’95, York, NY, 1995, 
pp. 175-186. 

[5] Y. R. Li and R. P. Gopalan, “Effective sampling for mining association 
rules,” in Proc. AI’04, San Jose, CA, USA, May, 1995, pp. 391-401. 

[6]  J. W. Han, J. Pei, and Y. Yin, “Mining frequent patterns without 
candidate generation,” in Proc. SIGMOD’00, Dallas, TX, USA, May, 
2000, pp. 1-12. 

[7] G. J. Mao, X. D. Wu,  X. Q. Zhu, G. Chen, and C. N. Liu, “ Mining 
maximal frequent itemsets from data streams,” J. Information Science, 
vol. 33, pp. 251-262, Mar. 2007. 

[8] K. Wang, H. Yu, and J. W. Han, “Pushing support constraints into 
association rules mining,”  IEEE Trans. on Knowledge and Data 
Engineering, vol. 15,  pp. 642-658, Mar. 2003. 

[9] M. Shaheen, M. Shahbaz, and A. Guergachi, “Contextbased positive 
and negative spatio-temporal association rule mining,” J. 
Knowledge-Based Systems, vol. 37,  pp. 261-173, Jan 2013. 

[10] G. J. Mao and C. N. Liu, “A method of data mining based on temporal 
constraints,” J. Acta Electronica Sinica, vol. 31, pp. 1690-1694, 2003. 
 
 

 
 
 

 

International Journal of Future Computer and Communication, Vol. 3, No. 1, February 2014

59

[3] A. Savasere, E. Omiecinski, and S. B. Navathe, “An efficient algorithm 
for mining association rules in large databases,” Technical Report
GIT-CC-95- 04, University of Maryland at College Park. 

Mao Guojun is a professor of computer science at 
the Central University of Finance and Economics 
(China). He received his Ph.D degree in Computer 
Application Technology from the Beijing University 
of Technology, China. His research interests include 
data mining, distributed computing and 
knowledge-based systems, and he has published 
extensively in these areas more than 100 papers in 
various journals and conferences, including JIS and 

ICDM.

  




