

Abstract—The hyper-redundant robot can be used in object

manipulation task. Due to the complexity of the mechanism,
the object manipulation task can be reduced into encircling the
robot around an object. The robot is required to be formed
into some shapes to cage around an object and then moves an
object. This method presented in this paper combine the caging
process which is the shape control solution for hyper-
redundant arm using the virtual constraint together with the
virtual push force and the manipulating process which is the
inverse kinematics solution for hyper-redundant arm using the
Neural Network and Bezier curve together with the gradient
descent method. The algorithm allows the robot to be able to
encircle and move the object to the desired position without
grasping. A computer simulation of the serial link manipulator
has demonstrated the effectiveness of the proposed method.

Index Terms—Hyper-redundant robot, neural network,
bezier curve, gradient descent method

I. INTRODUCTION
Highly redundant manipulators or hyper degree of

freedom (HDOF) has more degrees of freedom (DOF). A
HDOF manipulator can perform many kinds of locomotion
like the nature snake or the animal’s tentacle to avoid
obstacles, follow designated trajectories and manipulation
tasks, such as moving in non-convenient environments, and
pushing and caging a various sizes and shapes of objects.
Due to all-in-one arms, a HDOF manipulator significant
enhances the caging method as it, allows caging to perform
in a variety of configuration. However, this arm must always
maintain a certain shape around an object.

HDOF has been used by several researchers for solving
control problems such as kinematic modeling [1], path
planning [2], inverse kinematics [3]-[4] locomotive gait
design [5], obstacle avoidance [6], and serpentine
locomotion control [7] and sidewinding locomotion control
[8] problems.

In our work, we study the shape control of a highly
kinematic structure, called a HDOF arm manipulator. The
HDOF is composed of serial chain links Nili ,....,1, = ,
connected to other with revolute joints 1,...,0, −= Niji . Each
link is a straight rigid part of length L . The link 1l and link

Nl are called the base and the tail, respectively. The angle
1θ is defined as the angle between link 1l and x-axis. The set

of angle defines the manipulator configuration as shown in
Figure 1.

Fig. 1. A hyper degree of freedom (HDOF) structure.

Fig. 2. Virtual push force.

In this paper, the main idea of the motion planning

problem is: to find a path from an initial robot configuration
to a final configuration, aiming to move an object from its
initial position to the desired position. The motion will
consist of a sequence of steps. Each step involves moving all
joint angles while preserving motion continuity. The angle
of a robot body must less than the angle limit to prevent the
distortion.

Fig. 3. Caging process diagram.

Fig. 4. Manipulating process diagram.

II. COMPONENTS OF THE ALGORITHM
The manipulation process is divided into 2 parts: caging

process that encircles around object and manipulating
process that moves object from an initial position to the
destination.

Encircled Hyper-Redundant Manipulation Using Virtual
Constraint, Bezier Curve and Gradient Descent Method

Chatklaw Jareanpon

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

101

Manuscript received April 19, 2012; revised May 25, 2012
C. Jareanpon is with the Department of Computer Science, Faculty of

Informatics, Mahasarakham University, Thailand (e-mail:
chatklaw.j@gmail.com).

A. Caging Process
Before caging process, the first problem is how to control

the robot to surround an object. We imitate the characteristic
of human hugs. The definitions of human hugs are

“to put your arms around something” and “to fit tightly
around something”

Based on this definition, we create the algorithm which
consists of Virtual constraint to move the robot gait from an
initial gait to a surrounding gait. In each step, the algorithm
checks the collision-free with Virtual push force and avoids
the distorted shape with an angle bound.

Velocity x axis of 30-link-HDOF Velocity y axis of 30-link-HDOF

Acceleration x axis of 30-link-

HDOF
Acceleration y axis of 30-link-

HDOF

Fig. 5. Velocity and Acceleration of 30-link-HDOF from Manipulating process incase (-0.2,0.2) desired position.

Iteration 1 Iteration 24 Iteration 100 Iteration 501

Fig. 6. Simulation of this algorithm in case (-0.2,0.2) desired position.

Iteration 1 Iteration 24 Iteration 100 Iteration 253

Fig. 7. Simulation of this algorithm in case (0.1,0.3) desired position

Velocity x axis of 30-link-HDOF Velocity y axis of 30-link-HDOF Acceleration x axis of

30-link-HDOF

Acceleration y axis of

30-link-HDOF

Fig. 8. Velocity and Acceleration of 30-link-HDOF from Manipulating process incase (0.1,0.3) desired position.

B. Virtual Constraint with Control Points
Virtual constraint is the concept proposed in [9],[10] and

it is a method that guarantees collision-free push force and
no-distortion of joint angle generates the control function to
satisfy all constraint functions added to serve some specific
purposes such as stabilizing the system or maintaining the
distance from an obstacle. The Virtual constraint is used in
this application in order to create a virtual force that follows

the control point so that the HDOF robot arm can take a
rough shape that encircles a specified object. The virtual
force is calculated in proportion to the distance between the
end-effector position and the control point that slowly
moves clockwise or counterclockwise around the object.
The Virtual constraint with control points has 6 steps:

1) Update the control point position according to the
control function.

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

102

2) Calculate the error vector between the control point
position and the end-effector position

 (1)

3) Update joint angles according to (2) and (3).

 (2)

 (3)

4) Move the end-effector to its new position
.

5) Update the position of all the joints and links.
6) Repeat step 1) – 5).

C. Collision-free with Virtual push force
After using the Virtual constraint with control points, we

consider the collision-free problem for all robot links. The
concept of collision-free is based on the Geometry concepts.
From Figure 2, when the link attacks to the object, the
virtual force pushes the link by perpendicular force (dot
line).

The Virtual push force can be explained in 3 steps:
1) Calculate the distance between the center of the object

and the link position.

 (4)

2) If distance D is less than the radius of the object plus
the virtual bound (from Figure 3, the Virtual bound is
represented by a doted circle) then calculate the push force.

;

2
1)(_ −−= ii xxbdis

;

;

(5)

(6)

(7)

kDrh +−=)(;

.

(8)

(9)

where = redial of object ; = constraint force to push
the object, and ii yx , = x and y position at .

3) Update all the joint angles according to (9)

D. Angle bound
The virtual constraint pulls the HDOF robot to surround

the object; however, the virtual constraint may cause the
distorted angle. In addition, all angles should be of the same
angle (i.e. forming a circle). Another is the circle which
usually consists of equal angle. The virtual constraint pulls
the HDOF robot, causing the configuration angle to change
and this configuration angle is bounded by “Angle bound”.
If the angle 1 equals to angle bound, the algorithm will not

update this angle. The algorithm repeats for the rest of the
angles.

E. Manipulation Process
The manipulating process moves the object from initial

position to given goal position. The inverse kinematics is to
solve for the joint displacement when the end-effector
position is given. The solution of the inverse kinematics of
HDOF is difficult to find. The numerical method is usually
employed to solve this problem to minimize the error
between the current position and the desired position.
However, if only the end-effector position is considered, the
robot gait may be distorted and the solution from inverse
kinematics may specify a heavy load for some joints.
Therefore, the shape control must consider on all joint
positions. The manipulating process uses the Neural
network for generating the Bezier curve control point, uses
the Bezier curve for generating the desired shape and uses
the gradient descent method to find the joint angle.

F. The Bezier Curve Control Point Using the Neural
network
The inverse kinematics is to solve for the joint

displacement when the end-effector position is given. The
HDOF inverse kinematics problem have multiple or
infinite number of solutions. Moreover, the inverse
kinematics equations are usually nonlinear and are
difficult to find closed-form solutions. Differential
methods are used for HDOF, it has recently been shown
that the Neural network can solve the HDOF by
optimization [22]. Using the back-propagation Neural
network based inverse kinematics solution to control the
HDOF manipulator’s end-effectors to realize the tasks
such as point to point and path following, standard has to
calculate all the joint angles, to solve the inverse problem.
It is complicated and used time consuming.

From required the control point position of parametric
Bezier curve, we solve the inverse kinematics of 4 links
planar serial link chain due to solve the three joint angles.
By using the closed-form, it remains an unknown joint angle.
In this propose, we solve the two joint angles with close-
forms and solve the last joint angle with Neural network.

1) Closed-form 4-link inverse kinematics
From forward kinematics using Denavit-Hartenberg, the

transformations relating the tail to the base link and a given
end-effector orientation is given by (10), (11), respectively.

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
++++++
++++−++

=

1000
0100

)sin()sin(0)cos()sin(
)cos()cos(0)sin()cos(

21211321321

21211321321

3
0

φφφφφφφφφ
φφφφφφφφφ

LL
LL

T

(10)

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛ −

=

1000
0100

0)cos()sin(
0)sin()cos(

y
x

Ttail
base

φφ
φφ

(11)

Equating the two previous expressions results in (12-17)
)cos()cos(321 φφφφ ++=

)sin()sin(321 φφφφ ++=
(12)

(13)

cyx),(

effectorendyx −),(

effectorendc yxyxe −−=),(),(

45.0,)),),((1 =×=+ kekyxf n
t
nθ

1...1,1
1 −== +

+ nit
i

t
i θθ

effectorendyx −),(

1)(+Θ t
np

22 ba

cBbAa
D

+

∗∗
=

2
1)(_ −−= ii yyadis

22)_()_(_ bdisadiscdis −=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

cdis
h

bdis
adis

_
tan

_
_tanθ

r k

ilink

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

103

)cos()cos(21211 φφφ ++= LLx (14)

)sin()sin(21211 φφφ ++= LLy
)sin()sin()cos()cos()cos(212121 φφφφφφ −=+

)cos()sin()sin()cos()sin(212121 φφφφφφ +=+

(15)

(16)

 (17)

Squaring the expressions and adding them in (18), and

Solving the)cos(2φ in (19), (20), (21).
)cos(2 221

2
2

2
1

22 φLLLLyx ++=+

21

2
2

2
1

22

2 2
)cos(

LL
LLyx −−+

=φ

(18)

(19)

2
22)cos(1)sin(φφ −±=

)cos(),(arctan(sin 222 φφφ =
(20)
(21)

We can solved the theta(1) by (22-33)

sin)cos(211 φ ppx −=

cos)sin(211 φ ppy +=

where

),cos(2211 φLLp +=

2
2

2
1 pp +=ϑ

),arctan(12 pp=δ
)cos(1 δϑ=p
)sin(2 δϑ=p

(22)

(23)

(24)

(25)

(26)

(27)
si)cos()cos(1φδ

ϑ
+=x

si)cos()cos(1φδ
ϑ

+=y

or

ϑ
φδ x=+)cos(1

ϑ
φδ y=+)sin(1

),arctan(1 xyy =+ φ

arcta),arctan(1 xy −=φ

(28)
(29)

(30)

(31)

(32)

(33)

However, the theta (3) is unknown. We will solve the
theta (3) using the neural network.

2) Neural Network inverse kinematics
The basic back-propagation algorithm consists of three

steps. The input pattern is presented to the input layer of the
network. These are propagated through the network until
they reach the output units. This forward pass produces the
actual or predict output pattern. Because back-propagation is
a supervised learning algorithm, the desired outputs are
given as part of the training vector. The actual network
outputs are subtracted from the desired output and an error
is produces. This error is then the basis for the back-
propagation step, whereby the error are passed back through
the Neural network by computing the contribution of each
hidden processing unit and deriving the corresponding
adjustment needed to produce the correct output. The

connection weights are then adjusted and the Neural
network has just “learned” from an experience. In this
propose, the Neural network structured is used as shown in
Table I.

TABLE I: NEURAL NETWORK STRUCTURE

Input [x_desired, y_desired,
Theta1, Theta2]

Output Theta3

Network structure 3 Layes [30:10:1]

Training sets 5000 records

Maximum epoch 500

Acceptance error < 0.000002

TABLE II: SIMULATION RESULT

Desired
positio

n

Computation
al

time

Caging
Process
iteration

Manipulatio
n

Process
iteration

Total
iterati

on

Manipulated
gap

(-
0.2,0.

2)
 409s 24 477 501 0.002

(0.1,0.
3) 214s 24 229 253 0.002

Mean 311.5s 24 353 377 0.002

TABLE III: OBJECT CHARACTERISTIC
Object Single

 Central position (0.15,0.4)
Radius 0.07
Bound 0.01

The desired position using the Bezier curve
In the mathematical field of numerical analysis, a Bezier

curve is a parametric curve important in computer graphics
and related fields. For HDOF robots, the Bezier is used for
generating the desired shape. In this paper, the cubic Bezier
is used. The four control points are calculated by the Neural
network. The desired shape generated from the curve is
equal to the HDOF joint. The Cubic Bezier is generated
from (34)

].1,0[,)1(3)1(3)1()(3
2

2
1

2
0

3 ∈+−+−+−= tPtPttPttPttB (34)

where 0P = the base position; 1P = the average position
from 0P and 4P ;

2P = the average position plus bias, and 4P = the end-
effector desired position.

The shape control using Gradient descent method
For HDOF robots, the gradient descent method is used to

find the joint angles solution for shape control problem that
satisfies the desired robot shape. The cost function for the
HDOF robot shape control consists of two parts: the error
function of the joint position and the smoothness constraint.
The error function of the joint position requires the position
of each joint coordinate to be close to the desired joint
coordinate specified by the shape function. The
smoothness constraint requires that the joint position relative
to both neighbor link i+1 and i-1 to be
rather straight (or smooth) as specified in the second term of
(35).

The following cost function is used:

)(Θp

)(Θdp

)1,1(++ iyix)1,1(−− iyix

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

104

(35)

where is the actual position and is the desired
position of each link of the manipulator. The is the
weight of smoothness constraint [12].

 From the Gradient descent method, the joint
position can be updated from (36).

 (36)

where denoted the joint angle variables, and is the

step size. can be calculated by:

(37)

(38)

The algorithm can be summarized as follows:
1) Given the desired position of each joint from

Bezier curve.
2) Calculate the actual position of joint from the current

joint angles and the value of the cost function J by using
(35).

3) Calculate the new value of joint angles by using (36),
(37) and (38).

4) Go to step 2, and repeat the process until the prescribed
value of the cost function J is reached.

III. SIMULATION AND RESULT
Computer simulation is used to test the performance of

the proposed algorithm. The kinematics model of 30 DOF
HDOF planar revolute robot arm in free space is built in
MATLAB. The object is assumed into circle-shaped, light
weight and contact less friction with the robot. The desired
shape of the robot arm is designed for a non-prehensile
pulling type of manipulation. The in this experiment is
set to 0.0000001. The experiment is tested on two cases that
are different desired position. The desired position are (-
0.2,0.2) and (0.3,0.1)

From the experiment, the caging process uses the 24
iterations. The virtual constraint is pulling the end-effector
of robot to encircle around object while the virtual push
force prevents to contact between robot and object. The
average iteration of manipulating process is 353 iterations
using control point form Neural network, the desired shape

from Bezier curve and adjusts shape from Gradient descent
method. From Figure 5 and 6, the velocity of x and y axis
and the accelerations of x and y axis shows the smooth value
and like trends therefore no joints is heavy load than other.
The manipulation gap is less than the radius of object.

IV. CONCLUSION
In this paper, we developed a novel approach to control

the shape of a HDOF robot based on concept of the virtual
constraint and inverse kinematics problem based on the
concept of the Bezier curve together with Gradient descent
method.

We have simulated this approach on a 30 degree of
freedom planar revolute manipulator. The caging process is
able to encircle around object without contact with object
while the manipulating process is able to solve the inverse
kinematics. The Virtual constraint and Virtual push force is
give the fast shape to encircle the object. The Bezier curve
and Gradient descant method is give a distributed joint angle.
Further study is planned for avoid the obstacle in space.

REFERENCES
[1] S. Chirikjain and J. Burdisk, “The kinematics of Hyper-Redundant

robot locomotion,” IEEE Transactions on robotics and automation.
vol. 11, no. 6, Dec. 1995.

[2] H. Poor, “An Introduction to Signal Detection and Estimation,” New
York: Springer-Verlag, 1985.

[3] H. Chang, “A closed-form solution for inverse-kinematic of robot
manipulators with redundant,” IEEE journal of robotics and
automation,vol. ra-3, no. 5, Oct. 1987.

[4] Y. Li and H. Leong, “Kinematics control of redundant manipulators
using a CMAC neural network combined with genetic algorithm,”
Robotica, vol. 22, pp. 611-621, 2004.

[5] G. Kulali and et al, “Intelligent gait synthesizer for serpentine robots,”
Proc. of the 2002 IEEE international conference on robotics and
automation. pp. 1513-1518, 2002.

[6] S. Ma and M. konno, “An obstacle avoidance scheme for hyper-
redundant manipulators – Global motion planning in posture space –,”
Proc. of the 1997 IEEE international conference on robotics and
automation. pp. 161-166, 1997.

[7] J. Ostrowski and J. Burdick, “Gait kinematics for a serpentine robot,”
Proc. of the 1996 IEEE international conference on robotics and
automation. pp. 1294-1299, 1996.

[8] J. Burdick, J. Radford, and S. Chirikjian, ““Sidewinding” locomotion
gait for hyper-redundant robots,”, Proc. of the 1993 IEEE
international conference on robotics and automation., pp. 101-106,
1993

[9] T. Sugar and V. Kumar, “Multiple Cooperating Mobile Manipulators”,
Proceeding of the 1999 IEEE International Conference on Robotics
and Automation, pp. 1538-1543, 1999.

[10] T. Maneewarn and P. Detudom, Mechanics of Cooperative
Nonprehensile Pulling by Multiple Robots, Proceedings of IEEE/RSJ
International Conference on Intelligent Robot and Systems
(IROS2005), pp. 1319-1324, 2005.

[11] C. Jareanpon, S. Maneewongvatana and T. Maneewarn, Shape
Control for Hyper-redundant Robot using Gradient Descent Method
with Virtual Constraint. Procedding the 13th International Conference
on Advance, 2007.

)),(2),(),(()),(),((1111
2

1
iiiiiidii

n

i
ii yxyxyxyxyxJ −++−= −−++

=
∑ α

),(yx dyx),(

α

Θ∂
∂

−Θ=+Θ
Jkk η)()1(

Θ η

Θ∂
∂J

m

yxyxyxyxyxJ
iiiiiidiiii

+

−++−=
Θ∂

∂
−−++)],(2),(),[(]),(),[(2 1111α

)]1,1(2),()2,2[(
)]1,1(2)2,2(),[(

−−−+−−

+++−+++=

iyixiyixiyix
iyixiyixiyixm

α
α

dyx),(

α

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

105

