
  
Abstract—The hyper-redundant robot can be used in object 

manipulation task. Due to the complexity of the mechanism, 
the object manipulation task can be reduced into encircling the 
robot around an object. The robot is required to be formed 
into some shapes to cage around an object and then moves an 
object. This method presented in this paper combine the caging 
process which is the shape control solution for hyper-
redundant arm using the virtual constraint together with the 
virtual push force and the manipulating process which is the 
inverse kinematics solution for hyper-redundant arm using the 
Neural Network and Bezier curve together with the gradient 
descent method. The algorithm allows the robot to be able to 
encircle and move the object to the desired position without 
grasping. A computer simulation of the serial link manipulator 
has demonstrated the effectiveness of the proposed method. 
 

Index Terms—Hyper-redundant robot, neural network, 
bezier curve, gradient descent method  
 

I. INTRODUCTION 
Highly redundant manipulators or hyper degree of 

freedom (HDOF) has more degrees of freedom (DOF). A 
HDOF manipulator can perform many kinds of locomotion 
like the nature snake or the animal’s tentacle to avoid 
obstacles, follow designated trajectories and manipulation 
tasks, such as moving in non-convenient environments, and 
pushing and caging a various sizes and shapes of objects. 
Due to all-in-one arms, a HDOF manipulator significant 
enhances the caging method as it, allows caging to perform 
in a variety of configuration. However, this arm must always 
maintain a certain shape around an object. 

HDOF has been used by several researchers for solving 
control problems such as kinematic modeling [1], path 
planning [2], inverse kinematics [3]-[4] locomotive gait 
design [5], obstacle avoidance [6], and serpentine 
locomotion control [7] and sidewinding locomotion control 
[8] problems.  

In our work, we study the shape control of a highly 
kinematic structure, called a HDOF arm manipulator. The 
HDOF is composed of serial chain links Nili ,....,1, = , 
connected to other with revolute joints 1,...,0, −= Niji . Each 
link is a straight rigid part of length L  . The link 1l and link 

Nl  are called the base and the tail, respectively.  The angle 
1θ  is defined as the angle between link 1l  and x-axis. The set 

of angle defines the manipulator configuration as shown in 
Figure 1. 

 

 

 
Fig. 1. A hyper degree of freedom (HDOF) structure. 

 

 
Fig. 2. Virtual push force. 

 
In this paper, the main idea of the motion planning 

problem is: to find a path from an initial robot configuration 
to a final configuration, aiming to move an object from its 
initial position to the desired position. The motion will 
consist of a sequence of steps. Each step involves moving all 
joint angles while preserving motion continuity. The angle 
of a robot body must less than the angle limit to prevent the 
distortion. 

 
Fig. 3.  Caging process diagram. 

 

 
Fig. 4. Manipulating process diagram. 

 

II. COMPONENTS OF THE ALGORITHM 
The manipulation process is divided into 2 parts: caging 

process that encircles around object and manipulating 
process that moves object from an initial position to the 
destination. 
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A. Caging Process 
Before caging process, the first problem is how to control 

the robot to surround an object. We imitate the characteristic 
of human hugs. The definitions of human hugs are 

“to put your arms around something” and “to fit tightly 
around something” 

Based on this definition, we create the algorithm which 
consists of Virtual constraint to move the robot gait from an 
initial gait to a surrounding gait. In each step, the algorithm 
checks the collision-free with Virtual push force and avoids 
the distorted shape with an angle bound. 

 
Velocity x axis of 30-link-HDOF Velocity y axis of 30-link-HDOF 

 
Acceleration x axis of  30-link-

HDOF 
Acceleration y axis of   30-link-

HDOF 

Fig. 5. Velocity and Acceleration of 30-link-HDOF from Manipulating process incase (-0.2,0.2) desired position. 

 
Iteration 1 Iteration 24 Iteration 100 Iteration 501 

Fig. 6. Simulation of this algorithm in case  (-0.2,0.2)  desired position. 

 
Iteration 1 Iteration 24 Iteration 100 Iteration 253 

Fig. 7. Simulation of this algorithm in case (0.1,0.3)  desired position 

 
Velocity x axis of 30-link-HDOF Velocity y axis of 30-link-HDOF Acceleration x axis of  

30-link-HDOF 

Acceleration y axis of  

30-link-HDOF 

Fig. 8. Velocity and Acceleration of 30-link-HDOF from Manipulating process incase (0.1,0.3) desired position. 

B. Virtual Constraint with Control Points 
Virtual constraint is the concept proposed in [9],[10] and 

it is a method that guarantees collision-free push force and 
no-distortion of joint angle generates the control function to 
satisfy all constraint functions added to serve some specific 
purposes such as stabilizing the system or maintaining the 
distance from an obstacle. The Virtual constraint is used in 
this application in order to create a virtual force that follows 

the control point so that the HDOF robot arm can take a 
rough shape that encircles a specified object. The virtual 
force is calculated in proportion to the distance between the 
end-effector position and the control point that slowly 
moves clockwise or counterclockwise around the object. 
The Virtual constraint with control points has 6 steps:  

1) Update the control point position according to the 
control function. 
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2) Calculate the error vector between the control point 
position  and the end-effector position  

 

 (1) 

3) Update joint angles according to (2) and (3). 

    (2) 

   (3) 

4) Move the end-effector  to its new position 
. 

5) Update the position of all the joints and links. 
6) Repeat step 1) – 5). 

C. Collision-free with Virtual push force 
After using the Virtual constraint with control points, we 

consider the collision-free problem for all robot links. The 
concept of collision-free is based on the Geometry concepts. 
From Figure 2, when the link attacks to the object, the 
virtual force pushes the link by perpendicular force (dot 
line).  

The Virtual push force can be explained in 3 steps: 
1) Calculate the distance between the center of the object 

and the link position. 

             (4) 

2) If distance D  is less than the radius of the object plus 
the virtual bound (from Figure 3, the Virtual bound is 
represented by a doted circle) then calculate the push force. 

; 

2
1)(_ −−= ii xxbdis

; 

; 

(5)

(6)

(7)

kDrh +−= )(  ; 

. 

(8)

(9)

where    = redial of object ;   = constraint force to push 
the object, and ii yx , = x and y position at . 

3) Update all the joint angles according to (9) 

D. Angle bound 
The virtual constraint pulls the HDOF robot to surround 

the object; however, the virtual constraint may cause the 
distorted angle. In addition, all angles should be of the same 
angle (i.e. forming a circle). Another is the circle which 
usually consists of equal angle. The virtual constraint pulls 
the HDOF robot, causing the configuration angle to change 
and this configuration angle is bounded by “Angle bound”. 
If the angle 1 equals to angle bound, the algorithm will not 

update this angle. The algorithm repeats for the rest of the 
angles.  

E. Manipulation Process 
The manipulating process moves the object from initial 

position to given goal position. The inverse kinematics is to 
solve for the joint displacement when the end-effector 
position is given. The solution of the inverse kinematics of 
HDOF is difficult to find. The numerical method is usually 
employed to solve this problem to minimize the error 
between the current position and the desired position. 
However, if only the end-effector position is considered, the 
robot gait may be distorted and the solution from inverse 
kinematics may specify a heavy load for some joints. 
Therefore, the shape control must consider on all joint 
positions. The manipulating process uses the Neural 
network for generating the Bezier curve control point, uses 
the Bezier curve for generating the desired shape and uses 
the gradient descent method to find the joint angle. 

F. The Bezier Curve Control Point Using the Neural 
network 
The inverse kinematics is to solve for the joint 

displacement when the end-effector position is given. The 
HDOF inverse kinematics problem have multiple or 
infinite number of solutions. Moreover, the inverse 
kinematics equations are usually nonlinear and are 
difficult to find closed-form solutions. Differential 
methods are used for HDOF, it has recently been shown 
that the Neural network can solve the HDOF by 
optimization [22]. Using the back-propagation Neural 
network based inverse kinematics solution to control the 
HDOF manipulator’s end-effectors  to realize the tasks 
such as point to point and path following, standard has to 
calculate all the joint angles, to solve the inverse problem. 
It is complicated and used time consuming.  

From required the control point position of parametric 
Bezier curve, we solve the inverse kinematics of 4 links 
planar serial link chain due to solve the three joint angles. 
By using the closed-form, it remains an unknown joint angle. 
In this propose, we solve the two joint angles with close-
forms and solve the last joint angle with Neural network. 

1) Closed-form 4-link inverse kinematics 
From forward kinematics using Denavit-Hartenberg, the 

transformations relating the tail to the base link and a given 
end-effector orientation is given by (10), (11), respectively. 
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Equating the two previous expressions results in (12-17) 
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Squaring the expressions and adding them in (18), and 

Solving the )cos( 2φ  in (19), (20), (21). 
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We can solved the theta(1) by (22-33) 
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However, the theta (3) is unknown. We will solve the 
theta (3) using the neural network. 

2) Neural Network inverse kinematics 
The basic back-propagation algorithm consists of three 

steps. The input pattern is presented to the input layer of the 
network. These are propagated through the network until 
they reach the output units. This forward pass produces the 
actual or predict output pattern. Because back-propagation is 
a supervised learning algorithm, the desired outputs are 
given as part of the training vector. The actual network 
outputs are subtracted from the desired output and an error 
is produces. This error is then the basis for the back-
propagation step, whereby the error are passed back through 
the Neural network by computing the contribution of each 
hidden processing unit and deriving the corresponding 
adjustment needed to produce the correct output. The 

connection weights are then adjusted and the Neural 
network has just “learned” from an experience. In this 
propose, the Neural network structured is used as shown in 
Table I. 

 
TABLE I: NEURAL NETWORK STRUCTURE 

Input [x_desired, y_desired, 
Theta1, Theta2] 

Output Theta3 

Network structure 3 Layes [30:10:1] 

Training sets  5000 records 

Maximum epoch 500 

Acceptance error < 0.000002 

 
TABLE II: SIMULATION RESULT 

Desired 
positio

n 

Computation
al 

time 

Caging 
Process
iteration

Manipulatio
n 

Process 
iteration 

Total
iterati

on 

Manipulated
gap 

(-
0.2,0.

2) 
 409s 24 477 501 0.002 

(0.1,0.
3) 214s 24 229 253 0.002 

Mean 311.5s 24 353 377 0.002 
 

TABLE III: OBJECT CHARACTERISTIC 
Object Single 

 Central position (0.15,0.4)  
Radius 0.07 
Bound 0.01 

 
The desired position using the Bezier curve 
In the mathematical field of numerical analysis, a Bezier 

curve is a parametric curve important in computer graphics 
and related fields. For HDOF robots, the Bezier is used for 
generating the desired shape. In this paper, the cubic Bezier 
is used. The four control points are calculated by the Neural 
network. The desired shape generated from the curve is 
equal to the HDOF joint. The Cubic Bezier is generated 
from (34)  

].1,0[,)1(3)1(3)1()( 3
2

2
1

2
0

3 ∈+−+−+−= tPtPttPttPttB    (34) 

where 0P  = the base position; 1P   = the average position 
from 0P  and 4P ; 

2P  = the average position plus bias, and  4P  = the end-
effector desired position. 

The shape control using Gradient descent method 
For HDOF robots, the gradient descent method is used to 

find the joint angles solution for shape control problem that 
satisfies the desired robot shape. The cost function for the 
HDOF robot shape control consists of two parts: the error 
function of the joint position and the smoothness constraint. 
The error function of the joint position requires the position 
of each joint coordinate to be close to the desired joint 
coordinate  specified by the shape function. The 
smoothness constraint requires that the joint position relative 
to both neighbor link i+1  and i-1  to be 
rather straight (or smooth) as specified in the second term of 
(35). 

The following cost function is used: 

)(Θp

)(Θdp

)1,1( ++ iyix )1,1( −− iyix
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(35) 

where  is the actual position and   is the desired 
position of each link of the manipulator. The  is the 
weight of smoothness constraint [12].  

 From the Gradient descent method, the joint 
position can be updated from (36). 

                           (36) 

where  denoted the joint angle variables, and  is the 

step size.  can be calculated by: 

(37) 

(38) 

The algorithm can be summarized as follows: 
1) Given the desired position of each joint  from 

Bezier curve. 
2) Calculate the actual position of joint from the current 

joint angles and the value of the cost function J by using 
(35). 

3) Calculate the new value of joint angles by using (36), 
(37) and (38). 

4) Go to step 2, and repeat the process until the prescribed 
value of the cost function J is reached. 

 

III. SIMULATION AND RESULT 
Computer simulation is used to test the performance of 

the proposed algorithm. The kinematics model of 30 DOF 
HDOF planar revolute robot arm in free space is built in 
MATLAB. The object is assumed into circle-shaped, light 
weight and contact less friction with the robot. The desired 
shape of the robot arm is designed for a non-prehensile 
pulling type of manipulation.  The  in this experiment is 
set to 0.0000001. The experiment is tested on two cases that 
are different desired position. The desired position are (-
0.2,0.2) and (0.3,0.1) 

From the experiment, the caging process uses the 24 
iterations. The virtual constraint is pulling the end-effector 
of robot to encircle around object while the virtual push 
force prevents to contact between robot and object. The 
average iteration of manipulating process is 353 iterations 
using control point form Neural network, the desired shape 

from Bezier curve and adjusts shape from Gradient descent 
method. From Figure 5 and 6, the velocity of x and y axis 
and the accelerations of x and y axis shows the smooth value 
and like trends therefore no joints is heavy load than other. 
The manipulation gap is less than the radius of object. 

 

IV. CONCLUSION 
In this paper, we developed a novel approach to control 

the shape of a HDOF robot based on concept of the virtual 
constraint and inverse kinematics problem based on the 
concept of the Bezier curve together with Gradient descent 
method. 

We have simulated this approach on a 30 degree of 
freedom planar revolute manipulator. The caging process is 
able to encircle around object without contact with object 
while the manipulating process is able to solve the inverse 
kinematics. The Virtual constraint and Virtual push force is 
give the fast shape to encircle the object. The Bezier curve 
and Gradient descant method is give a distributed joint angle.  
Further study is planned for avoid the obstacle in space. 
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