

Abstract—A linked list is a complex data structure, especially

useful in systems or application programming. Linked list uses
dynamic allocation of memory by which it allocates memory at
the runtime alike of array so it is also called as dynamic data
structure. As dynamic list is used for runtime allocation of
memory, This feature is very useful in making operating system
to keep track of running process that are alive or in sleep mode.
This requires either a node to be inserted in between or to be
removed. On other side doubly linked list that helps in moving
forward or backward mode. We Proposed singly linked list
itself to implement operation of doubly linked list as well as
singly linked list. Our approach makes use of EX-OR
Technique to acquire next node and previous node, To traverse
in both the direction but the problem with doubly linked list is
that, it requires large amount of memory to store addresses and
therefore singly linked list can perform same task of traversing
in both direction without increasing its memory requirement.
This concept can be usefully applicable to the system or
application programming where memory requirement is more
viz MRU list , cache in Browser that allow to hit back.

Index Terms—SLL, DLL, traversing, MRU, exclusive-OR

I.

INTRODUCTION

Exclusive OR is one of the operations which are performed
between two binary numbers. It is also called XOR and it
defined as

Assume A=1010 and B=1110 then A XOR B the
according to above rule A XOR B will be 0100. If we have (A
XOR B) and B then we can get A in the equation and if we
have (A XOR B) and A then we can get B by using the given
formula.
 A = B XOR (A XOR B) and

B = A XOR (A XOR B)
Consider the list given in the “Fig. 1.a” each node contains

the address of the next node in the list.

Fig. 1.a Simple list.

Assume that the base addresses of the nodes be A, B, C and
D. Then the pointers of each node will contain the address of
the next node of the list. Here we change the pointer’s value
of each node by the XOR of base addresses of its previous
and next node. In the case of corner nodes ie first and last
node there is no previous and next node so there we assume
the previous as NULL and next as NULL [1].

Fig. 1.b Enhanced SLL.

In “Fig. 1. b” a representation of linked list nodes with

changed pointer values is shown. For the forward traversal of
the list we XOR the pointer’s value of the first node with
NULL then it will give the address of the second node in the
list. Again we XOR the address of the first node with the
pointer’s value of the second node it will give the address of
the third node of the list. In this manner we can traverse the
whole list in forward direction. Similarly for the backward
traversal of list we XOR the pointer’s value of the last node
with the NULL it will give the address of the second last node
of the list. Again we XOR the base address of the last node
with the pointers of the second last node it will give the
address of the third last node of the list [2], [3]. In this manner
we can traverse the list in backward direction.

II. OPERATIONS
By doing this type of modification in the pointer’s value of

the each node we can perform all the operations of DLL on
the SLL. All the basic operations such as forward traversal,
backward traversal, insertion and deletion can be performed
on it.

A. Forward Traversal Algorithm
We can traverse the list in forward direction by using the

following algorithm.
• We have first and last pointers pointing to first and

last node of the list.

Implementation of Enhanced Singly Linked List Equipped
with DLL Operations: An Approach towards Enormous

Memory Saving

Devishree Naidu and Abhishek Prasad Jr., Member, IACSIT

98

International Journal of Future Computer and Communication, Vol. 3, No. 2, April 2014

DOI: 10.7763/IJFCC.2014.V3.276

Manuscript received June 15, 2013; revised November 5, 2013.

Implementation Of Enhanced Singly Linked List Equipped With DLL

Operations: An Approach Towards Enormous Memory Saving

Devishree Naidu is with Computer science and Engineering Department,

Rashtrasant Tukdoji Maharaj Nagpur University, India (e-mail: devishree.

naidu@ gmail.com).

Abhishek Prasad is with Wireless Research and Development, Marvell

Technology Pvt. Ltd. Pune, India (e-mail: Prasad.abhishek86@gmail.com).

A XOR B =

0 otherwise

If A and B are not equal 0

• When we XOR the base address of last node with the
link of first node it will give the address of second
node.

Now we have pointers which are pointing to the first node
and the second node of the list. Now again by XOR we get
the address of third node [4].

In this way we can traverse the whole list in forward
direction.

We have developed a program which is in C language
using Turbo C++ compiler which demonstrate the working of
this concept on the machine. “Fig. 2. a” is the snapshot of our
program which represents the traversal of singly linked list in
forward direction.

Fig. 2. a. Forward traversing.

B. Backward Traversal Algorithm
We can traverse the list in backward direction by using

following algorithm.
• We have first and last pointers pointing to first and

last node of the list.
• When we XOR the base address of first node with

link of last node it will give the base address of second
last node.

• Now we have pointers which are pointing to the last
node and second last node of the list. Now again by
XOR we get the address of third last node [4], [5].

In this way we can traverse the whole list in backward
direction. One of the major beauties of this algorithm is,
“there is only one function for the traversal of the list which
can traverse the list in both the forward and backward
direction”. If we pass the address of the first node to the
traverse function then it will traverse the list in forward
direction and when we pass the address of the last node then
it will traverse the list in backward direction.

Fig. 2. b. Backward traversing.

The pseudo code for the traversing of list is as follows.

void traverse (struct node * KEY)
 {
 struct node *temp;
 prev = NULL ;
 curr = KEY ;
 while(curr)
 {
 printf(curr - > data);
 temp = curr ;
 curr = (curr -> link) XOR prev ;
 prev = temp;
 }
 }

If you call the above module with KEY equal to address of

the first node then the whole list will be traversed in forward
direction, and if module is called with KEY equal to address
of the last node then the whole list will be traversed in
backward direction.

C. Insertion Algorithm
We can insert a new node anywhere in the list without

disturbing the links of the existing nodes. Only we have to
change the links of the nodes which are previous and next
with respect to the newly inserted node [6].

Fig. 3. a. Insertion of new node.

Suppose we have to insert a new node between node-2 and

node-3 as shown in “Fig. 3. a” We use the following
algorithm to insert a new node.

• We set the pointers prev and next which points to the
node-2 and node-3.

• We store (prev XOR next) in the link part of new
node.

• We change the link of node-2(prev) by the XOR of
base address of node-1 (node previous to prev pointer)
and new node.

• In the same way we change the link of node-3 by
XOR of base address of node-4 (node next to next
pointer) and new node.

• If we have to insert the node in beginning then we set
prev=last and next=first and perform step-2, step-3
and step-4.

• If we have to insert the node in end then we set
prev=last and next=first and perform step-2 ,step-3 ,
step-4.

In this way we can insert a new node anywhere in the list
by using insertion module.
void insert_node (int position)
 {

• Traverse the list and go to given position using
traverse module.

 traverse (KEY , position) ;

99

International Journal of Future Computer and Communication, Vol. 3, No. 2, April 2014

• Get the new node.
 new = create_node (data) ;

 new = prev XOR curr ;
 prev - > link = ((prev -> link) XOR next) XOR new ;
 curr - > link = ((next -> link) XOR prev) XOR new ;

 }

D. Deletion Algorithm
We can delete any node of the linked list without

disturbing the links of existing nodes. Only we have to
change the links of previous and next node [7]. Consider the
list given below and we have to delete the node-3.

Fig. 3. b. Deletion of a Node.

As shown in “Fig. 3.b” we set three pointer prev, next, and
curr which are pointing to previous node, next node, and the
node which we have to be delete.

We use the following algorithm to delete a node from the
linked list.

We change the link of node-2(prev) by XOR of base
address of node-1(node previous to prev pointer) and
node-4(next).

• We change the link of node-4(next) by XOR of base
address of node-2(prev) and node-5(node next to next
pointer).

• Free the pointer curr (node which we have to delete).
• In the case when we have to delete the first node then

we take prev=(address of last node) and next=
(address of second node) curr=(address of first node)
and perform step-1 , step-2 and step-3.

 Fig. 3. c. Backward traversal.

• In the case when we have to delete the last node then

we take prev=(address of second last node) ,
next=(address of first node) curr=(address of last
node) and perform the step-1 ,step-2 and step-3.

We will use the following module to delete any node from

our list. Here we will make use of traverse module in order to
reach to the particular node that we want to delete.

void delete_node(int position)
{

• Traverse the list and go to given position using
traverse module.

• traverse (KEY , position) ;

 prev -> link = ((prev -> link) XOR curr) XOR next ;
next -> link = ((next -> link) XOR curr) XOR prev;

}

III. SIMULATION ON MOBILE PHONE
This type of linked list is applied where there is a memory

constrain. We can apply this list in many handheld devices
where there is a serious memory constraint. Now a day’s
Mobile phone is one of the most common handheld devices.
We can apply our concept for storing the contact information
in mobile phones. In mobile phones there is a phonebook
which contains the numbers of contacts which are stored in
doubly linked list. These contacts are sorted on contact name.
Assume the phonebook of a phone can store three
information i.e. First names, Last name and contact number.

“Fig. 4. a” represents the phonebook of a mobile phone
which contains the contact name and phone numbers of
different persons. If we implement the phonebook through
the double linked list then the graph between the numbers of
contacts and memory requirement are given as in “Fig. 4.b”
when we use the doubly linked list then we have to store the
addresses of both the forward and backward nodes of the list
hence more memory is required [8].

Fig. 4. a. DLL. operation on Phonebook.

Fig. 4. b. Memory requirement for storing contacts.

When we use the enhanced linked list then the memory is

being saved by considerable amount and the memory and
contact graph results as in “Fig. 4.c”.

Prev curr next

1 2 3 4 5

100

International Journal of Future Computer and Communication, Vol. 3, No. 2, April 2014

Fig. 4. c. Memory saving graph with S. L. L.

Hence we can save considerable amount of memory by

using enhanced linked list [9], [10] and we can use the
precious memory of handheld system in some useful work.

IV. SUMMARY
Linked list is a dynamic data structure which is used to

dynamically allocate the memory. It allocates the memory
during the life time of the program. Linked list are of
basically of two types called singly linked list and doubly
linked list. Singly linked list can be traversed in only one
direction. Unidirectional traversal is the drawback of the
singly linked list which can be overcome by the doubly
linked list. Doubly linked list stores the addresses of both the
previous and next node so the traversals in both the directions
are possible. We introduced a new concept of EX- OR in the
singly linked list and make it possible to traverse in both the
directions without increasing the memory requirement.
Hence we can replace the doubly linked list by this enhanced
singly linked list. This enhanced singly linked list is very
useful in domains where higher priority is given to the
memory. We showed a simulation with ‘C’ program and also
with handheld device mobile phone. With this we can
conclude that by saving a large amount of memory we are
able to perform all the DLL operations on “SLL. itself” -
removing its drawback. This makes a great impact on the use
of resources that requires more memory for their operation
and we are at short of limited memory so that it can be
utilized further in performing some more useful task. This
particular technique can also be very useful in operating

system keeping track of processes for their efficient
performance.

REFERENCES
[1] W. Li, S. Mohanty, and K. Kavi. ”A page-based hybrid (software

hardware) dynamic memory allocator,” IEEE Computer Architecture
Letters, 2006.

[2] J. Meng and L. C. Paulson, “Translation higher-order problems to first-
order clauses,” Successful Comp. Reasoning, pp. 70-80,2006

[3] A. Rogers, M. C. Carlisle, J. H. R. Laboratories, and L. J. Hendren,
“Supporting dynamic data structures on distributed-memory
machines,” ACM Trans. Program. Lang. Syst., vol. 17, no. 2, pp.
233-263, 1995.

[4] W. Gloger. (2009). Dynamic Memory Allocator implementations in
Linux System Libraries. [Online]. Available:
http://www.dent.med.unimuenchen.de/wmglo/malloslides.html

[5] M. Barnett, R. D. Line, M. Fahndrich, and K. R. M. Leino,
“Verification of object-oriented programs with invariants,” Journal of
Object Technology, vol. 3, no. 6, pp. 27-56, 2004

[6] H. Sahni and A. Freed, Fundamentals of Data Structures in C 2nd
edition, ch. 4, pp 190-195.

[7] H. J. Boehm, “The Space Cost of Lazy Reference counting,” in Proc.
31st ACM Sigplan-Sigact Symp. Principles of Programming
Languages, 2004, pp. 210-219.

[8] M. B. Zorn. (2001). Debugging Tools for Dynamic Storage Allocation
and Memory management. [Online]. Available:
www.cs.colorado.edu/homes/zom/public_html/MallocDebug.html

[9] S. Kumar. “A Language for Programmable Devices. Technical report,
Princeton University,” Department of Computer Science, January
2002.

Devishree Naidu recevied her B. E in computer
science. She recevied M. E specialization in wireless
communication and computing from G. H. Raisoni
College of Engineering, Rashtrasant Tukdoji Maharaj
University (University of Nagpur) India in year 2009.
 She has around Seven years of Teaching
Experience, Currently working as a Assistant
Professor at Department of Computer Science and
Engineering, Shri Ramdeobaba College of

Engineering and Management, Nagpur, INDIA. She has guided
undergraduate and post graduate student for research project work in the
field of mobile computing, and wireless sensor network. She is currently
carrying her research work in sensor networks. Her previous research work
was in Header compression Related to TCP/IP Protocol.

Memory requirement

Contacts

101

International Journal of Future Computer and Communication, Vol. 3, No. 2, April 2014

