

Abstract—AADL is used to design embedded software in

ever-increasing mission-critical applications. With the
complexity of embedded software increasing, integration
testing and system testing based on codes are becoming more
difficult. This paper describes a systematic test cases
generation approach using AADL for embedded software. The
approach uses hierarchical testing model to generate test cases
which is fully automatic model-driven. This paper designs one
set of mapping rules from AADL to hierarchical testing model
for constructing it automatically. The case study shows
experimental process of the test model construction and test
case generation. Automatic generation of systematic test cases
using AADL for Embedded Software is feasible.

Index Terms—AADL; test cases generation; hierarchical
testing model.

I. INTRODUCTION
Model-Based Testing (MBT) is a technique that tries to

address the problem of high-cost and low-efficiency testing
by introducing automatic generation of tests from models
representing the behaviour of the system. AADL [1]
provides modelling concepts to describe the runtime
architecture of application systems in terms of concurrent
tasks and their interactions as well as their mapping onto an
execution platform. According to the broad prospects of
AADL, AADL-based testing will be one of the further
explorations of AADL, which includes AADL-based test
cases generation and model-based testing process, methods,
tools, etc. [2], and one of the foundations of embedded
systems successfully described in AADL. Few works
investigate the testing technique for AADL. Cao [3] presents
test cases automatic generation technique based on AADL
model which includes three kinds of unit test. In our
previous work [4], we proposed the test model of integration
and system testing for AADL which is described by
extended interface automaton, and the research focuses on
the automatic construction algorithms from AADL design
model to the test model. Through previous investigation, we
find that the scale of the test model for complex system is
growing too large, which leads to massive numbers of states.
Accordingly, it is necessary to find a new description model
to master the state explosion problem for integration and
system testing. In this paper, the proposed hierarchical
testing model (HTM) can cope with the state explosion
problem encountered when applying state machine model to

large software systems; besides, it can easily produce the
system and integration test cases. HTM consists of several
hierarchy levels which represent the whole system, the
nested subsystem, process, thread, subprogram and their
behaviours, interaction from the top to bottom. Our main
goal is to use the topological and behavioural properties of a
system described in AADL, as a foundation of MBT to
generate the systematic test cases which are used for
integration testing and system testing. Test model
construction and test cases generation assistant tool is
implemented by checking the input/output behaviour of the
system and components described by AADL.

The remainder of this paper is structured as follows:
Section 2 introduces AADL and interface automata. Formal
definition of hierarchical testing model and mapping rules
from AADL to hierarchical testing model are presented in
Section 3. Section 4 describes the systematic test cases
generation approach. Section 5 presents the test process and
result obtained from case study. Section 6 concludes the
paper by summarizing the work and suggesting future
research directions.

II. AADL AND INTERFACE AUTOMATA
AADL captures system structure by identifying

architectural and behaviour components, communications
through component port connections and components
compositions. AADL components can be divided into
different kinds of components: system level components,
process level components and thread level components,
along with the data components, subprogram components
and execution platform components connected to them.
Each component has one or more operating modes and
mode change presenting some behavioural aspects. AADL
is also an extensible language which can be used to define
annexes. AADL behavioural annex specifies the detailed
behaviour of threads and subprograms. In this paper, the
topological and behavioural contents of a system including
component feature, subcomponent, component behaviour
specification and mode change, are extracted to construct
HTM. As a result, the behavioural and functional high-level,
platform-independent architecture is taken into
consideration.

The paper captures the I/O behaviors of a component by
an interface automaton. An interface automaton P=<Vp,
Vp

init,AI
P, AO

P, AH
P,△P> consists of the following

elements[6]:
• Vp is a set of states.

Vp
init ∈Vp is a set of initial states. If Vp

init=Ø，then P is
called empty.

AI
P、AO

P and AH
P are mutually disjoint sets of input (?),

Automatic Generation of Systematic Test Cases Using
AADL for Embedded Software

Chunyan Ma, Yue Li, Yunwei Dong, and Yaqi Liu

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

106

Manuscript received April 10, 2012; revised May 5, 2012.
Chunyan Ma is with School of Software and Microelectronics,

Northwestern Polytechnical University, Xi’an, China (e-mail:
machunyan@nwpu.edu.cn).

Yaqi Liu is with Institute of Computing Technology Chinese Academy
of Sciences, Beijing, China

Yue Li and Yunwei Dong are with School of Computer Science,
Northwestern Polytechnical University, Xi‟an, China

output(!), and internal actions(;). AP= AI
P∪AO

P∪AH
P is

denoted as the set of all actions.
△P⊆Vp×AP×Vp is a set of steps. ∀t∈△P, t is denoted as

t= <v1, a,v2>, where v1∈ Vp , v2∈ Vp and a ∈ AP

Instead of taking a testing model and see how we can best
exploit it for testing, let us consider how we should ideally
propose and build a testing model so that the
implementation based on AADL can be effectively tested.
The proposed HTM for AADL in section 4.1 is in line with
the testing target: (1) The HTM is automatically constructed
from AADL according to the mapping rules given in section
4.2; (2) The HTM has components interaction and
component behavior information for both system and
integration testing to generate testing paths; (3) Test cases
are automatically derived from the HTM. Comparing the
HTM with our previous work [4], it has the following
advantages: (1) more rich testing information; (2) state
space is greatly reduced and more expressive.

A. Formal Definition of Hierarchical Testing Model
Definition 4.1 AADL hierarchical testing model

described as HTM=< Ns, Ps, < Ns, Ps >，→link, →sub>
consists of the following elements:

Ns = S∪subS∪Proc∪T∪subP is a set of nodes, where,
S is the root node which corresponds to the

application system.
subS is a set of subsystem nodes which correspond to the

system components of AADL as subsystems embedded in
system.

Proc is a set of process nodes which corresponds to
the processes of AADL.

T is a set of thread nodes which corresponds to the
threads of AADL.

subP is a set of subprogram nodes which
corresponds to the subprograms of AADL.

Ps is a set of interface automata which models the
behaviors of the components.

<Ns, Ps>⊆Ns×Ps is a set of relations between node and

interface automaton, meaning that the behavior of the node
is described by an interface automaton, if n∈Ns, p∈Ps, p’
∈Ps, p ≠ p’, then <n, p>∈<Ns, Ps> => <n, p’>∉<Ns, Ps>.
→sub ⊆ (Ps.Vp × Ns)∪ (Ns × Ns) is a set of subordinate

relationships between one state node of interface automaton
and one node in Ns or between nodes in Ns, where Ps.Vp
denotes the state set of all interface automaton in Ps. If
v Ps.Vp , <v, n>∈ ∈→sub，then

1) n≠S, p∈Ps;
2) v is a state of state set Vp in p;
3) n1 Ns, <n1,p>∈ ∈<Ns,Ps>;
4)One of the following conditions is reached.
a) If n1 is S, then n∈subS;
b)If n1∈subS, then n∈Proc;
c)If n1∈Proc, then n∈T;
d)If n1∈T, then n∈subP.
The relationship between one state node of interface

automaton and one node in Ns represents the connection
between the state vp and the underlying component. If ∀<n1,
n2>∈<Ns ,Ns>, then n1 is the parent node of n2.
→link⊆Ns.Ps.AP×Ns.Ps.AP is a set of links between

interface automaton state transitions. Ns.Ps.AP denotes a set
of actions of interface automata in Ps which has relations
with one node in Ns. If (n.p.a, n.p’.a’) ∈→link ， then
<n,p>∈<Ns,Ps>, <n’,p’>∈<Ns, Ps>, a∈AP in p and a’∈AP
in p’. The link expresses the interaction between the
subcomponents belonging to the same level.

HTM is divided into a hierarchy, where each part
represents an AADL component node or the behaviour of
AADL component. The component type contains system,
process, thread and subprogram. At the same level, the
interaction between different behaviours is modelled as
“links”, which means a transition in one interface automaton
causing a transition in another interface automaton.

Mapping Rules from AADL to Hierarchical Testing
Model

This section designs the mapping rules shown in Table I,
II, and III from AADL to HTM. According to the mapping
rules, section 6 develops the supporting tool which
automatically builds the HTM by parsing the AADL model.

TABLE I: THE MAPPING RULES FROM AADL TO HTM

AADL syntax
“system” component which is not declared in other system component
“system” component which is declared in other system component
“process” component
“Thread” component
“thread” group which includes n threads
“subprogram” component
“modes” of component A and its “subcomponents B” is active in
mode m of modes.

“annex behavior_specification” of component A

If component A implementation has not contain the modes and
behavior specification

“subcomponent B” of component A

“port connection” between component A and component B

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

107

III. HIERARCHICAL TESTING MODEL FOR AADL MODEL

TABLE II: FROM MODES OF COMPONENT TO INTERFACE
AUTOMATON

Operational Modes Syntax [2] Interface automaton p
initial mode The initial state s0 of p
mode One state s in Vp of p
an arrival single event associated with
each mode transition

One element in AI
P∪AO

P
of p

mode transition One element in △P of p

The key to automatically construct HTM from AADL

model is what information should be extracted from the
AADL model. The target of integration and system testing is
to estimate the functional behaviour and how components
interact through interfaces of components. In AADL
standard, component is declared by component type and
realized by component implement. A component type
specifies the external interface of a component that its
implementations would satisfy. A component
implementation contains subcomponents and their
connections, component property, component behaviour,
and component modes. Table 3-1 describes the mapping
rules from AADL to HTM. Component is transformed into
the node in Ns of HTM by mapping rules 1-6. The
behaviour specification and modes of a component are
transformed by mapping rules 7-8. The details of mapping
rule 7 and 8 are further elaborated by Table3-2 and Table3-3.
The relationship of component and its subcomponent is
mapping to the connection between the state in interface
automaton of component and the subcomponent node with
mapping rule 10. Mapping rule 11 presents how the
interaction between components is transformed.

TABLE III: FROM BEHAVIOR SPECIFICATION OF COMPONENT TO

INTERFACE AUTOMATON
Behavior specification syntax [4] Interface automaton p
initial state the initial state s0 of p
state One state s in Vp of p
Events which the transition is
guarded with One element in AI

P of p
Boolean conditions which the
transition is guarded with One element in AH

P of p

“action?” which is attached to
the transition

1) Add one new state which represents
the state after the action. 2) mapping the
action to one element in AI

P of p
“action” which is attached to
the transition

1) Add one new state which represents
the state after the action. 2) mapping the
action to one element in AH

P of p
“action!” which is attached to
the transition

1) Add one new state which represents
the state after the action. 2) mapping the
action to one element in AO

P of p

state transition <s1,s2> which
denotes the source and target is
respectively s1 and s2

If the action attached to the transition
exist, and the added new state is called
s, then mapping <s1,s2> and <s2,s> to
two elements in △P of p

IV. TEST CASES GENERATION
In this section, we present our approach for test cases

generation based on the HTM. Test cases generation from a
Finite State Machine is a long-standing research problem
with numerous contributions over decades. On this base, we
give random path algorithm of test cases generation from
HTM. Each test case is abstractly denoted by the pair
sequences about the component node and the corresponding
action. Let the test model HTM be < Ns, Ps, < Ns, Ps >，
→link, →sub> , the form for each test case TC is: TC = n1.a1,
n2.a2 , …,ni.ai，where nk ∈ Ns, pk∈ Ps, ak∈ AP of pi ,1≤ k≤i.
The random algorithm of each test cases generation is as

follows.
Input: HTM=< Ns, Ps, < Ns, Ps >，→link, →sub>
Output: one test case TC
Algorithm description:
Initiate TC and Set the root node as the current component node n,

n∈Ns.
If an interface automaton p∈Ps which has relationship with the current

node n exists, then continue the step 3, otherwise continue the step 6.
Set any initial state of an interface automaton as the current state node v,

v∈ Vp in p.
If ∃<v,a,v1>∈△P in p or ∃(v, m)∈→sub , then execute 4.1, or 4.2, or

4.3 randomly
4.1 put the “n.a” into TC and set v1 as the current state node v.
4.2 if ∃<n.p.a, n.p’.a’>∈→link

 and ∃<v2,a,v3>∈△P in p’, then set v3 of
p’ as the current state node v, v∈ Vp in p’.

4.3 if ∃<v, m>∈→sub，m∈Ns , set m as the current component node n;
 Loop step 4 until the condition of step4 is false. Then Continue step 7.
 If <n, n1>∈→sub , set n1 as the current component node n. continue the

step 2
 End.
When an embedded system is being tested, the tester plays

the role of the environment. An embedded system interacts
closely with its environment by exchanging input and output
signals. The tester needs to provide concrete value for each
input of each abstract test case. Each abstract test case may
derive many concrete test cases.

V. CASE STUDY
The paper develops the assistant tool prototype A2TC

which can automatically parse AADL model into HTM and
generated the test case set. The tool prototype A2TC and
systematic test approach have been applied to code
generated by three AADL cases which include cruise
control system of the car, producer and consumer, and Flight
System in [7]. In this section, the experimental process and
results of cruise control system for the car is elaborated.
Cruise control system simulates the driving process of the
car. It includes two processes: CarSimulator and Controller.
CarSimulator process simulates car driving which includes
launch, stop, acceleration, deceleration etc. CarSimulator
contains two threads: BasicThread and CarSimulatorThread.
CarSimulatorThread runs only after the car started.
Controller process is the cruise controller. When receiving
the start signal ‘on’, Controller process executes the
SpeedControl thread. SpeedControl sends periodical signal
to BasicThread thread for controlling car speed.

Step1: the HTM generation: The tool A2TC parses
AADL XML file and instance file of Cruise control system
into the HTM represented by the Fig1. Due to limited space,
the complete formal description for test model HTM is
omitted. We take the graphical representation of test model
to explain HTM. In Fig1, the CarSimulator node points to
interface automaton mapped by the following modes
specification of CarSimulator process.

modes
 engineoffstate: initial mode ;
 engineonstate: mode ;
 annex behavior_specification {**
 mode transitions
 engineoffstate -[EngineOn?]-> engineonstate;
 engineonstate -[EngineOff?]-> engineoffstate

{ throttle := 0.0; speed := 0; distance := 0; brakepedal := 0; };

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

108

 **};

Fig. 1 HTM model of cruise control system.

In Fig. 1, the interaction between the thread SpeedControl
and Basicthread is mapped into the link between the action
“SetThrottle((SetSpeed-cs.getSpeed())/6.0+SetSpeed/12.0)!”
and “SetThrottle(val)?” by Mapping rule 11. The interface
automaton which includes “SetThrottle((SetSpeed-
cs.getSpeed())/6.0+SetSpeed/12.0)!” corresponds to the
behavior specification for the thread SpeedControl. The
interface automaton which includes “SetThrottle(val)?”
corresponds to the behavior specification for the thread
Basicthread.

Step2: the generation of abstract test case set: We
save the output and internal action for each abstract test case
as expected oracle. So the abstract test case path involves
input of test path and oracle of test path. Random algorithm
of test case generation is called to 50,000 times. 87 different
abstract test cases are derived which cover all states and all
transitions.

Step2.1: The tool generates the following part abstract
input of test path (That is, the top8) for cruise control system.

• P1:[CarSimulator.EngineOn?] [CarSimulatorThread.Accelerate?]
[CarSimulatorThread.Brake?] [CarSimulatorThread.Brake?]

• P2:[CarSimulator.EngineOn?] [CarSimulator.EngineOff?]
[CarSimulator.EngineOn?] [CarSimulator.EngineOff?]

• P3: [Controller.EngineOn?] [Controller.On?]
[BasicThread.SetThrottle(val)?]

• P4: [Controller.EngineOn?] [Controller.EngineOff?]
[Controller.EngineOn?] [Controller.On?]
[BasicThread.SetThrottle(val)?] [BasicThread.SetThrottle(val)?]

• P5: [Controller.EngineOn?] [Controller.EngineOff?]
[Controller.EngineOn?] [Controller.On?] [Controller.Off?]
[Controller.On?] [BasicThread.SetThrottle(val)?]
[BasicThread.SetThrottle(val)?]

• P6: [CarSimulator.EngineOn?] [BasicThread.SetThrottle(val)?]
[BasicThread.SetThrottle(val)?] [BasicThread.SetThrottle(val)?]

• P7: [CarSimulator.EngineOn?] [CarSimulator.EngineOff?]
[CarSimulator.EngineOn?] [CarSimulator.EngineOff?]
[CarSimulator.EngineOn?] [CarSimulator.EngineOff?]
[CarSimulator.EngineOn?] [CarSimulatorThread.Brake?]
[CarSimulatorThread.Brake?] [CarSimulatorThread.Brake?]
[CarSimulatorThread.Brake?] [CarSimulatorThread.Accelerate?]
[CarSimulatorThread.Brake?] [CarSimulatorThread.Brake?]
[CarSimulatorThread.Accelerate?] [CarSimulatorThread.Brake?]

• P8: [Controller.EngineOn?] [Controller.On?] [Controller.Accelerate?]
[Controller.Resume?] [Controller.Off?] [Controller.On?]
[Controller.EngineOff?] [Controller.EngineOn?] [Controller.On?]

Step2.2:The tool generates the following oracle of the
above part test path for cruise control system.

• E1:[CarSimulatorThread.brakepedal=0;]
[CarSimulatorThread.throttle=5.0;] [CarSimulatorThread.throttle=0;]
[CarSimulatorThread.brakepedal=1;] [CarSimulatorThread.throttle=0;]
[CarSimulatorThread.brakepedal+=1;]

• E2: [CarSimulator.throttle=0;] [CarSimulator.speed=0;]
[CarSimulator.distance=0;] [CarSimulator.brakepedal=0;]
[CarSimulator.throttle=0;] [CarSimulator.speed=0;]
[CarSimulator.distance=0;] [CarSimulator.brakepedal=0;]

• E3: [Controller.SetSpeed=0;] [Controller.SetSpeed=cs.getSpeed();]
[SpeedControl.timeout(500ms);] [SpeedControl.SetThrottle((SetSpeed-
cs.getSpeed())/6.0+SetSpeed/12.0)!] [BasicThread.throttle=val;]
[BasicThread.throttle>10.0|throttle=10.0 throttle<0.0|throttle=0.0;]
[BasicThread.brakepedal=0;]

• E4: [Controller.SetSpeed=0;] [Controller.SetSpeed=0;]
[Controller.SetSpeed=cs.getSpeed();] [SpeedControl.timeout(500ms);]
[SpeedControl.SetThrottle((SetSpeed-
cs.getSpeed())/6.0+SetSpeed/12.0)!] [BasicThread.throttle=val;]
[BasicThread.throttle>10.0|throttle=10.0 throttle<0.0|throttle=0.0;]
[BasicThread.brakepedal=0;] [BasicThread.throttle=val;]
[BasicThread.throttle>10.0|throttle=10.0 throttle<0.0|throttle=0.0;]
[BasicThread.brakepedal=0;]

• E5: [Controller.SetSpeed=0;] [Controller.SetSpeed=0;]
[Controller.SetSpeed=cs.getSpeed();]
[Controller.SetSpeed=cs.getSpeed();] [SpeedControl.timeout(500ms);]
[SpeedControl.SetThrottle((SetSpeed-
cs.getSpeed())/6.0+SetSpeed/12.0)!] [BasicThread.throttle=val;]
[BasicThread.throttle>10.0|throttle=10.0 throttle<0.0|throttle=0.0;]
[BasicThread.brakepedal=0;] [BasicThread.throttle=val;]

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

109

[BasicThread.throttle>10.0|throttle=10.0 throttle<0.0|throttle=0.0;]
[BasicThread.brakepedal=0;]

• E6: [BasicThread.throttle=val;] [BasicThread.throttle>10.0|throttle=10.0
throttle<0.0|throttle=0.0;] [BasicThread.brakepedal=0;]
[BasicThread.throttle=val;] [BasicThread.throttle>10.0|throttle=10.0
throttle<0.0|throttle=0.0;] [BasicThread.brakepedal=0;]
[BasicThread.throttle=val;] [BasicThread.throttle>10.0|throttle=10.0
throttle<0.0|throttle=0.0;] [BasicThread.brakepedal=0;]

• E7: [CarSimulator.throttle=0;] [CarSimulator.speed=0;]
[CarSimulator.distance=0;] [CarSimulator.brakepedal=0;]
[CarSimulator.throttle=0;][CarSimulator.speed=0;]
[CarSimulator.distance=0;] [CarSimulator.brakepedal=0;]
[CarSimulator.throttle=0;]
[CarSimulator.speed=0;][CarSimulator.distance=0;]
[CarSimulator.brakepedal=0;] [CarSimulatorThread.throttle=0;]
[CarSimulatorThread.brakepedalbrakepedal=1;][CarSimulatorThread.th
rottle=0;] [CarSimulatorThread.brakepedal=2;]
[CarSimulatorThread.throttle=0;]
[CarSimulatorThread.brakepedal=3;][CarSimulatorThread.throttle=0;]
[CarSimulatorThread.brakepedal=4;]
[CarSimulatorThread.brakepedal=0;]
[CarSimulatorThread.throttle=5.0;][CarSimulatorThread.throttle=0;]
[CarSimulatorThread.brakepedal=1;] [CarSimulatorThread.throttle=0;]
[CarSimulatorThread.brakepedal=2;][CarSimulatorThread.brakepedal=
0;] [CarSimulatorThread.throttle=5.0;] [CarSimulatorThread.throttle=0;]
[CarSimulatorThread.brakepedal=1;]

• E8: [Controller.SetSpeed=0;] [Controller.SetSpeed=cs.getSpeed();]
[Controller.SetSpeed=cs.getSpeed();]
[Controller.SetSpeed=0;][Controller.SetSpeed=cs.getSpeed();]

•

VI. CONCLUSIONS
Along the formal HTM, and the proposed test case

generation, a systematic test generation technique that uses
AADL model for the embedded system is proposed and
experimented. The technique raises the task of testing
AADL implementations using a formal level of automation.
This method can not only reduce the work of test cases

development and maintenance, move the test process
forward and shorten system development time, also
guarantee the expected behaviours consistency of system
implementation and AADL design through executing test
cases which were automatically generated and changed
according to AADL system design. In the future work, we
can evaluate generated test case by providing concrete
values for them to test the large code system, and integrate
abstract and concrete test cases into the certification
processes for the embedded system.

ACKNOWLEDGEMENTS
This paper is supported by Shaanxi Provincial NSBR Plan

in China (No. 2011JQ8008) and Graduation Key Project of
Northwestern Polytechnical University.

REFERENCES
[1] SAE, International. Architecture Analysis and Design Language

(AADL), AS 5506, Nov.2004.
[2] Z. B. Yang, et al. AADL: “An Architecture Design and Analysis

Language for Complex Embedded Real-Time Systems,” Journal of
Software, vol.21, no.5, pp.899−915, 2010.

[3] C. Xizhen and Q. Hongbing, “Research on Test Cases Automatic
Generation Technique based on AADL Model,” 2010 3rd
International Conference on Advanced Computer Theory and
Engineering (ICACTE), pp. 338-342, 2010.

[4] M. Chunyan and D. Yunwei etal, “An Effective Method for Obtaining
Architecture of Test Model AADL,” Journal of northwestern
polytechnical university, vol. 28, no. 6, 2010.

[5] SAE AS5506 Annex: Behavior_Specification V2.0 September 20,
2007.

[6] L. D. Alfaro etal. Interface Automata, in the Proceedings of the 9th
Annual ACM Symposium on Foundations of Software Engineering
(FSE), 2001.

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

110

[7] AADL. [Online]. Available:

http://www.aadl.info/aadl/currentsite/examplemodel.html

