
  

  
Abstract—Cast shadows of moving foreground objects can 

cause miss tracking problem in object detection and tracking, 
thus shadow detection is an important step used after a moving 
foreground object is detected. Most of current methods have a 
significant trade-off between the shadow detection rate and the 
shadow discrimination rate. In this paper, an effective and 
adaptive method with combined texture and color models is 
proposed in order to achieve good shadow detection rate and   
shadow discrimination rate as well. Firstly, Scale Invariant 
Local Ternary Pattern (SILTP) is used to select a candidate 
shadow region. Then HSV color model is employed to detect a 
new candidate shadow region by using maximum likelihood 
estimation (MLE) to estimate the thresholds of HSV color 
model adaptively. Finally the two regions are combined by 
logical operation and a new shadow region can be obtained. 
Our experimental results show that the proposed method 
achieves a better performance in both shadow detection rate 
and discrimination rate compared to the other current methods. 
Moreover, the proposed method runs at 100 frames per second 
and is suitable for the real-time detection and tracking. 
 

Index Terms—Shadow detection, SILTP, HSV color space, 
adaptive thresholds.  
 

I. INTRODUCTION 
Detection of moving foreground objects from video 

sequences is one of the most important parts in computer 
vision applications. Generally, the cast shadows would be 
detected as foreground objects since the shadows share the 
same movement patterns and have a similar magnitude of 
intensity change as that of the foreground object [1]. Since 
the shadow regions are sometimes as big as the object regions, 
the wrong classification as foreground objects can cause 
various unwanted consequence such as object shape 
distortion, false object detection and object merging, which 
has a bad impact on object detection and tracking. Therefore, 
shadow detection is a significant step for improving moving 
foreground objects detection and tracking.  

There have been many methods focused on cast shadows 
detection. A survey and a comparative evaluation of recent 
techniques for moving cast shadow detection are presented in 
[2]. The methods of cast shadow detection covered in the 
survey are divided into four categories according to the 
features they are based on: chromaticity-based methods, 
physical-based methods, geometry-based methods and 
texture-based methods. The chromaticity-based methods are 
based on the assumption that shadow pixels become darker as 
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they are blocked from the illumination source but their 
chromaticity remains the same as the corresponding 
background pixels, which referred to as color constancy [3] 
or linear attenuation [4]. These properties have been 
employed in different colors spaces like HSV [5], YUV [6], 
normalized RGB [7] and c1c2c3 [8]. Most of these methods 
are simple to perform and their processing time is the fastest 
comparatively. However, they can not adapt to variant 
illumination well. Besides, they have the problem that the 
thresholds of brightness and chromaticity are set manually. 
The physical-based methods use physical-based color 
features to model or learn the specific appearance of shadow 
pixels [9], [10]. Though these methods tend to have a better 
performance than the chromaticity-based methods, they still 
limited to spectral properties. Furthermore, the training 
samples may be insufficient since the statistical models are 
learned from background surface variation under cast 
shadows. The geometry-based methods use the information 
of shadows to detect them, e.g. the orientation, the size and 
even the shape, which can be estimated with proper 
knowledge of the illumination source, object shape and the 
ground plane [11]-[13]. These methods lose effectiveness 
when the geometrical relationship changes since they depend 
on the geometrical relationship of the objects in the scenes. In 
addition to color properties, texture or gradient information 
extracted from the spatial domain is used to detect cast 
shadows. The texture-based methods are based on the fact 
that shadow regions remain the same texture as the 
corresponding background regions [14]-[16]. Since textures 
are greatly differentially and can adapt to variant illumination 
well, the texture-based methods are potential powerful for 
shadow detection. However, their processing time tend to be 
slow since their computation are expensive. What’s more, if 
both the background regions and the moving objects have no 
texture, the texture-based methods will lose effectiveness.  

Moreover, these methods have a big trade-off between the 
shadow detection rate and discrimination rate except the 
large region (LR) texture-based method [14]. However, the 
processing time of LR texture-based method is not fast 
enough to perform in real-time.  

Considering the advantages and disadvantages of the 
chromaticity-based methods and the texture-based methods 
respectively, the chromaticity features and texture features 
can be combined together to detect shadow in order to 
achieve good performance and fast processing time.  

In this paper, an adaptive shadow detection method which 
achieves good shadow detection rate and shadow 
discrimination rate is proposed. It is a mixture of the 
chromaticity-based method and the texture-based method. 
Firstly, Scale Invariant Local Ternary Pattern (SILTP) [17] is 
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used to select a candidate shadow region. Secondly, HSV 
color model is adopted to detect a new candidate shadow 
region and maximum likelihood estimation (MLE) is 
employed to estimate the thresholds of HSV color model. 
Finally, the two candidate shadow regions are combined and 
the final shadow region is achieved. 

The remainder of this paper is organized as follows. The 
proposed shadow detection method is introduced in details in 
Section II. Our experimental results and comparison with the 
recent methods for moving cast shadow detection is provided 
in the Section III. The conclusion is drawn in Section IV. 

 

 
Fig. 1. Process of the proposed method. 

 

II. PROPOSED METHOD 
In this section, the local texture descriptor SILTP and the 

HSV color model are employed to detect shadows. The 
flowchart of the proposed method is presented in Fig. 1. First, 
the set of moving pixels is obtained by pre-processing. 
Second, SILTP is employed to detect the shadow region in 
the set of moving pixels, by which a shadow region 3S  can be 
gained. Third, the thresholds of HSV color model are 
achieved by maximum likelihood estimation (MLE) and a 
shadow region 2S  is detected by HSV color model. Finally, 
the above two shadow regions we have detected are 
synthesized by logical operation and get a final shadow 
region 3S . 

A. Pre-Processing 
The set of moving pixels R is obtained by subtracting the 

background image from the current image. In the set of 
moving pixels, both the moving object pixels and shadow 
pixels are included. The intensity of the shadow pixel is 
smaller than the background pixel since its illumination 
source is blocked by the moving foreground object. 
Therefore, if a pixel from the set of moving pixels is lighter 
than its corresponding background pixel, it is defined as a 

moving object pixel and is extracted from the moving pixels. 
With this procedure, computation can be reduced. Since the 
candidate set value (V) in HSV color model is a direct 
measure of intensity, it is used to estimate. The pixel is 
determined by 
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where R  is moving pixels obtained in first, M  is the set of 
moving pixels after pre-processing, which is the processing 
data in the following steps, R M−  is the set of object pixels, 

( , )Fp x y  is the pixel p  belongs to R  in the frame (F), V
Fp  

and V
Bp  are the value (V) in HSV color model for the pixel 

p  in the frame (F) and background reference image (B), 
respectively. 

B. SILTP 
Since shadow regions retain most of their textures, SILTP 

can be used to detect the shadow based on the similarity of 
texture [15]. Given a pixel location ( , )p x y , it is encoded by 
SILTP as 
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where pI  is the gray intensity value of the center pixel p , 

kI  are that of its N  neighborhood pixels equally spaced on a 
circle of radius R , ⊕ denotes concatenation operator of 
binary strings, τ  is a scale factor indicating the comparing 
range, and sτ  is a piecewise function defined as 
 

01, (1 ) ,

( , ) 10, (1 ) ,

00, .

k p

p k k p

if I I

s I I if I I

otherwise
τ

τ
τ

> +⎧
⎪= < −⎨
⎪
⎩

                 (3) 

 
SILTP operator has three advantages. Firstly, its 

computation is efficient since it causes only one more 
comparison than LBP for each neighbor. Secondly, it is 
robust to noises since it introduces a tolerative range τ  like 
LTP. Thirdly, it has the property of scale invariance (“scale” 
here means gray scale pixel value, not spacial scale.) since 
each comparison can result in one of these three values which 
can be encoded in two bits (with “11” undefined). Therefore, 
the SILTP feature is invariant even when the illumination is 
suddenly changed, so SILTP is robust to illumination 
changes and can achieve better textures.  

The set of moving pixels and the corresponding 
background pixels are encoded by SILTP and their similarity 
is estimated by hamming distance. We define that if the 
Hamming distance of SILTP between the moving pixels of a 
frame and the corresponding background is less than 
threshold 1λ , then the pixel belongs to the set of shadow 
pixels. It should also consider the situation that heavy 
shadow regions under strong illumination may lose most of 
their texture, so we define that the pixel also belongs to the 

The set of moving pixels M 

SILTP Operator

Detection in HSV color model 

A shadow region S1

A new shadow region S2 

Logical operation 

A final shadow region S3 

Pre-processing 
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set of shadow pixels if its SILTP is less than threshold 2λ : 
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where ( )h ⋅  is the hamming distance of SILTP between the 
moving pixels of a frame and the corresponding background 
pixels, 1λ  and 2λ  are the thresholds, 1S  and M  is the first of 
shadow pixels and the set of moving pixels achieved by 
pre-processing, respectively. 

C. HSV Color Model 
The HSV color model provides a natural separation 

between chromaticity and luminosity. The intensity of 
shadow region is lower than that of object region, and the 
HSV color model can reflect this problem well since the 
value (V) is a direct measure of intensity. Following the 
chromaticity cues, shadow pixels does not change its hue (H) 
compared with the corresponding background pixels, but 
their saturation (S) will be lower [5]. Therefore, a pixel p  is 
considered to be a shadow pixel if it satisfies the following 
three conditions: 
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The thresholds of the HSV color model are optimized 
empirically [5]. Therefore, it is not sensitive to strong 
illumination changes and fails with strong shadows. In the 
proposed method, MLE is used to estimate the thresholds. 

Light ratio R, the hue difference HD  and saturation 
difference SD  are defined as follows: 
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                           (6) 

where ( , )Fp x y  belongs to the set moving pixels M in the 
frame and ( , )Bp x y  is its corresponding background pixel. 

We assume that the distributions of pR , H
pD , and S

pD  for 
the shadow pixel are Gaussian and each pixel’s distribution is 
independent to each other. To simplify the expression, we use 

( , )C
pD C H S=  to stand for H

pD  and S
pD . 

Now that we have 1S , the first candidate set of shadow 
pixels, so we can employ MLE to estimate the mean and 
standard deviation of pR  and C

pD  of the shadow pixels in 

order to get a new set of shadow pixels 2S . Therefore, we can 
obtain: 
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where 
1SN  is the number of pixels in 1S . 

Then we can get the thresholds by: 
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where a = 1.645 with reliability of 90%; P(-1.645<Z<1.645) 
= 0.9, Z = N(0,1). 

With the calculated thresholds, we can determine whether 
or not a pixel belongs to the set of shadow pixels by: 
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where 2S  is a new set of shadow pixels. 

D. Logical Operation 
Now we have achieved two sets of shadow pixels, and we 

can get the synthetic result by: 
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where 3S  is the final determined set of shadow pixels and 

3M S− is the set of object pixels. 

E. Post-Processing 
Some unconnected regions may appear after logical 

operation and this may results in two types of errors: shadow 
detection failure and object detection failure. Shadow 
detection failure means that some shadow pixels are 
misclassified as object pixels and object detection failure 
means that some shadow pixels are misclassified as object 
pixels. Hence, morphological operations and connection 
operation are employed among these unconnected regions to 
increase the accuracy of shadow detection. 

III. EXPERIMENTAL RESULTS 

In this section, the proposed method is compared with the 
recent methods in terms of qualitative observations as well as 
quantitative performance measures. These methods are 
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chromaticity-based method [5], geometry-based method [13], 
physical method [4], small region (SR) texture-based method 
[15], and large region (LR) texture-based method [16]. We 

applied all these methods to five test sequences (Room, Lab, 
Campus, Hallway, and CAVIAR) which have been 
commonly used in shadow detection.  
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(a) Room (b) Lab (c) Hallway (d) CAVIAR (e) Campus 
Fig. 2. Detection results of different method. 

A. Qualitative Results 
The qualitative results are shown in Fig. 2. An example 

frame for each sequence is shown in the first row. The ground 
truth images are shown in the second row and the results of 
different methods are shown in the rest row, where object 
pixels are marked in blue and shadow pixels are marked in 
green. From the qualitative results we can see that proposed 

method has improvement in both the performance and 
robustness. 

B. Quantitative Results 
The quantitative evaluation follows the method proposed 

by Prati et al. [18]. The shadow detection rate η  and shadow 
discrimination rate ξ  are defined as follows: 
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where the subscript S stands for shadow and F for foreground. 
TP and FN stand for true positive and false negative 
respectively. 

The quantitative results are shown in Fig. 3. It can be noted 
that the proposed method performs better than the other 
methods in average, achieving a high value in both shadow 
detection rate and discrimination rate. 

The average processing time per frame of each shadow 
detection method is shown in Table I .The processing time is 
achieved by a 32-bit Intel CPU running at 2.8 GHz. Since the 
code of the proposed method is optimized, it takes only a 
little bit longer time to process compared with the 
chromaticity method. It is the second quickest method in 
these methods and it processes fast enough to be used in 
surveillance scenarios. 

TABLE I: AVERAGE FRAME PROCESSING TIME (IN MILLISECONDS) PER SEQUENCE FOR VARIOUS SHADOW DETECTION METHODS

Chromaticity Geometry Physical SR textures LR textures Proposed method 

Room 6.94 8.15 8.26 39.43 15.46 7.65 

Lab 8.70 17.08 14.59 65.86 21.71 9.65 

Hallway 10.88 8.63 12.25 61.43 20.54 12.11 

CAVIAR 10.48 13.26 13.45 67.48 23.60 11.42 

Campus 8.36 9.00 9.64 41.03 19.70 9.24 

Average 9.07 11.23 11.64 55.04 20.20 10.01 

(a) 

(b) 

(c) 
Fig. 3. The quantitative results. The bars represent chromaticity method, 

geometry method, physical method, SR texture method, LR texture method 
and the proposed method in sequence. (a) Shadow Detection Rate. (b) 

Shadow Discrimination Rate. (c) Average of shadow detection rate and 
shadow discrimination rate. 

IV. CONCLUSION

In this paper, an effective and adaptive method of shadow 

detection method is proposed. The proposed method detects 
the set of shadow pixels from the moving pixels by using 
SILTP and HSV color model. The advantages of the method 
are as follows: Firstly, it achieves higher shadow detection 
rate and discrimination rate than the existed methods in 
average. Secondly, it is adaptive and robust to illuminate 
variation in the environment since the thresholds of HSV 
color model are estimated automatically without manual 
setting. Finally, it can be used in surveillance system since it 
runs at 100 frames per second. 
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