

Abstract—Video play has become a popular entertainment as
network capacities have been improved. To lower the power of
the video stream server to meet the requirements of green
computing and to save the bandwidth which helps to solve the
bandwidth congestion problem, a novel hardware-based VOD
server system is introduced. We design an architecture that is
suitable for video stream transmission. We manage to complete
a prototype system which is implemented in an FPGA board. In
this paper, we describe the structure of the VOD system, the
method of processing requests and the organization of large
amounts of information. Besides, we propose a dynamic file
chunking technique to implement real time playing. With it,
users can interact with the system when playing a video.

Index Terms—VOD, FPGA, architecture, low power.

I.

INTRODUCTION

The development of broadband internet technologies
promotes the emergence of numerous web applications. But
web applications are no longer limited to the transmission of
data text and graphics. Multimedia videos and audios have
become an important role of the web application. The VOD
[1]-[3] (video on demand) system which is used for
entertainment, education and advertisement has become a
hotspot application. VOD technology which is based on real
time media streaming [4]-[6] technology makes it possible to
watch a video at any time. VOD can be either HTTP-based [7]
or RTSP/RTP-based [8]. It’s a good choice to use the HTTP
protocol because it’s popular and simple.

In recent years, many researches have been done on VOD
while few researches have been done on hardware-based
VOD. However, hardware-based TCP/IP protocol stack [9]
[10] has been studied and been implemented by many
researchers. This reveals that it’s a trend implementing
hardware-based servers. Considering the development cycle
and development cost, the FPGA is a good choice. A web
server on FPGA is implemented in [11].

HTTP protocol has been widely used for many network
applications, including VOD. Users can send HTTP request
to download videos from the media server and watch them
online. Most of the current HTTP live video solutions are
based on HTTP requests/responses. A video file is divided
into a set of small fragments. A client sends an HTTP request
for a specific fragment and receives the fragment via an
HTTP response from the media streaming server. After
playback of the fragment is nearly completed, the client sends
a request for the next fragment until all the video data is send

Manuscript received August 20, 2013; revised October 31, 2013.
The authors are with the School of Microelectronics, Shanghai Jiao Tong

University, Shanghai, China (e-mail: qiangcaohao@sina.com).

[12]. If the client skips some specific fragments, those
fragments will not be transmitted. It helps to save the
bandwidth. Every fragment is transmitted as a single
streaming and is send from the start of the fragment. So the
delay is unavoidable when a live event happens. To improve
this condition, dynamic chunking technique is used to
produce dynamic fragments.

With the development of broadband internet technologies,
the 10Gbps physical Ethernet cards become main streaming.
Along with the clouding computing, how to lower power
consumption becomes an important issue. Based on the
hardware design, a VOD server can achieve good
performance as well as low power.

II. BASIC ARCHITECTURE
The simplified architecture of the hardware-based VOD

server system is shown in Fig. 1.

Fig. 1. Simplified architecture of the hardware-based VOD system.

HTTP requests from clients in the form of TCP packets are

sent over the network. The 10Gpbs Ethernet media access
control (MAC) receives the TCP packets. Then the TCP/IP
module filters the requests and passes the legal ones to VOD
processing module. The VOD processing module (VPM)
adds a new entry to the service table. The VOD processing
module deals with every entry in a circular manner. It
retrieves the data from the DRAM with advanced extensible
Interface (AXI) bus and passes the data to the TCP/IP module.
The overall architecture of the VOD server system is shown
in Fig. 2.

The system mainly contains four parts: a MicroBlaze
processor core, a TCP/IP module, storage hierarchy and
VPM. The MicroBlaze processor runs no operation system.
It’s used to initialize the whole system and control the DMA.

The TCP/IP module is written in Verilog hardware
description language (Verilog HDL). It’s a simplified
implementation of the TCP/IP protocol. It implements the
data link layer, the network layer and the transport layer. The
functions of the TCP/IP module include ARP (Address
Resolution Protocol) response, accepting TCP (Transmission
Control Protocol) connections, keeping TCP connections and
cutting off TCP connections.

FPGA Implementation of High Performance and Low
Power VOD Server

Qiang Cao, Jiang Jiang, Chang Wang, and Yongxin Zhu

148

International Journal of Future Computer and Communication, Vol. 3, No. 3, June 2014

DOI: 10.7763/IJFCC.2014.V3.286

The storage hierarchy is made up of BRAM, DRAM, and
SSD. The control information is stored in BRAM. DRAM is
used as a data cache. SSD is used as large capacity storage.
VPM realizes a video-on-demand application. It’s the core of
the study. The detail architecture of the VPM is shown in Fig.
3.

Fig. 2. Overall architecture of the VOD system.

Service Control Unit
Configure&

State

Request
Analyse

Service table
(BRAM)

Video Data
Assemble

Cache
Controller

Req

Cfg Req

Resp

Cfg Rsp

AXI
MMC

DRAM

DMA
Data

DMA

MicroBl
aze

FSL

System
Timer

Data
Transmiter

Fig. 3. Detail architecture of VPM.

The Service Control Unit which is the center of the VPM

controls all the other modules to function parallel so that the
design improves the performance of VOD application. At the
other head, instead of using an embedded microprocessor
whose efficiency is low to control the all modules, we only
use it to control the DMA. It is hard to control the DMA by
hardware and the DMA is not so important in this system. As
a result, it shortens the response time and improves the
throughout.

The whole system is implemented by FPGA whose power
consumption is so low that the hardware based VOD server
consumes low power.

III. IMPLEMENTATION

A. VPM and Storage Hierarchy
VOD related requests and configuration requests are the

two kinds of requests that VPM will deal with. The Request
Analysis Module receives HTTP requests and transforms the
requests into easy to use information. And then it tells the
Service Control Unit (SCU) to store the information

synchronously. An item in Service Table is shown in Table I.

TABLE I:

ITEM ORGANIZATION IN SERVICE TABLE

Parameter type description
connection id uint32 identify of the TCP connection,

generated by TCP/IP module
request file
name

char[12] the multimedia file name on
command, assume maximum
length of file name is 12

param1 uint16 the start point of the file
useful only when partial file
wanted, otherwise, fill 0

param2 uint16 the end point of the file
useful only when partial file
wanted, 0 represented the end of
the file

state uint16 service state
data length uint32 total length of data should be

transmit in this session
last access time uint32 timeout if the service has no

response for a long time
request time uint32 time the request comes, for rate

control
data offset uint32 data transmission pointer
next uint32 when using link table, this

parameter represents the next
service item

DATA1 uint64 data address and length,33
high-bit for address and 31 low-bit
for length, 0 for no data

DATA2 uint64 the same as above
DATA3 uint64 the same as above
bytes send uint32 data bytes already send from

connection to now
max data rate uint16 bandwidth control
A finite state machine which interacts with other part of

VPM exists in SCU for coordinate work. The flow how the
SCU deals with a request is shown in Fig. 4.

File exists

Start

Request recieved

HTTP 404

end

Data Assemble

HTTP 200

Data

no

yes

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

Data Preparation

Data sending

Fig. 4. Flow how to deal with a quest.

It can be divided into three stages: request receiving, data

preparation and data sending. The Request Analysis module
completes the first stage. The second stage is completed by
the Cache Controller and the Video Data Assemble module.
The last stage is completed by the Data Transmitter.

There is so much data that how to organize the storage is
an important issue. The Xilinx FPGA VC6VLX550T is

149

International Journal of Future Computer and Communication, Vol. 3, No. 3, June 2014

chose and the storage elements are show in Table II. The
memory is assigned in accordance with Table III.

Unlike the VOD request, the configuration requests don’t
use the HTTP protocol so that the requests can be deal with
quickly. Most of all, we only read registers by sending
configuration requests although we can both read and write
registers.

TABLE II: AVAILABLE STORAGE ELEMENTS
Type size(Kbit)

Distributed RAM 6,200
Block RAM 22,752
DDR3 SDRAM(EX) 67,108,864

TABLE III: STORAGE ELEMENTS USED

unit Type size(byte)
MicroBlaze DRAM 1G(exclusive),4G(addressable)
TCP/IP BRAM 1M
VPM BRAM

DRAM
128K
1G

Video Data
Cache

DRAM 6G

FIFO BRAM 64K~128K

B. Cache Policy
The data cache whose physical media is dynamic random

access memory and whose size is 6G bytes is used to speed
up data access. Hash algorithm is used to map the file to the
physical cache blocks. Least recently used method (LRU) is
used to replace the cache block when hash conflict happens
because hot data is preferred to cache. Asymmetry 2-way
associative cache is used. The hash conflict rate is shown in
Fig. 5. The horizontal axis represents the set 2 ratio.

22

1 2
setblockSet ratio

setblock setblock
=

+

The vertical axis represents the hash conflict rate. The

cache block sizes vary from 256k byte to 4M bytes. The least
hash conflict distribution is shown in Fig. 6.

C. Real-Time Transmission and Data Bandwidth Control
To implement real time video playing file chunking

technique is used. A video file can be dynamically split into
multiple pieces, according to the key-frame stamps. Unlike
static file chunking technique which splits the video file in
advance, dynamic file chunking technique can help to split a
video according to a request. Thus, the split file piece can
start and end at any point of a file. Two parameters, param1
and param2 shown in Table II, are delivered when a request
is send. If a video file has key frame stamps, it’s easy to find
the wanted start and end point. Only the specified file part
will be transmit.

There are three parameters in Table II related with data
bandwidth control. There is another global default parameter
called global maximum data rate related with bandwidth
control. If the max data rate is invalid, the global maximum
data rate is used. This parameter can be configured when the
system is initialized. It can be configured through
configuration module as well. A video may be stopped at any
time as it is playing. So it’s not a good idea to download the

whole video as quick as possible. We can change the
download rate according to the request. The parameter max
data rate is used to control this. And it should meet the
following condition.

bytessend

datarate
currenttime requesttime

=
−

Fig. 5. Hash conflict rates in different block size and set-2 ratio.

Fig. 6. Least hash conflict rates in different block size.

D. User Interaction
When playing a video, a user can send the following

requests in the Table IV. Some of the requests are realized in
a trick way because they are difficulty or unnecessary to
realize. However, it seems to realize all the commands in the
eyes of users.

TABLE IV: USER INTERACTION REQUESTS

command description realization
play/Resume Start a video from the

beginning or resume
after temporarily
stopping the show

start transmit data

stop permanently stop the
presentation of the
video

stop data stream and
cut off the
connection

pause Freeze the picture pause transmit data
temporarily

jump
forward/backward

Jump to a particular
time in the presentation

stop the former
stream and transmit
the video from the
particular time

fast forward/slow
down

going forward at a
higher/lower rate than
normal

change data stream
rate and playback the
video data in
fast/slow mode

IV. PERFORMANCE EVALUATION
The platform of our design is a custom board with four

FPGAs shown in Fig. 7. Only one of the four FPGAs is used.

150

International Journal of Future Computer and Communication, Vol. 3, No. 3, June 2014

Fig. 7. custom board with 4 FPGAs.

Fig. 8. Throughputs.

Fig. 9. Power efficiency.

On this board, The Xilinx FPGA VC6VLX550T is used.

We use Xilinx ISE Design Suite 14.1 which this newest a
new version when we start the project. To construct the
system, we use some the provided IPs by Xilinx, including
MIG Virtex-6 and Spartan-6 3.91, XAUI 10.3 and Ten
Gigabit Ethernet MAC 10.3.

The system implements on FPGA runs at a rate of 151MHz
while the Microblaze runs at 100MHz and the MAC runs at
156.25MHz. The size of the DDR3 SDRAM on the FPGA
board is 8Gbytes.

The system is compared with Web test equipment, Spirent
Test Center. Results are compared with Nginx which runs on
a 6-core 12 thread processor, Inter Xeon series. The size of its

DDR3 memory is 16Gbytes. The speed of the physical
Ethernet port on the FPGA board is 10 Gbps as well as on the
Inter Xeon platform. All the video data are present in the
DDR memory of the testing system as well as the main
memory of the reference IBM platform. The results are
shown in Fig. 8.

Although the throughputs are not good enough to be
compared with the Xeon platform for the reason that it’s just
a prototyping system and the clock frequency is low, its
power is much lower than the reference platform. The power
of the FPGA system is about 51W while the reference
platform is about 205W. The power efficiency is shown in
Fig. 9.

V. CONCLUSION AND FUTURE WORK
In the design of this paper, we show a hardware-based

VOD system implemented on FPGA. We show how to
response the request of users, how to realize the real time
transmission and how to control the video rate to save the
bandwidth. We use dynamic file chunking technique instead
of static file blocks to avoid the unnecessary data
transmission. As a result, we shorten the response delay. We
use FPGA to complete most of the task and achieve a better
power efficiency although a MicroBlaze processor is used.
The throughputs are a bit lower than Nginx which runs on
Xeon platform because the system runs at low clock rate and
the bus delay is unavoidable. However, the power efficiency
is higher than Nginx running on Xeon platform. Still, there is
space to improve the performance. It is possible to prompt the
performance near the limit of 10Gbps if we carefully
optimize the memory access. With more work to be done, we
believe the hardware-favored system can have better
performance and save more energy.

ACKNOWLEDGMENT
This paper is partially sponsored by the National High

Technology Research and Development Program of China
(863 Program) (No.2009AA012201) and National Natural
Science Foundation of China (No.61373032).

REFERENCES
[1] J. Y. B. Lee, “On a unified architecture for video-on-demand services,”

IEEE Trans. Multimedia, vol. 4, no. 1, pp. 38-47, 2002.
[2] S. A. Yang, H. Yang, and Y. H. Yang, “Architecture of high capacity

VOD server and its prototype implementation,” Shanghai Jiaotong
Daxue Xuebao, pp. 2082-2085, 2004.

[3] J. W. Kim, “Effective video block placement scheme on VOD server
based on multi-zone recording disks,” in Proc. International
Conference on Multimedia Computing and Systems, pp. 29-36, 1997.

[4] Z. G. Qin, “Flourishing in the internet: The huge success of live
peer-to-peer media streaming,” in Proc. ICCASM 2010 - 2010
International Conference on Computer Application and System
Modeling, 2010, vol. 11, pp. V1176-V1180.

[5] X. H. Hu, “Evaluating and enhancing the performance of streaming
media services in E-learning system,” Advances in Intelligent and Soft
Computing, vol. 163 AISC, pp. 205-211, 2012.

[6] G. Cheung, “On media data structures for interactive streaming in
immersive applications,” The International Society for Optical
Engineering, vol. 7744, 2010.

[7] B. Niels, “An autonomic delivery framework for HTTP adaptive
streaming in multicast-enabled multimedia access networks,” in Proc.
IEEE International Conference on Multimedia and Expo, pp.
1248-1253, 2011.

151

International Journal of Future Computer and Communication, Vol. 3, No. 3, June 2014

[8] J. W. Bang, “Efficient RTSP-based multiple buffering and packet
transmission methods for delivering OMA PoC Box service,”
Computer Networks, vol. 56, no. 15, pp. 3468-3478, October 15, 2012.

[9] R. B. Wang, “Reduced TCP/IP protocol implement in VHDL,” in Proc.
2009 International Workshop on Intelligent Systems and Applications,
pp. 1-5, 2009.

[10] Y. Ji, “40Gbps multi-connection TCP/IP offload engine,” in Proc.
2011 International Conference on Wireless Communications and
Signal Processing, pp.1-5, 2011.

[11] J. B. Yu, “Grounding high efficiency cloud computing architecture:
HW-SW co-design and implementation of a stand-alone web server on
FPGA,” in Proc. 4th International Conference on the Applications of
Digital Information and Web Technologies, pp. 124-129, 2011.

[12] G. Giovanni, “Low-Latency live video streaming over low-capacity
networks,” in Proc. 8th IEEE International Symposium on Multimedia,
pp. 449-456, 2006.

Qiang Cao received his B.S. in Microelectronics from
Shanghai Jiao Tong University, China in 2011. From
2011 to now, he works as a graduate in School of
Microelectronics, Shanghai Jiao Tong University for his
M.S. in computer science and technology. His mainstream
research interests include FPGA and embedded systems,
algorithm accelerator, and digital circuit design.

Jiang Jiang received his Ph.D. and M.S. degrees in
computer science and technology from National
University of Defense Technology, Changsha, China in
2002 and 1998, respectively. He received his B.S. in
computer from National University of Defense
Technology, Changsha, China in 1995. From 2009 to
2010, he works in University of Toronto as a visiting
scholar. From 2002 to 2010, he works as a researcher in

Institute of Computer Science, National University of Defense Technology,
Changsha, China. His mainstream research interests include
multi-core/may-core microprocessor architecture, high-performance
accelerator, and Artificial Neural Networks. In 2006, he joined the Galaxy-x
custom CPU project as a team leader and made a significant contribution.
From 2010, he works as an associate professor in School of
Microelectronics, Shanghai Jiao Tong University.

Chang Wang received his M.S. degree from the School
of Computer Science, Wuhan University, Wuhan, China,
in 2010 and his B.S. degree from the school of computer
science and technology, Xi'an Polytechnic University,
Xi'an, China in 2006. He is currently furthering his study
in the Microelectronic School of Shanghai Jiao Tong
University, Shanghai, China as a doctoral student. His
research interests include microprocessor architecture and

artificial neural network.

152

International Journal of Future Computer and Communication, Vol. 3, No. 3, June 2014

