

Abstract—A major performance bottleneck in sensor

networks is energy since it is impractical to replace the

batteries in embedded sensor nodes post-deployment so

(Wireless Sensor Networks) WSNs are energy constrained.

Radio transmission is most energy draining task that a node

performs. Data aggregation and data compression are the

widely discussed cases to save a single nodes’ lifetime by

reducing data to be transmitted but as the memory and

computational resources are very limited, these tasks must be

performed efficaciously. Here we present a modified version of

data compression algorithm presented by Francesco

Marcelloni in IEEE Communications Letters 2008. The

algorithm Marcelloni presented performs best on variables

having a trend of reading implying having least fluctuation

with previous reading but as the data fluctuates, the trend

vanishes and algorithm becomes inefficacious. We add a

pseudo-trend to those fluctuating data on referred algorithm

and make it more efficacious on such scenarios. Our

experimental results are shown in this article explaining how

the existing algorithm, that is referred to, cannot perform its

best at those conditions and how our modified algorithm

outperforms.

Index Terms—Data compression, wireless sensor network,

in-network data aggregation.

I. INTRODUCTION

Wireless sensor networking (WSN) makes use of

miniaturization made possible by advanced IC design to

couple full wireless subsystems to sophisticated sensors,

enabling people and companies to measure a myriad of

things in the physical world and act on this information

through IT monitoring and control systems. WSN based

solutions have been designed and implemented in diverse

areas, including environment and habitat monitoring,

building automation, disaster and waste management,

infrastructure monitoring, etc. [1]. In particular, WSNs

deployed for remote area monitoring usually comprise a

large number of tiny static sensing devices. Over a

geographically wide area, sensor nodes are deployed to

sense parameters of interest and forward data to a sink. As

large numbers of sensor-nodes are densely deployed,

neighbor nodes may be very close to each other. Since the

transmission power of a wireless radio is proportional to

distance squared or even higher order in the presence of

obstacles, data is forwarded in multi-hop routing manner

and this routing will consume less energy than direct

Manuscript received August 13, 2013; revised October 20, 2013.

The authors are with Shanghai Ocean University, Shanghai, China (e-

mail: linkpawan@gmail.com, pun_uma@yahoo.com,

mchen@shou.edu.cn).

communication. Radio transmission or reception is the most

power expensive task that a node does thus these operations

has more significant impact on node power consumption

and lifetime than other task that a node does. As sensors

nodes are constrained in energy supply and bandwidth, there

are many challenges to the design and manage of sensor

networks. Mainly there are two measures taken for power

saving achieved by reducing radio communication: duty

cycling “unpublished” [2] and in-network processing [3].

Unlike many high performance data networks, wireless

sensor networks do not require high bit rates. 10-100 Kbps

of raw network bandwidth is sufficient for many

applications. As bit rates increase, transmission times

decrease. By increasing the bit rate without increasing the

amount of data being transmitted, the radio duty cycle is

decreased. Similarly on a standard bit-rate if the data is

compressed or aggregated, the radio duty cycle can be

decreased.

To utilize energy resources in a greedy manner, many

researches [4]-[7] have been focused on aggregating sensed

data also known as in-network data processing, using

different mathematical functions: such as MAX, MIN, SUM,

AVG, etc. Therefore, only useful aggregation results are

sent instead of sending many raw sensed data. Data

aggregation is an essential paradigm for prolonging the

lifetime of WSN. Indeed, data aggregation reduces the

number of broadcasts and hence collisions and energy

consumption. However, data aggregation is potentially

vulnerable to attackers who may inject bogus information or

forge aggregated values without being detected. At the

aggregation module, many security services can be provided.

But the in-network data compression requires certain

compression codes to be executed in node which drains

energy. The compression algorithms are indeed helpful only

if the energy consumed on executing compression algorithm

is less than the targeted energy saving from data

transmission. Since transmission of a bit needs energy

comparable to the execution of a thousand instructions, just

saving only a bit by compressing original data corresponds

to reduce power consumption [8]. In case of multi-hop

routing, on each hop, transmission energy is saved due to

reduced radio cycle, even if the sensing node has expended

its energy on data compression.

Our research focuses on in-sensor-node data aggregation

before transmission. We use the concept of data

compression, which would compress the volume of data to

be transmitted. If considered the same bit rate as of un-

compressed data, the transmission time decreases for the

compressed data hence making the model more energy

efficient. Our research is based on compression algorithm

An Efficient Lossless Data Compression Algorithm for

Fluctuating Environment Variables in WSN

Pawan Acharya, Uma Pun, and Chen Ming

232

International Journal of Future Computer and Communication, Vol. 3, No. 4, August 2014

DOI: 10.7763/IJFCC.2014.V3.302

proposed by F. Marcelloni [8], where author presents data

aggregation algorithm by differentiation of current ADC

output with previous one. This algorithm performs very

efficiently on the environmental variables with a trend. For

example, the temperature or humidity variables have a

pattern or a curve of their value for a day and consecutive

samples taken by a sensor node on short interval time do not

fluctuate much. But for variables like sound the consecutive

reading of a sensor may fluctuate. We add a pseudo-trend

which we call pseudo-mean, to those fluctuating data on

referred algorithm and make it more efficacious on such

scenarios.

II. RELATED WORK

F. Marcelloni on [8] proposes a simple compression

algorithm particularly suited to the reduced memory and

computational resources of a WSN node. The compression

scheme exploits the high correlation that typically exists

between consecutive samples collected by a sensor onboard

a node. In a sensor node, each measure mi from a sensor is

converted by an ADC to a binary representation ri on R bits

(R being resolution of the ADC).

Marcelloni’s compression algorithm computes the

difference di = ri−ri−1, for each new reading mi, which is

input to an entropy encoder (in order to compute d0 it

assume that r−1 is equal to the central value among the 2R

possible discrete values). But our algorithm, computes the di

for current reading with a pseudo-mean, which is explained

on following section.

Remaining work is almost identical for both, ours and

Marcelloni’s algorithm; the entropy encoder then performs

compression by encoding differences di. Each di is

represented as a bit sequence bsi composed of two parts si|ai,

where si codifies the number ni of bits needed to represent di

and ai is the representation of di. Code si is a variable-length

symbol generated from ni by using Huffman coding.

Algorithm uses principles of entropy compression [9] and

the algorithm presented is able to compute a compressed

version of each value acquired from a sensor, using a very

small dictionary whose size is determined by the resolution

of the analog-to-digital converter (ADC). Compression

algorithm is lossless as it follows a scheme similar to the

one used by the baseline JPEG algorithm for compressing

the DC coefficients of a digital image [10], as, such

coefficients are characterized by a high correlation, very

similar to that characterizing data collected by WSNs.

The compression algorithm performs splendidly with less

fluctuating environment variables such as temperature and

relative humidity if the samples are taken every 2 minutes,

but for the highly fluctuating variables like sound, the

algorithm does not shows same compression performance

which will be elaborated on the next section.

III. MODIFIED COMPRESSION ALGORITHM

We have modified the algorithm on the aspect of

differentiation. Marcelloni’s algorithm differentiates ADC

output (ri) of the current measurement (mi) with previous

reading (ri-1) but we differentiate with the pseudo-mean of

previous state (pmi-1) making the algorithm compatible with

fluctuating data.

We studied that differentiating between current state and

previous state on the fluctuating data yielded larger

differences. The Marcelloni’s algorithm gives higher output

as the ni becomes smaller implying that as little magnitude

in difference becomes smaller compression is higher. In

order to minimize those differences we wanted to

differentiate the current data with a value closer to the

current reading. As we noticed that there can be established

pseudo-trend on fluctuating data while evaluating large

numbers of reading of randomly generated sound data. We

tried to evaluate the mean of the all data but as the node is

memory limited device and we wanted to make the new

algorithm as good as that of Marcelloni, we came with the

concept of pseudo-mean. As mean would imply the average

of data and it is explained that we cannot evaluate mean

with all the readings, we decided to generate a pseudo-mean

of our current reading with previous mean or pseudo-mean.

Pseudo-mean (pmi) is the average of the previous mean with

current reading (ri). We add a pseudo-trend to data to make

it more efficacious on fluctuating scenarios. In our case:

 di = ri - pmi-1, (1)

And

 pmi = ((pmi-1 + ri)/2). (2)

The inconsistency of the formula for the first reading is

surpassed as following to make the pseudo-mean variable

more efficacious:

 d1 = r1 (3)

 pm1 = r1 (4)

As it can be seen from the (3) and (4) equation, at the first

reading no compression and encoding is performed.

TABLE I: ENCRYPTION AND DECRYPTION

TABLE II: THE HUFFMAN VARIABLE LENGTH CODES USED IN

THE EXPERIMENTS

A. Decoding Successfully

The pmi is a parameter to which next reading will be

233

International Journal of Future Computer and Communication, Vol. 3, No. 4, August 2014

compared. If all values of pmi can be generated on decoding

side, real values can be regenerated in lossless fashion.

Let’s say current reading is 273 and the pmi-1 is 250 then

from our algorithm the pmi would be 261.5 and after

flooring that would be 261 and the transmitted value would

be 23. In the decoder side we have the pmi-1 already

calculated i.e. 250 and from transmitted difference 23,

current reading 273 by adding 250 and 23 can be calculated.

If we have pmi-1 and regenerated current reading ri the pmi

which will be used to decode next reading can be calculated

by using same formula ((250+273)/2) which would be 261.

As the algorithm includes the precise extracting calculation

on the receiver side, the ri can be generated with pmi-1 and di

(which is transmitted) and new pmi can also be seamlessly

generated for next ri calculation making algorithm as

lossless as of Marcelloni’s algorithm. Table I show the

successive regeneration of reading on decoder side which is

encoded by encoding side.

Fig. 1. Pseudo-code.

As the di is obtained, each di is represented as a bit

sequence bsi composed of two parts si|ai. Each si and ai is

computed as per Marcelloni’s coding using Huffman coding.

The Huffman coding as on Table II maps an alphabet to a

representation for that alphabet, composed of sequences of

bits of variable sizes, so that symbols that occur frequently

have a smaller representation than those that occur rarely.

After the di is obtained, the algorithm is basically same as

that of Marcelloni’s. The ai part of the bit sequence bsi is a

variable-length integer code generated as follows:

1) If di = 0, si is coded as 00 and ai is not represented.

2) Else

if di > 0,

ai corresponds to the ni low-order bits of the

two’s complement representation of di;

Else

ai corresponds to the ni low-order bits of the

two’s complement representation of (di − 1);

The procedure used to generate ai guarantees that all

possible values have different codes. Once bsi is generated,

it is appended to the bit-stream which forms the compressed

version of the sequence of measures mi. Fig. 1 summarizes

the algorithm used to encode di. Here, << si, ai >> denotes

the concatenation of si and ai, while v|ni denotes the ni, low-

order bits of v. Pseudo-code is presented on Fig. 1.

F. Marcelloni observed that the execution of the algorithm

requires from 59 to 618 instructions with average of 355

instructions on average and the fluctuation is due to binary

logarithmic operation, which is not generally available in the

instruction set of microprocessors onboard sensor nodes and

is, therefore, implemented by an algorithm that requires the

execution of a number of instructions dependent on the

value of the argument (the larger the value, the larger the

number of instructions). Author tested algorithm on

environment variables temperature and relative humidity

and found that for environment variables the numbers of

instructions to be 335. Algorithm is simple with fewer lines

of code and easily implementable [8].

IV. EXPERIMENTAL RESULTS

If CR is compression ratio expressed in percentage, CS

being compressed size and OS being original size as on (5).

 CR = 100. 1
cs

os

 (5)

F. Marcelloni’s algorithm, with simulated results showed

CR 66.99% and 67.33% for temperature and relative

humidity respectively with R (resolution of ADC) being 16

bits, and samples acquired by a node every 2 minutes during

48 hours (in total, 1440 samples). This algorithm

outperforms two well-known compression algorithms,

namely gzip [11] and bzip2 [12], to the same datasets [8].

Supposing that each packet can contain at most 25 bytes of

payload, the uncompressed versions of temperature and

relative humidity data require 116 packets each to be

forwarded to the data collector, while the compressed

versions require only 38 packets each, thus allowing a

considerable power saving.

As the Marcelloni’s algorithm was experimented on less

fluctuating environmental variables which means the

consecutive samples magnitude didn’t vary significantly.

The range of highest to lowest magnitude of the reading was

also low.

Simulation performed on the condition where consecutive

samples’ magnitude didn’t vary significantly (non-

fluctuating) and with the varied range (highest to lowest

magnitude) of the environment variable is presented on

Table III.

TABLE III: COMPRESSION RATIO FOR NON-FLUCTUATING

VARIABLE WITH VARYING RANGE

Similarly, simulation performed on the condition where

consecutive samples’ magnitude vary (fluctuating) and with

the varied range (highest to lowest magnitude) of the

variable is presented on Table IV.

Encode (di, Table)
 IF di = 0 THEN
 SET ni TO 0
 ELSE

 SET ni TO (log2(|di|) +1) //compute category
 ENDIF
 SET si TO Table[ni] //extract si from Table
 IF ni = 0 THEN //build bsi
 SET bsi TO si //ai is not needed
 ELSE
 IF di > 0 THEN //build ai
 SET ai TO (di)|ni
 ELSE
 SET ai TO (di − 1)|ni
 ENDIF
 SET bsi TO << si, ai >> // build bsi
 ENDIF
 RETURN bsi

234

International Journal of Future Computer and Communication, Vol. 3, No. 4, August 2014

TABLE IV: COMPRESSION RATIO FOR FLUCTUATING VARIABLE WITH

VARYING RANGE

All the experiments done are by considering each nodes

samples every minute for 24 hours resulting total of 1440

samples for ADC resolutions of 16 bits. The non fluctuating

variable is temperature variable where simulation was done

feeding from the graph obtained from real results. The range

of variable was made low by attenuating magnitude of the

graph equation and vice versa. The fluctuating variable is

sound. The fluctuation was generated form generating

random number within the considered audible range [12].

The range was considered by dividing the audible range to

five parts. Very-High range here means the range from least

audible sound decibel value to the largest [12].

From Table III, it can be clearly seen that Marcelloni's

algorithm outperforms ours’ as the environmental variables

do not fluctuate. But from Table IV, our algorithm

outperforms Marcellonis’ as the variable fluctuates. It can

be seen that in wider range both the algorithm’s

performance degrades. When considered lower range the

difference between two consecutive readings is very low in

the case of Table III. The difference between two samples

is very low and the Huffman’s table and digitization of

difference result fewer bits of representation but as the

range increases, the difference between two consecutive

readings also increases and the code becomes larger. Hence

the compression ratio decreases as the range increases.

The comparison on non-fluctuating variables with Bzip2

[11] and Gzip [11] is done on [8]. On similar simulation

with compression output of Marcelloni’s algorithm 66.99%

(in our experiment 70.13%) ours had 64.93% and 42.19%

and 43.05% of Gzip [11] respectively. For the fluctuating

variables on similar conditions of simulation, compression

outputs were 51.9%, 40.6%, 36.52% and 36.84%

respectively for ours, Marcelloni’s algorithm, Gzip [11]. In

the case of fluctuating variable, as the readings do not have

a trend or pattern, the consecutive variables may have a big

difference between each other. Due to which the

Marcelloni's algorithm does not performs well, but our

algorithm stores the pseudo-mean value of the readings and

stores a trend and makes the algorithm perform better. As

the range increases, even with the pseudo-mean, the

difference becomes larger and the algorithm cannot

maintain its performance but still it can be seen that for both

the fluctuating and non-fluctuating variables our algorithm

is more consistent providing compression ratio from 64.9%

max to 12.6% min. with 52.3% of compression range where

as our experiment showed the Marcelloni’s algorithm

having compression range 67.23% making our algorithm

more consistent.

The algorithm is as lossless as of Marcelloni’s algorithm

and performs similarly. The pseudo-mean value is similar to

consecutive values hence demands similar memory.

Implementation of either algorithm is almost identical. In

case of less deviating values, we have seen from our

experiments that in Marcelloni’s algorithm, the difference

nearly becomes zero or one but the pseudo –mean deviated a

little more from consecutive reading, hence the Marcelloni’s

algorithm performs better on non fluctuating variables than

ours. The reason our value deviation is that it stores trend.

On less fluctuating variable the data being on trend already,

the function of the trend differ from the trend that our

pseudo mean stores hence giving more deviation. But on

data with no trend, the trend generation yields a meaningful

idea on restricting the consecutive deviation with replacing

with the trend deviation which is concurred from Table III

and Table IV.

V. CONCLUSION

There are many techniques being explored on the field of

data compression and the increasing use of wireless sensor

networks on the various fields has also increased the

variables to be sensed. The variables that the node senses

have different properties. Currently implemented fields of

these kinds of network sense environment variables that do

not fluctuate more over consecutive samples but the new

requirement have emerged due to expanding implementation.

The fluctuating data also are to be sensed in the current

application trend of wireless sensor networks.

Here we present a modified version of data compression

algorithm presented by Francesco Marcelloni in IEEE

Communications Letters 2008. The algorithm Marcelloni

presented performs best on variables having a trend of

reading, implying having least fluctuation with previous

reading. But as the data fluctuates the trend vanishes and

algorithm becomes inefficacious. We have presented a

simple solution to the performance problem of Marcelloni's

algorithm on fluctuating data. Marcelloni’s compression

algorithm computes the difference di = ri−ri−1, for each new

reading mi, which is input to an entropy encoder (in order to

compute d0 it assume that r−1 is equal to the central value

among the 2R possible discrete values). We studied that

differentiating between current state and previous state on

the fluctuating data yielded larger differences.

The Marcelloni’s algorithm gives higher output as the ni

becomes smaller implying that as little magnitude in

difference becomes smaller compression is higher. In order

to minimize those differences we wanted to differentiate the

current data with a value closer to the current reading. As

we noticed that there can be established pseudo-trend on

fluctuating data while evaluating large numbers of reading

of randomly generated sound data. We tried to evaluate the

mean of the all data but as the node is memory limited

device and we wanted to make the new algorithm as good as

that of Marcelloni, we came with the concept of pseudo-

mean. As mean would imply the average of data and it is

explained that we cannot evaluate mean with all the readings,

we decided to generate a pseudo-mean of our current

reading with previous mean or pseudo-mean. Pseudo-mean

(pmi) is the average of the previous mean with current

reading (ri). We add a pseudo-trend to those fluctuating data

on referred algorithm and make it more efficacious on such

235

International Journal of Future Computer and Communication, Vol. 3, No. 4, August 2014

236

International Journal of Future Computer and Communication, Vol. 3, No. 4, August 2014

scenarios. The pseudo-mean is a single variable hence

required calculation is also very simple making our

algorithm is almost identical on implementation with

Marcellonis’ algorithm. We changed the differentiation

mode from previous reading to pseudo-mean of all readings.

Our experimental results are shown in this article explaining

how the existing Marcelloni’s algorithm cannot perform its

best at those conditions and how our modified algorithm

outperforms. Marcelloni's algorithm performs best on the

non-fluctuating variables but on fluctuating variable our

algorithm outperforms by difference of 8.93% on average.

When a data is being compressed by 2.9%, achieving a

compression ratio up to 12.6% is more than three times. Our

sensor-node data compression algorithms are very important

on WSN because implementation not only saves the

transmission power of data generating sensor node but also

saves the energy of all nodes on the path of data routing on

both reception and hop-transmission.

ACKNOWLEDGEMENT

We would like to express our sincere thanks to Dr. Chen

Ming, Dr. Feng Guofu and Dr. Chi Tao for their valuable

help, support and reviews. This work was funded by

National High-tech Research and Development Plan (863

program) of People’s Republic of China, no,

2012AA101905.

REFERENCES

[1] C. S. Raghavendra, K. M. Sivalingam, and T. F. Znati, Wireless

Sensor Networks, Boston: Kluwer Academic Publishers, 2004.

[2] G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, "How to

prolong the lifetime of wireless sensor networks," Mario Di

Francesco, Department of Information Engineering, 2006.
[3] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, "In-network

aggregation techniques for wireless sensor networks: a survey," IEEE
Trans. Wireless Commun., vol. 14, pp. 70-87, April 2007.

[4] H. Chan, A. Perrig, and D. Song, "Secure hierarchical in-network

aggregation in sensor networks," in Proc. the 13th ACM Conference
on Computer and Communications Security, ACM Press, New York,

NY, USA, 2006 , pp. 278–287.

[5] K. Wu, D. Dreefa, B. Sunb, and Y. Xiao, "Secure data aggregation
without persistent cryptographic operations in wireless sensor

networks," Ad Hoc Networks, vol. 5, pp. 100–111, 2006.

[6] L. Hu and D. Evans, "Secure aggregation for wireless networks," in
Proc. Workshop on Security and Assurance in Ad Hoc Networks, pp.

384-391, 2003.

[7] S. Peter, K. Piotrowski, and P. Langendoerfer, "On concealed data
aggregation for wireless sensor networks," in Proc. Consumer

Communications and Networking Conference, vol. 5, 2007.

[8] F. Marcelloni, "A Simple Algorithm for Data Compression in

Wireless Sensor Networks," IEEE Communications Letters, vol. 12,

June 2008.

[9] K. C. Barr and K. Asanovi ć, "Energy-aware lossless data

compression," ACM Trans. Comput. Syst., vol. 24, pp. 250–291,

August, 2006.
[10] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data

Compression Standard, 1992.

[11] Gzip. (2013). [Online]. Available: http://www.gzip.org/.
[12] Wikipedia. (2013). [Online]. Available:

http://en.wikipedia.org/wiki/File:Audio23.jpg.

Pawan Acharya was born in Dang, Nepal, He received his bachelor’s
degree in engineering from Acme Engineering College, affiliated to

Purbanchal University, Nepal in electronics and communication in 2010

and He is studying master’s degree in applied computer technology from
Shanghai Ocean University, Shanghai, China, focusing on wireless sensor

network, data mining, neural network etc.

He worked as an instructor of science, mathematics and programming in
Nepal at a secondary school for three years later he joined a software

Development Company in Nepal as software engineer for one and half

years. He is currently volunteering as software engineer at an International
Company in Shanghai. His current research work is wireless sensor

network, programming and data-mining.

Mr. Acharya received scholarship-A from Shanghai government for
further study and researches. He is registered Engineer of Nepal’s

Engineering Council and also has earned kudos competitions like National

Robotic Competitions in Nepal for first runner-up.

Uma Pun was born in Hong-Kong, China, She received her bachelor’s

degree in information technology in Nepal, She received her master’s in
economics from Trivuwan University, Nepal and is studying master’s

degree in applied computer technology from Shanghai Ocean University,

Shanghai, China, focusing on wireless sensor network, data mining, neural
network etc.

She worked as an instructor of computer science in Nepal at a institute

and later worked in Australia for two years. Her current research work is
wireless sensor network, programming and data-mining.

Mrs. Pun received scholarship-A from Shanghai government for further

study and researches.

Chen Ming was born in Hunan, China, He received his received the

research and cybernetics degree from Shanghai University in 1995, China,
and received the PhD in computer software and its theory, in 2001. His

research interests are data mining, wireless sensor network, and the

agriculture information system.
In 2001, he has been an assistant professor at Department of computer

science, Shanghai Fishery University. From 2005 to 2008, he worked as

professor in the college of information, Shanghai Fishery University. In
2008, because of the university renamed as Shanghai Ocean University, he

worked as Vice dean of information college, Shanghai Ocean University.

Mr. Chen is the editor of the Journal of Shanghai Ocean University, and
the member of AIPA (IFIP, TC5 special interest group on advanced

information processing for agriculture). At the same time, Mr. Chen is the

vice director of Shanghai digital agriculture engineering and research center,
and the vice director of Shanghai internet of thing for agriculture research

center.

http://www.gzip.org/
http://en.wikipedia.org/wiki/File:Audio23.jpg

