



Abstract—While Software Defined Networking (SDN) has

received a considerable amount of attention, improving the

scalability of an SDN controller has always been a major

concern. One of the main reasons why the controller suffers

from this scalability problem is that it is fairly often

overwhelmed by a large number of flow setup requests from the

SDN switches to the controller. These requests cause decrease in

the number of switches that the controller can deal with. Since

these requests are usually generated when flows arrive at the

switch and their corresponding entries do not exist in the flow

table due to eviction, minimizing the number of evictions also

reduces the number of requests to the controller. This paper

addresses the scalability problem and proposes the algorithm

improving the scalability of the SDN controller by dynamically

controlling the timeout value of each flow without modifying the

switches. In the proposed approach, the controller collects

various traffic parameters from the switches and predicts the

inter-arrival times of packets in a flow. Based on the

information, it dynamically adjusts the timeout value of each

flow to reserve spaces in the flow table for newly arrived flows

in advance. As a result, this avoids the evictions and reduces the

number of flow setup requests to the controller. The

benchmarking results show that the proposed algorithm

reduces the number of packets to the controller by 9.9 %.

Index Terms—Flow table, open flow, SDN, SDN controller,

timeout control.

I. INTRODUCTION

Software Defined Networking (SDN) has emerged as a

new computing paradigm to alleviate the complexity of

current network protocols and remove the vender-specific

problems of network devices. In SDN, control functions are

decoupled from data plane and OpenFlow [1] is used as a

standard protocol between data plane and control plane. The

SDN controller in control plane mainly decides how to deal

with the network flows by setting up the flow table, deciding

the actions for the flows, or collecting data from the SDN

switches. The data plane, on the other hand, just forwards the

packets to the SDN controller or to the destination.

With the advances of SDN technology, there have been

many studies regarding the scalability, resiliency,

consistency, and durability. Among them, improving the

scalability of SDN controller has currently been attracting a

lot of attentions. The scalability of SDN controller can be

improved by two approaches. The first approach uses

multiple controllers with shared network view and distributes

loads to them such as Onix [2] and ElastiCon [3]. The second

approach improves the scalability by decreasing loads on a

single controller or by devolving control to the SDN switches

such as DevoFlow [4] or DIFANE [5].

This paper focuses on the scalability of a single SDN

controller for enterprise networks and proposes a scheme that

improves the scalability by reducing the communications

between the switches and the controller. While there are

several reasons for the switches to send packets to the

controller, a large number of packets are generated due to

timeouts or premature evictions of unfinished flows [6].

Therefore, controlling the timeout values can help reducing

the traffic between the switches and the controller. Zarek [6]

explored this issue and proposed a flow table management

scheme that combines timeouts with explicit controller

eviction messages. However, it used a static timeout value

and left dynamic control of timeout values as future studies.

This paper proposes a dynamic timeout control algorithm

in the SDN controller. In the proposed approach, the

controller collects various traffic parameters from the

switches and predicts the inter-arrival times of packets in a

flow. Based on this information, our algorithm determines

the number of flow entries that are likely to be remained in

the table at the next sampling period. It then dynamically

adjusts the timeout value of each flow to reserve spaces in the

flow table for newly arrived flows in advance. As a result,

this avoids the evictions without modifying the switches and

reduces the number of flow setup requests to the controller.

The experimental results show that our algorithm

outperforms the approach with static timeout by about 9.9%.

The rest of our paper is organized as follows. Section II

describes the motivation of our algorithm by addressing the

challenge of the scalability of a single SDN controller.

Section III introduces our algorithm. Section V compares the

performance of our algorithm with that of the SDN controller

with static timeout. Section V concludes this paper.

II. MOTIVATION

When setting up the flows, all SDN switches send

packet_in messages to the controller. They usually consume a

large amount of processing power within the controller and

generate many control packets over the switch-controller

connection. This makes the controller or the network

A Dynamic Timeout Control Algorithm in Software

Defined Networks

Taekhee Kim, Kwonyong Lee, Junhee Lee, Sungyong Park, Young-Hwa Kim, and Byungjoon Lee

331

International Journal of Future Computer and Communication, Vol. 3, No. 5, October 2014

Manuscript received February 1, 2014; revised May 16, 2014. This

research was funded by the MSIP (Ministry of Science, ICT & Future

Planning), Korea in the ICT R&D Program 2013.

T. Kim, K. Lee, J. Lee, S. Park are with the Department of Computer

Science and Engineering, Sogang University, Seoul, Korea (e-mail:

maxine.kth@gmail.com, kwonyong82@gmail.com,

leejunhee23@gmail.com, parksy@sogang.ac.kr).

Y.-H. Kim is with Next Communication Research Lab., Electronics and

Telecommunications Research Institute, Daejeon, Korea (e-mail:

yhwkim@etri.re.kr).

B. Lee is with SDN Research Section, Electronics and

Telecommunications Research Institute, Daejeon, Korea (e-mail:

bjlee@etri.re.kr)

DOI: 10.7763/IJFCC.2014.V3.321

overloaded and causes the whole network un-scalable. It has

been reported in previous research efforts that the controller

can be easily overloaded due to the large number of flow

setup requests from the SDN switches. For example, HP

ProCurve 5406zl switch has a flow setup rate of 275 flows

per second [4]. Meanwhile, the median flow arrival rate in a

datacenter with 1500 servers is around 105 flows per second

[7] and the worst flow arrival rate in a data center with 100

edge switches is around 107 flows per second [8].

There are several cases where packet_in messages are sent

to the controller. When a packet of a new flow enters the

switch and corresponding entry does not exist in the flow

table, the packet_in message is sent to the controller. If the

packet enters the switch for the first time, the generation of

packet_in message is unavoidable. However, if the flow

entered the switch previously and removed due to timeout or

eviction, there is a possibility that we can reduce the number

of packet_in messages by controlling the timeout value of

each flow.

If we assume that the size of a flow table is infinite, the

long timeout values may decrease the flow table miss rate and

the number of packet_in messages is minimized. Therefore,

we do not need to concern about the timeout length. However,

as the size of a flow table is limited, we need to find an

optimal timeout value that lowers the flow table miss rate and

thereby reduces the corresponding flow setup requests to the

SDN controller.

The eviction occurs according to the eviction rule of the

switch. The current eviction rules of the switch such as

First-In First-Out (FIFO), random, and Least Recently Used

(LRU), may cause more evictions since they do not consider

the characteristics of each flow. For example, in a situation

where the flow table is fully occupied, a flow in which packet

inter- arrival time is relatively short compared to other flows

can be selected as a victim and therefore is evicted from the

flow table. When the evicted flow with short packet

inter-arrival time enters the switch again after a short period

of time, it causes a packet_in message to be generated since

the entry does not exist in the table. If we allow other flows

with longer packet inter-arrival times to be selected as a

victim from the flow table, the number of unnecessary

packet_in messages may be decreased.

III. DYNAMIC TIMEOUT CONTROL ALGORITHM

In order to minimize the number of evictions by

dynamically adjusting timeout value of each flow, our

proposed algorithm needs to answer three questions: 1) how

many new flows are entering the switch, 2) how many flow

entries with current timeout values are likely to remain at the

next sampling period and how many empty slots are needed

for the new flows, and 3) how to adjust the timeout value of

each flow to reserve space for newly arrived flows. In this

section, we briefly overview our algorithm and describe our

approach in detail.

Fig. 1 shows an overview of the proposed algorithm.

Assume that Nflow is the number of entries already in the table

and Nempty is the number of empty entries at the sampling

period Tsampling. Also assume that Nflow' is the number of

entries that are likely to remain at the next sampling period

(T+1)sampling and Nnewflow is the number of entries for newly

arrived flows. First of all, in order to reserve enough spaces

for newly arrived flows at the sampling period (T+1)sampling,

the number of new flows after the sampling period Tsampling

should be determined. For this, we used AutoRegression

(AR) [9] to estimate the number of new flows, which

determines the number of entries Nnewflow at the sampling

period (T+1)sampling. Next, we need to decide how many flow

entries currently in the table at the sampling period Tsampling

are likely to remain in the table at the sampling period

(T+1)sampling, which is represented by Nflow'. Since Nnewflow +

Nflow' is same as the size of the flow table, if Nnewflow > Nempty,

some of the entries at the sampling period Tsampling need to be

evicted to accommodate the newly arrived flows. On the

other hand, if Nnewflow < Nempty, there are enough spaces for the

new flows, which means that the flows at the sampling period

Tsampling can stay in the flow table as long as possible to

prevent unfinished evictions. After deciding Nnewflow and Nflow',

the timeout value assigned to each flow entry at the sampling

period Tsampling is adjusted dynamically to reflect this change.

In what follows, we describe the details of the proposed

algorithm.

Fig. 1. Overview of our algorithm.

A. Predicting the Number of New Flows

AR is one of the most famous models for analysis and

prediction of the time-series data due to its simplicity and

accuracy. Since a time series is a collection of observations

collected from repeated measurements and we can collect

actual number of new flows from the switch, we decide to use

AR to predict the number of new flows at the next sampling

period. The AR has a trade-off relationship between the

accuracy and computational complexity. The higher order of

AR results in more accurate results but increases the

computational complexity and the time for prediction.

The AR with order ρ is represented by AR(ρ) and is defined

by (1).

.
1 tit

p

i it XcX  
 (1)

where φ 1, …, φ p are coefficients of the AR, Xt is a

time-series data at time t, c is a constant value, and ε t is a

white noise value at time t. To obtain the coefficients of AR,

we need to transform the (1) to a set of linear equations called

332

International Journal of Future Computer and Communication, Vol. 3, No. 5, October 2014

the Yule-Walker equations [10]. When
1t

newflowN is the

number of new flows at the sampling period t - 1 on a switch,

the number of new flows at the next sampling period t is

calculated by (2).

11

21
  t
newflowp

pt
newflow

pt
newflow

t
newflow NNNN   (2)

Fig. 2. Probability density function of the Weibull distribution (a) Frequency

distribution of flows (b) Frequency distribution of packets of a flow.

C. Estimating the Number of Remaining Flows

The estimation of the number of flows that still remain in

the flow table at the next sampling period is done by

analyzing the inter-arrival times of packets in a flow.

It is generally known that the average inter-arrival times of

flows entering to a switch follow a Weibull distribution [11]

with a shape parameter k and a scale parameter λ, as shown in

Fig. 2 (a). Using the self-similarity properties [8], [12], [13],

[14], we can further notice that the inter-arrival times of

packets that belong to the same flow also follow the same

distribution as shown in Fig. 2 (b). Therefore, the Probability

Density Function (PDF) of the inter-arrival times of packets

that belong to the same flow is also given by (3).

0,
''

)(
'

1























xe
xk

xf

k
xk




 (3)

Since the values for shape parameter k in both cases in Fig.

2 are identical and the average packet inter-arrival time of

each flow can be obtained from Fig. 2 (a), the scale parameter

λ ' can be calculated by (4), where is X a random variable for

packet inter-arrival time, E(X) is the mean of the Weibull

distribution, and 



0

1)(dxexz xz .










k

XE
1

1')( (4)

The algorithm then determines whether the flow entry will

remain in the flow table or not by estimating the remaining

probability of the flow from the distribution. To estimate the

remaining probability of the flow, the algorithm calculates

the shaded area of the distribution in Fig. 3, which is

calculated by the Cumulative Distribution Function (CDF) of

the distribution with the obtained parameters above. The

CDF of the distribution is given by (5). For example, if all

inter-arrival times of packets belonging to the same flow are

shorter than the timeout value assigned to the flow, the flow

will likely to remain with a probability of 1 (i.e., F(x)=1),

which means that the flow will always remain in the flow

table according to the distribution.

Fig. 3. Remaining probability of a flow with timeout value t.

Fig. 4. Getting the number of remaining flows.

0,1)(
'












xexF

k
x

 (5)

Finally, the number of remaining flows at the next

sampling period can be estimated by summing up the

remaining probabilities of all flows, since the remaining

probability of each flow is independent one another. Let pf(t)

be the remaining probability of a flow f with a timeout value t,

where f ∈ F and F is a set of flows in the flow table. Then,

the number of remaining flows Nflow' can be estimated by (6)

as shown in Fig. 4.

' ()
flow ff F

N p t


    (6)

For example, if there are 5 flows on the flow table and the

probability of each flow is p1(t) = 0.3, p2(t) = 0.88, p3(t) = 0.5,

p4(t) = 0.7, and p5(t) = 0.4 then the summation of the

333

International Journal of Future Computer and Communication, Vol. 3, No. 5, October 2014

probabilities is 2.78, which means the number of remaining

flows is 3.

C. Adjusting the Timeout Values

The main purpose of the proposed algorithm is to reserve

enough spaces for the newly arrived flows. In order to

achieve this goal, we dynamically increase or decrease the

timeout values assigned to the flows by the amount of ∆t so

that flows with relatively longer inter-arrival times of packets

yield spaces for the new flows. Current version of the

algorithm constantly adjust the same value of ∆t for all the

remaining flows and we are planning to explore the

mechanism of assigning different ∆t values to different flows

based on various traffic parameters. Therefore, after we

estimate the values for Nnewflow and Nflow' using the

mechanisms explained in sub-sections A and B, we

determine ∆t not to overflow the flow table in the switch by

(7), where Nmax is the maximum number of flow entries (i.e.

flow table size).

m ax

'
1flow newflow

N N

N


 (7)

IV. EVALUATION

In this section, we evaluate the dynamic timeout control

algorithm proposed in this paper by simulation and compare

its performance with that of the case without dynamic

timeout control. We first present the experimental

environment for the simulation and show the performance

results.

A. Experimental Setup

For the simulation, we have implemented the SDN

controller module, SDN switch module, and host module

over OMNeT++ 4.4.1 simulator [15]. The simulation was

conducted over a canonical 3-tier network topology as shown

in Fig. 5, which is generally known as a conventional

architecture for data centers. The topology consists of two

layer-2 Aggregation Switches (AS), four layer-2 Switches

(S), and six Top of Rack (ToR) switches connected to each

layer-2 Switches (24 ToR switches). We assume that there

are five to twenty hosts connected to each ToR switch (120 to

480 hosts), where each host generates packets based on the

Weibull distribution (i.e., using the weibull() function

provided by the OMNeT++ simulator).

The ratio of intra rack traffic and extra rack traffic in the

experiment is 2 to 3 [8]. Intra rack traffic is the

communication among severs in the same rack using the

pass-through ToR switch. On the other hand, extra rack

traffic means the communication between the servers which

are not in one rack. For the variety of data, we used three

kinds of protocol with three-different port numbers.

Two important parameters for the simulation are the

eviction policy used in the switch and the flow table size. In

order to simulate the real environment as much as possible,

we simulate three most widely used eviction policies such as

First-In-First-Out (FIFO), Least Recently Used (LRU), and

random. Since the number of hosts varies from 120 to 480,

we need to determine appropriate size for the flow table in

B. Experimental Results

In order to compare the performance of proposed

algorithm with that of the case without dynamic timeout

control, we have conducted three experiments: 1) comparison

of the number of packet_in messages to the controller to

show the scalability improvement, 2) comparison of the

number of packet_in messages by varying the size of flow

table, and 3) comparison of the number of packet_in

messages by varying the number of hosts. For the

experiments above, we compare the performance of our

algorithm with those of other cases with static timeouts,

where each case adopts three different eviction policies:

FIFO, LRU, and Random.

Fig. 5. Topology used in the experiment.

Fig. 6. Comparison of the number of messages to the controller.

Fig. 6 depicts the number of packet_in messages and

compares the performance of our algorithm with those of

other cases with different eviction policies. As shown in Fig.

6, the proposed algorithm outperforms other cases by about

5.6% to 9.9%. For example, the number of packet_in

messages per second in the proposed algorithm is about 31.2,

while the numbers in FIFO/LRU/Random cases are about

33.4, 34.7, and 33.1, respectively. The reason for this

improvement is that the proposed algorithm reserves enough

spaces for the new flows by adjusting the timeout value of

each flow. This adjustment allows other flows with longer

packet inter-arrival times to leave from the table voluntarily.

This reduces the possibility of evicting wrong flow entries

(e.g., evicting entries with short inter-arrival times), which

may decrease the number of unnecessary packet_in

messages.

Fig. 7 compares the number of evictions occurred in all

334

International Journal of Future Computer and Communication, Vol. 3, No. 5, October 2014

order to simulate general eviction workloads. From the

workloads reported in [4], [7], [8], we decided to use 40 to 50

entries for the flow table size. It is worthy to note that the size

of a flow table in the switch is limited and the evictions from

the table occur frequently in a real environment.

335

International Journal of Future Computer and Communication, Vol. 3, No. 5, October 2014

switches. As expected, the number of evictions decreases by

63.8% to 70.8% in the dynamic algorithm. Since we

dynamically adjust the timeout, we could reduce the amount

of communications between the controller and switches, and

finally avoid the unnecessary evictions. As shown in Fig. 7,

the evictions in static configuration are usually occurred in

tier-2 switches. Therefore, it is important to reduce the load

on tier-2 switches. It is worthy to note that our algorithm

reduces the loads on the tier-2 remarkably.

Fig. 7. Comparison of the number of evictions on the switches.

Fig. 8. Effects of varying the size of flow table.

Fig. 9. Effects of varying the number of hosts.

Fig. 8 and Fig. 9 also compare the number of packet_in

messages by varying the size of flow table and the number of

hosts where both Static and Dynamic adopted LRU eviction

policy. As we increase the size of flow table from 40 to 50 in

Fig. 8, the performance gap between our approach and other

cases is getting narrow; from 11% to 8.7%. It should be noted

that if we increase the size of flow table, the probability of

evictions gets lower, which also reduces the number of

packet_in messages. However, as we increase the number of

hosts in Fig. 9, the performance gap is widening; from 7.6%

to 10%. Considering the packets generated from the hosts are

getting larger as we increase the number of hosts, it is clear

that the chance of getting evicted from the table is also

getting larger. In this case, the proposed algorithm lowers the

chance of evictions by dynamically changing the timeout

values.

V. CONCLUSION

We have witnessed a large number of research efforts to

improve the scalability of SDN controllers. Among them, this

paper has focused on improving the scalability of a single

SDN controller by reducing the number of flow setup

requests to the controller. Although there are still several

studies to improve the scalability of a single SDN controller,

our approach is novel in that we dynamically adjust the

timeout value of each flow based on current traffic conditions

in order to minimize the number of evictions. As a result, the

proposed scheme allows the switch to reserve enough spaces

for newly arrived flows, while making other flows with

relatively longer packet inter-arrival time yield their table

entries automatically via timeout.

Current version of the proposed algorithm uses AR to

predict the number of new flows and utilize the Weibull

distribution to estimate the number of remaining flows. Since

those estimation schemes are unlikely to produce accurate

results all the time, extra spaces in the switch can be reserved

to compensate these inaccuracies. However, there is certainly

a tradeoff between reserving extra spaces for inaccurate

predictions to avoid unnecessary flow setup requests and

utilizing the whole table spaces. It is also a research question

that how many spaces we need to reserve. We are planning to

investigate those issues in the future. We are also currently

working on assigning different ∆t values to different flows

based on various traffic parameters.

ACKNOWLEDGMENT

This research was funded by the MSIP (Ministry of

Science, ICT & Future Planning), Korea in the ICT R&D

Program 2013.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation

in campus networks,” ACM SIGCOMM Computer Communication

Review, vol. 38, no. 2, pp. 69-74, April 2008.

[2] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R.

Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix: a

distributed control platform for large-scale production networks,” in

Proc. Usenix Symposium on Operating Systems Design and

Implementation (OSDI), vol. 10, pp. 1-6, October 2010.

[3] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,

“Towards an elastic distributed sdn controller,” in Proc. 2nd ACM

SIGCOMM workshop on Hot topics in Software Defined Networking

(HotSDN), pp. 7-12, August 2013.

[4] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and

S. Banerjee, “DevoFlow: scaling flow management for

high-performance networks,” ACM SIGCOMM Computer

Communication Review, vol. 41, no. 4, pp. 254-265, August 2011.

[5] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based

networking with DIFANE,” ACM SIGCOMM Computer

Communication Review, vol. 40, no. 4, pp. 351-362, October 2010.

[6] A. Zarek, “Open flow timeouts demystified,” Computer Engineering

Research Group: University of Toronto, 2012.

[7] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The

nature of data center traffic: measurements & analysis,” in Proc. 9th

ACM SIGCOMM conference on Internet Measurement Conference

(IMC), pp. 202-208, November 2009.

[8] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in Proc. 10th ACM SIGCOMM conference

on Internet Measurement Conference (IMC), pp. 267-280, November

2010.

[9] H. Akaike, “Fitting autoregressive models for prediction,” Annals of

the Institute of Statistical Mathematics, vol. 21, no. 1, pp. 243-247,

1969.

336

International Journal of Future Computer and Communication, Vol. 3, No. 5, October 2014

[10] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:

Forecasting and Control, John Wiley & Sons, 4th ed, 2013.

[11] W. Weibull, “A statistical distribution function of wide applicability,”

Journal of Applied Mechanics, vol. 18, pp. 293-297, 1951.

[12] P. Olivier and N. Benameur, “Flow level IP traffic characterization,”

Teletraffic Science and Engineering, vol. 4, pp. 25-36, 2001.

[13] M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web

traffic: evidence and possible causes,” IEEE/ACM Transactions on

Networking (TON), vol. 5, no. 6, pp. 835-846, December 1997.

[14] D. A. Martinez, “A verification of selected properties of

Telecommunication traffic generated by OPNET simulator,” Erasmus

exchange project work: University of Ljubljana, 2011.

[15] OMNeT++. [Online]. Available: http://www. omnetpp.org.

Taek Hee Kim has received B.S. degrees from the

Computer Science and Engineering Department at

Sogang University, Korea in 2013. She is currently

studying for the M.S. degree of the Computer Science

and Engineering Department at Sogang University,

Korea. She has been a researcher at Distributed and

Cloud Computing Laboratory, Sogang University. Her

research interests include cloud computing and systems,

virtualization technologies.

Kwonyong Lee is a doctoral candidate of Computer

Science and Engineering Department at Sogang

University, Korea. He has received B.S. and M.S.

degrees from the Computer Science and Engineering,

Sogang University, Korea, in 2007 and 2009,

respectively. His research interests have lied in cloud

computing, virtualization technologies and distributed

computing for big data. His current research is mainly

focused on improving the performance of virtual cluster, where he is

developing systems and related algorithms to improve the performance of

virtual cluster running on cloud and to utilize cloud resources more

efficiently.

Junhee Lee has received B.S. degrees from the Computer

Science and Engineering Department at Sogang

University, Korea in 2014. He is currently studying for the

M.S. degree of the Computer Science and Engineering

Department at Sogang University, Korea. He has been a

researcher at distributed and cloud computing laboratory,

Sogang University. His research interests include cloud

computing and systems, virtualization technologies.

Sungyong Park is a professor in the Department of

Computer Science and Engineering at Sogang

University, Seoul, Korea. He received his B.S. degree

in computer science from Sogang University, and both

the M.S. and Ph.D. degrees in computer science from

Syracuse University. From 1987 to 1992, he worked for

LG Electronics, Korea, as a research engineer. From

1998 to 1999, he was a research scientist at Telcordia

Technologies (formerly Bellcore), where he developed network management

software for optical switches. His research interests include cloud computing

and systems, virtualization technologies, autonomic computing, and

embedded system software.

Young-Hwa Kim is a principal member at ETRI,

Korea. He received a B.S. degree at Chunnam National

University in 1987, M.S. and Ph.D. degrees at

Chungnam National University in 1997 and 2005.

Joining in ETRI from 1988, he had worked for

signaling system No.7, intelligent network, access

network, flow-based router, automatically switched

optical network projects, and future Internet. Currently,

he participates in the SDN project. His interest areas include communication

networks and systems, future internet, software defined networking, and so

on.

Byungjoon Lee is a senior researcher of SDN

Research Section, ETRI, and Republic of Korea. He

received his master degree at Seoul National

University in 1998, and received Ph.D. at Chungnam

National University in 2011. His key research

interests include future internet, software defined

networking, and information-centric networking.

