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Abstract—While Software Defined Networking (SDN) has 

received a considerable amount of attention, improving the 

scalability of an SDN controller has always been a major 

concern.  One of the main reasons why the controller suffers 

from this scalability problem is that it is fairly often 

overwhelmed by a large number of flow setup requests from the 

SDN switches to the controller. These requests cause decrease in 

the number of switches that the controller can deal with. Since 

these requests are usually generated when flows arrive at the 

switch and their corresponding entries do not exist in the flow 

table due to eviction, minimizing the number of evictions also 

reduces the number of requests to the controller.  This paper 

addresses the scalability problem and proposes the algorithm 

improving the scalability of the SDN controller by dynamically 

controlling the timeout value of each flow without modifying the 

switches. In the proposed approach, the controller collects 

various traffic parameters from the switches and predicts the 

inter-arrival times of packets in a flow. Based on the 

information, it dynamically adjusts the timeout value of each 

flow to reserve spaces in the flow table for newly arrived flows 

in advance. As a result, this avoids the evictions and reduces the 

number of flow setup requests to the controller. The 

benchmarking results show that the proposed algorithm 

reduces the number of packets to the controller by 9.9 %. 

 
Index Terms—Flow table, open flow, SDN, SDN controller, 

timeout control.  

 

I. INTRODUCTION 

Software Defined Networking (SDN) has emerged as a 

new computing paradigm to alleviate the complexity of 

current network protocols and remove the vender-specific 

problems of network devices. In SDN, control functions are 

decoupled from data plane and OpenFlow [1] is used as a 

standard protocol between data plane and control plane. The 

SDN controller in control plane mainly decides how to deal 

with the network flows by setting up the flow table, deciding 

the actions for the flows, or collecting data from the SDN 

switches. The data plane, on the other hand, just forwards the 

packets to the SDN controller or to the destination.  

With the advances of SDN technology, there have been 

 

many studies regarding the scalability, resiliency, 

consistency, and durability. Among them, improving the 

scalability of SDN controller has currently been attracting a 

lot of attentions. The scalability of SDN controller can be 

improved by two approaches. The first approach uses 

multiple controllers with shared network view and distributes 

loads to them such as  Onix [2] and ElastiCon [3]. The second 

approach improves the scalability by decreasing loads on a 

single controller or by devolving control to the SDN switches 

such as DevoFlow [4] or DIFANE [5]. 

This paper focuses on the scalability of a single SDN 

controller for enterprise networks and proposes a scheme that 

improves the scalability by reducing the communications 

between the switches and the controller. While there are 

several reasons for the switches to send packets to the 

controller, a large number of packets are generated due to 

timeouts or premature evictions of unfinished flows [6]. 

Therefore, controlling the timeout values can help reducing 

the traffic between the switches and the controller. Zarek [6] 

explored this issue and proposed a flow table management 

scheme that combines timeouts with explicit controller 

eviction messages. However, it used a static timeout value 

and left dynamic control of timeout values as future studies. 

This paper proposes a dynamic timeout control algorithm 

in the SDN controller. In the proposed approach, the 

controller collects various traffic parameters from the 

switches and predicts the inter-arrival times of packets in a 

flow. Based on this information, our algorithm determines 

the number of flow entries that are likely to be remained in 

the table at the next sampling period. It then dynamically 

adjusts the timeout value of each flow to reserve spaces in the 

flow table for newly arrived flows in advance. As a result, 

this avoids the evictions without modifying the switches and 

reduces the number of flow setup requests to the controller. 

The experimental results show that our algorithm 

outperforms the approach with static timeout by about 9.9%. 

The rest of our paper is organized as follows. Section II 

describes the motivation of our algorithm by addressing the 

challenge of the scalability of a single SDN controller. 

Section III introduces our algorithm. Section V compares the 

performance of our algorithm with that of the SDN controller 

with static timeout. Section V concludes this paper. 

 

II. MOTIVATION 

When setting up the flows, all SDN switches send 

packet_in messages to the controller. They usually consume a 

large amount of processing power within the controller and 

generate many control packets over the switch-controller 

connection. This makes the controller or the network 
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overloaded and causes the whole network un-scalable. It has 

been reported in previous research efforts that the controller 

can be easily overloaded due to the large number of flow 

setup requests from the SDN switches. For example, HP 

ProCurve 5406zl switch has a flow setup rate of 275 flows 

per second [4]. Meanwhile, the median flow arrival rate in a 

datacenter with 1500 servers is around 105 flows per second 

[7] and the worst flow arrival rate in a data center with 100 

edge switches is around 107 flows per second [8]. 

There are several cases where packet_in messages are sent 

to the controller. When a packet of a new flow enters the 

switch and corresponding entry does not exist in the flow 

table, the packet_in message is sent to the controller. If the 

packet enters the switch for the first time, the generation of 

packet_in message is unavoidable. However, if the flow 

entered the switch previously and removed due to timeout or 

eviction, there is a possibility that we can reduce the number 

of packet_in messages by controlling the timeout value of 

each flow. 

If we assume that the size of a flow table is infinite, the 

long timeout values may decrease the flow table miss rate and 

the number of packet_in messages is minimized. Therefore, 

we do not need to concern about the timeout length. However, 

as the size of a flow table is limited, we need to find an 

optimal timeout value that lowers the flow table miss rate and 

thereby reduces the corresponding flow setup requests to the 

SDN controller. 

The eviction occurs according to the eviction rule of the 

switch. The current eviction rules of the switch such as 

First-In First-Out (FIFO), random, and Least Recently Used 

(LRU), may cause more evictions since they do not consider 

the characteristics of each flow. For example, in a situation 

where the flow table is fully occupied, a flow in which packet 

inter- arrival time is relatively short compared to other flows 

can be selected as a victim and therefore is evicted from the 

flow table. When the evicted flow with short packet 

inter-arrival time enters the switch again after a short period 

of time, it causes a packet_in message to be generated since 

the entry does not exist in the table. If we allow other flows 

with longer packet inter-arrival times to be selected as a 

victim from the flow table, the number of unnecessary 

packet_in messages may be decreased. 

 

III. DYNAMIC TIMEOUT CONTROL ALGORITHM 

In order to minimize the number of evictions by 

dynamically adjusting timeout value of each flow, our 

proposed algorithm needs to answer three questions: 1) how 

many new flows are entering the switch, 2) how many flow 

entries with current timeout values are likely to remain at the 

next sampling period and how many empty slots are needed 

for the new flows, and 3) how to adjust the timeout value of 

each flow to reserve space for newly arrived flows. In this 

section, we briefly overview our algorithm and describe our 

approach in detail. 

Fig. 1 shows an overview of the proposed algorithm. 

Assume that Nflow is the number of entries already in the table 

and Nempty is the number of empty entries at the sampling 

period Tsampling. Also assume that Nflow' is the number of 

entries that are likely to remain at the next sampling period 

(T+1)sampling and Nnewflow is the number of entries for newly 

arrived flows. First of all, in order to reserve enough spaces 

for newly arrived flows at the sampling period (T+1)sampling, 

the number of new flows after the sampling period Tsampling  

should be determined. For this, we used AutoRegression 

(AR) [9] to estimate the number of new flows, which 

determines the number of entries Nnewflow at the sampling 

period (T+1)sampling. Next, we need to decide how many flow 

entries currently in the table at the sampling period Tsampling  

are likely to remain in the table at the sampling period 

(T+1)sampling, which is represented by Nflow'. Since Nnewflow + 

Nflow' is same as the size of the flow table, if Nnewflow > Nempty, 

some of the entries at the sampling period Tsampling need to be 

evicted to accommodate the newly arrived flows. On the 

other hand, if Nnewflow < Nempty, there are enough spaces for the 

new flows, which means that the flows at the sampling period 

Tsampling  can stay in the flow table as long as possible to 

prevent unfinished evictions. After deciding Nnewflow and Nflow', 

the timeout value assigned to each flow entry at the sampling 

period Tsampling is adjusted dynamically to reflect this change. 

In what follows, we describe the details of the proposed 

algorithm.  

 

 
Fig. 1. Overview of our algorithm. 

A. Predicting the Number of New Flows 

AR is one of the most famous models for analysis and 

prediction of the time-series data due to its simplicity and 

accuracy. Since a time series is a collection of observations 

collected from repeated measurements and we can collect 

actual number of new flows from the switch, we decide to use 

AR to predict the number of new flows at the next sampling 

period. The AR has a trade-off relationship between the 

accuracy and computational complexity. The higher order of 

AR results in more accurate results but increases the 

computational complexity and the time for prediction. 

The AR with order ρ is represented by AR(ρ) and is defined 

by (1). 

 

.
1 tit

p

i it XcX  
  (1) 

 

where φ 1, …, φ p are coefficients of the AR, Xt is a 

time-series data at time t, c is a constant value, and ε t is a 

white noise value at time t. To obtain the coefficients of AR, 

we need to transform the (1) to a set of linear equations called 
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the Yule-Walker equations [10]. When 
1t

newflowN is the 

number of new flows at the sampling period t - 1 on a switch, 

the number of new flows at the next sampling period t is 

calculated by (2). 

 
11

21
  t
newflowp

pt
newflow

pt
newflow

t
newflow NNNN    (2) 

 

 

 
Fig. 2. Probability density function of the Weibull distribution (a) Frequency 

distribution of flows (b) Frequency distribution of packets of a flow. 

 

C. Estimating the Number of Remaining Flows 

The estimation of the number of flows that still remain in 

the flow table at the next sampling period is done by 

analyzing the inter-arrival times of packets in a flow.   

It is generally known that the average inter-arrival times of 

flows entering to a switch follow a Weibull distribution [11] 

with a shape parameter k and a scale parameter λ, as shown in 

Fig. 2 (a). Using the self-similarity properties [8], [12], [13], 

[14], we can further  notice that the inter-arrival times of 

packets that belong to the same flow also follow the same 

distribution as shown in Fig. 2 (b). Therefore, the Probability 

Density Function (PDF) of the inter-arrival times of packets 

that belong to the same flow is also given by (3). 
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Since the values for shape parameter k in both cases in Fig. 

2 are identical and the average packet inter-arrival time of 

each flow can be obtained from Fig. 2 (a), the scale parameter 

λ ' can be calculated by (4), where is X a random variable for 

packet inter-arrival time, E(X) is the mean of the Weibull 

distribution, and 



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The algorithm then determines whether the flow entry will 

remain in the flow table or not by estimating the remaining 

probability of the flow from the distribution. To estimate the 

remaining probability of the flow, the algorithm calculates 

the shaded area of the distribution in Fig. 3, which is 

calculated by the Cumulative Distribution Function (CDF) of 

the distribution with the obtained parameters above. The 

CDF of the distribution is given by (5). For example, if all 

inter-arrival times of packets belonging to the same flow are 

shorter than the timeout value assigned to the flow, the flow 

will likely to remain with a probability of 1 (i.e., F(x)=1), 

which means that the flow will always remain in the flow 

table according to the distribution. 

 
Fig. 3. Remaining probability of a flow with timeout value t. 

 
Fig. 4. Getting the number of remaining flows. 
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Finally, the number of remaining flows at the next 

sampling period can be estimated by summing up the 

remaining probabilities of all flows, since the remaining 

probability of each flow is independent one another. Let pf(t) 

be the remaining probability of a flow f with a timeout value t, 

where f ∈  F and F  is a set of flows in the flow table. Then, 

the number of remaining flows Nflow'  can be estimated by (6) 

as shown in Fig. 4. 

' ()
flow ff F

N p t


           (6) 

 

For example, if there are 5 flows on the flow table and the 

probability of each flow is p1(t) = 0.3, p2(t) = 0.88, p3(t) = 0.5, 

p4(t) = 0.7, and p5(t) = 0.4 then the summation of the 
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probabilities is 2.78, which means the number of remaining 

flows is 3. 

C. Adjusting the Timeout Values 

The main purpose of the proposed algorithm is to reserve 

enough spaces for the newly arrived flows. In order to 

achieve this goal, we dynamically increase or decrease the 

timeout values assigned to the flows by the amount of ∆t so 

that flows with relatively longer inter-arrival times of packets 

yield spaces for the new flows. Current version of the 

algorithm constantly adjust the same value of ∆t for all the 

remaining flows and we are planning to explore the 

mechanism of assigning different ∆t values to different flows 

based on various traffic parameters. Therefore, after we 

estimate the values for Nnewflow and Nflow' using the 

mechanisms explained in sub-sections A and B, we 

determine ∆t not to overflow the flow table in the switch by 

(7), where Nmax is the maximum number of flow entries (i.e. 

flow table size). 

m ax

'
1flow newflow

N N

N


        (7) 

 

IV. EVALUATION 

In this section, we evaluate the dynamic timeout control 

algorithm proposed in this paper by simulation and compare 

its performance with that of the case without dynamic 

timeout control. We first present the experimental 

environment for the simulation and show the performance 

results. 

A. Experimental Setup 

For the simulation, we have implemented the SDN 

controller module, SDN switch module, and host module 

over OMNeT++ 4.4.1 simulator [15]. The simulation was 

conducted over a canonical 3-tier network topology as shown 

in Fig. 5, which is generally known as a conventional 

architecture for data centers. The topology consists of two 

layer-2 Aggregation Switches (AS), four layer-2 Switches 

(S), and six Top of Rack (ToR) switches connected to each 

layer-2 Switches (24 ToR switches). We assume that there 

are five to twenty hosts connected to each ToR switch (120 to 

480 hosts), where each host generates packets based on the 

Weibull distribution (i.e., using the weibull() function 

provided by the OMNeT++ simulator).  

The ratio of intra rack traffic and extra rack traffic in the 

experiment is 2 to 3 [8]. Intra rack traffic is the 

communication among severs in the same rack using the 

pass-through ToR switch. On the other hand, extra rack 

traffic means the communication between the servers which 

are not in one rack. For the variety of data, we used three 

kinds of protocol with three-different port numbers. 

Two important parameters for the simulation are the 

eviction policy used in the switch and the flow table size. In 

order to simulate the real environment as much as possible, 

we simulate three most widely used eviction policies such as 

First-In-First-Out (FIFO), Least Recently Used (LRU), and 

random. Since the number of hosts varies from 120 to 480, 

we need to determine appropriate size for the flow table in 

 

B. Experimental Results 

In order to compare the performance of proposed 

algorithm with that of the case without dynamic timeout 

control, we have conducted three experiments: 1) comparison 

of the number of packet_in messages to the controller to 

show the scalability improvement, 2) comparison of the 

number of packet_in messages by varying the size of flow 

table, and 3) comparison of the number of packet_in 

messages by varying the number of hosts. For the 

experiments above, we compare the performance of our 

algorithm with those of other cases with static timeouts, 

where each case adopts three different eviction policies: 

FIFO, LRU, and Random. 

 

 
Fig. 5. Topology used in the experiment. 

 
Fig. 6. Comparison of the number of messages to the controller. 

 

Fig. 6 depicts the number of packet_in messages and 

compares the performance of our algorithm with those of 

other cases with different eviction policies. As shown in Fig. 

6, the proposed algorithm outperforms other cases by about 

5.6% to 9.9%. For example, the number of packet_in 

messages per second in the proposed algorithm is about 31.2, 

while the numbers in FIFO/LRU/Random cases are about 

33.4, 34.7, and 33.1, respectively. The reason for this 

improvement is that the proposed algorithm reserves enough 

spaces for the new flows by adjusting the timeout value of 

each flow. This adjustment allows other flows with longer 

packet inter-arrival times to leave from the table voluntarily. 

This reduces the possibility of evicting wrong flow entries 

(e.g., evicting entries with short inter-arrival times), which 

may decrease the number of unnecessary packet_in 

messages.  

Fig. 7 compares the number of evictions occurred in all 
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order to simulate general eviction workloads. From the 

workloads reported in [4], [7], [8], we decided to use 40 to 50

entries for the flow table size. It is worthy to note that the size 

of a flow table in the switch is limited and the evictions from 

the table occur frequently in a real environment.
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switches. As expected, the number of evictions decreases by 

63.8% to 70.8% in the dynamic algorithm. Since we 

dynamically adjust the timeout, we could reduce the amount 

of communications between the controller and switches, and 

finally avoid the unnecessary evictions. As shown in Fig. 7, 

the evictions in static configuration are usually occurred in 

tier-2 switches. Therefore, it is important to reduce the load 

on tier-2 switches. It is worthy to note that our algorithm 

reduces the loads on the tier-2 remarkably.

Fig. 7. Comparison of the number of evictions on the switches.

Fig. 8. Effects of varying the size of flow table.

Fig. 9. Effects of varying the number of hosts.

Fig. 8 and Fig. 9 also compare the number of packet_in

messages by varying the size of flow table and the number of 

hosts where both Static and Dynamic adopted LRU eviction 

policy. As we increase the size of flow table from 40 to 50 in 

Fig. 8, the performance gap between our approach and other 

cases is getting narrow; from 11% to 8.7%. It should be noted 

that if we increase the size of flow table, the probability of 

evictions gets lower, which also reduces the number of 

packet_in messages. However, as we increase the number of 

hosts in Fig. 9, the performance gap is widening; from 7.6% 

to 10%. Considering the packets generated from the hosts are 

getting larger as we increase the number of hosts, it is clear 

that the chance of getting evicted from the table is also 

getting larger. In this case, the proposed algorithm lowers the 

chance of evictions by dynamically changing the timeout 

values.

V. CONCLUSION

We have witnessed a large number of research efforts to 

improve the scalability of SDN controllers. Among them, this 

paper has focused on improving the scalability of a single 

SDN controller by reducing the number of flow setup 

requests to the controller. Although there are still several 

studies to improve the scalability of a single SDN controller, 

our approach is novel in that we dynamically adjust the 

timeout value of each flow based on current traffic conditions 

in order to minimize the number of evictions. As a result, the 

proposed scheme allows the switch to reserve enough spaces 

for newly arrived flows, while making other flows with 

relatively longer packet inter-arrival time yield their table 

entries automatically via timeout. 

Current version of the proposed algorithm uses AR to 

predict the number of new flows and utilize the Weibull 

distribution to estimate the number of remaining flows. Since 

those estimation schemes are unlikely to produce accurate 

results all the time, extra spaces in the switch can be reserved 

to compensate these inaccuracies. However, there is certainly 

a tradeoff between reserving extra spaces for inaccurate 

predictions to avoid unnecessary flow setup requests and 

utilizing the whole table spaces. It is also a research question 

that how many spaces we need to reserve. We are planning to 

investigate those issues in the future. We are also currently 

working on assigning different ∆t values to different flows 

based on various traffic parameters.
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