

 Abstract—Security of information systems depends heavily
on the strength of the cryptosystem. Throughout the years,
several cryptosystem algorithms have been developed. These
algorithms may inherit some weakness that can jeopardize the
integrity of the data. In this paper, we present a genetic
algorithm to crack a transposition cipher that extends on the
notable research in the field and introduces new ideas including
a novel crossover function, a dictionary of the most used words
in the English language to evaluate the fitness of the keys in any
generation, a dynamic selection method, and a variable
generating number. This algorithm starts with a very small
randomly selected set of keys, and proceeds the crossover
operation on the highly fit keys to produce next generations
until a specific number of generations, the final result produces
a key that is either a perfect match to the original encryption
key or one that is very close. Our experiments and results show
mostly optimal solutions for the keys in linear time performance
which is a dramatic improvement to the brute force algorithm
that takes a factorial time to crack the key.

Index Terms—Cipher key, cryptanalysis, dictionary
matching, genetic algorithm, transposition cipher.

I. INTRODUCTION
The world of computer security has had a great deal of

development in creating method to protect the computer
systems from threats, these threats come from several areas
concerning authentication, authorization, confidentiality, and
non-repudiation.

One of the pillars of computer security is the encryption of
data, since networks are shared between millions of people;
and thus transmitted data can be viewed and intercepted, the
network infrastructure could not be trusted to send plain data,
transferred data has to be interpreted by only the ones who
are authorized to; others should not be able to under-stand the
content, this is usually done by encryption, the process of
changing the content of the text according to an algorithm by
using keys that are normally shared by the interested parties.

Cryptanalysis is the science concerned with analyzing the
cipher text trying to identify patterns to reveal the encryption
algorithm used, extract the key, and extract the plain text;
thus expose the encryption. There has been sever-al
techniques to achieve this goal for different encryption

Manuscript received January 21, 2014; revised May 16, 2014. This work
was supported by the Research Center of College of Computer and
Information Sciences, King Saud University RC130311. The authors are
grateful for this support.

Omar Alkathiry is with King Saud University, Riyadh, Saudi Arabia
(e-mail: omar.alkathiry@gmail.com).

Ahmad Al-Mogren is with College of Computer and Information
Sciences, King Saud University, Riyadh, Saudi Arabia (e-mail:
ahalmogren@ksu.edu.sa).

algorithms, manual cryptanalysis is a very time consuming
process and is not a desired solution in cryptanalysis, hence;
several automated techniques were developed in this area.

The key size used in encryption is always recommended to
be long to make exhaustive search very difficult, this
alongside with advances in encryption algorithms makes
cryptanalysis and breaking encryption algorithm a
challenging task.

A classical symmetric encryption method is the
transposition encryption where the plain text is organized
into columns and rows, and shuffled based on a key, the order
of the columns is based on the character code of the letters,
and the recipient uses this key to decrypt the content. Fig. 1
describes this encryption.

Fig. 1. A Demonstration of a simple transposition cipher.

This paper introduces a new algorithm to crack a columnar

transposition cipher in a linear time, several methods were
suggested in the literature that provide algorithms to crack
the transposition cipher encryption, including the Ants
Colony algorithm, the Simulated Annealing algorithm, the
Tabu Search, and other genetic algorithms, we show that our
method provides better results in terms in performance and
accuracy.

The paper is organized as follows: first, we talk about the
previous work in Section II. In Section III, we provide
detailed description of the proposed algorithm. In Section IV,
we show the experiments and results. Finally, we talk about
the conclusions found, and the future work needed to
enhance this algorithm in Section V.

II. RELATED WORK
There has been several research to develop methods to

crack the transposition cipher, some of them used simulated
annealing [1], that is a local search where an evaluating
function is used to assess the current state and tries to move to
better states in the search space, allowing some bad moves in
the process to insure that the algorithm does not get stuck in a
local optimum option, the simulated annealing method is

A Powerful Genetic Algorithm to Crack a Transposition
Cipher

Omar Alkathiry and Ahmad Al-Mogren

International Journal of Future Computer and Communication, Vol. 3, No. 6, December 2014

39510.7763/IJFCC.2014.V3.335DOI:

inspired by the process of annealing metals, where the heated
metal is slowly heated to achieve a better consistency
“Energy”, the experiments made using this method to crack
the transposition cipher as described by the authors proves it
to be an effective algorithm; however does not match the
performance of using a genetic algorithm, the clear
advantage that simulated annealing has over other methods is
the simplicity of the algorithm.

In an interesting research using particle swarm
optimization (PSO)[2] that was used to crack a transposition
cipher, this method is an optimization method based on the
swarm intelligence, inspired by the flocks of flying birds and
other swarms like salmon fish, PSO is used to solve this
problem by first choosing a random set of keys, each called a
particle, all of those keys store the position of the best
solution found so far, the particles move and if a better
solution is found the particle updates its best solution until a
better solution is found, the experiments using this method as
described by the authors produced very good results; the time
taken to crack a ten digit key of a 250 characters cipher was
only 1.3 seconds.

Other researchers used Tabu search [3], In this algorithm
the best solution is initialized with a random key, this key is
going to be scored, then a list of keys created by swap-ping
number in this keys is created and the new set is scored, the
best of these keys will replace the previous one and the
process will be repeated for a specific number of times, the
Tabu algorithm also has very good results but are not as good
an the genetic algorithm, the advantage of this method is
finding the best key in a faster time, but the final result will
take longer time because other keys will be tested.

Other research used the Ant Colony algorithm [4], this
method is inspired by the ant behavior and the pheromones
they produce in order to for the colony to take the best path to
reach a specific goal; however this method performs poorly if
compared to the GA, SA, and Tabu search.

Finally we will consider other methods that use genetic
algorithm to crack the transposition cipher, a good research
by Toemeh R. et al. [5] uses a genetic algorithm, which our
work extends on, produces very good result, however our
view is that there are several issues and weaknesses in this
research, where the authors did not explain nor give a good
reason for the crossover operation and justify why would it
improve the next breed, in addition this method fixed the
number of generations to test, and mutated all the options,
another weakness we observed in this algorithm is that the
selection of the initial population was not explained
thoroughly when it ought to; since the search space is huge,
(Factorial of the key length).

Another research using a genetic algorithm approach by M
Heydari et al., [6], approached the problem in similar manner
as the previous research in addition to making more
explanations on the mutation and the crossover operation, the
initial population is dynamic in this research; however the
number of generations was not discussed where we think it is
an essential factor in any genetic algorithm.

There are other genetic algorithms used in this field and
most of them have an unrealistic assumption that the cipher
text will include spaces [5], [6], this assumption produces
unreliable results because the fitness of the key is based on

the how many matches found after trying decrypting using
any given key; the score increases when there are specific
bi-grams or tri-grams, and most of them contain space, as Fig.
2.

Fig. 2. Scoring table used by R. Tomeh.

We view that all these factors as weaknesses that we will

over-come in our research.

III. PROPOSED METHOD USING A GENETIC ALGORITHM AND
DICTIONARY MATCHING

At this section we will provide a detailed explanation of
the method we are proposing, Fig. 3 shows the outline of the
steps in the algorithm.

Fig. 3. The steps of the algorithm.

This algorithm consists of the following steps: first, from

the cipher text find out all the possible numbers that divide
the length of the text evenly, this is done to get all the
possible lengths of the key used in encryption, then for each
divider generate a random set of keys that will be the starting
generation, the number of possibilities for the key in this
length is the factorial of length of the key; thus a very small
number of keys has to be considered in a fare and meaningful
way, after that we use these keys to decrypt the cipher and
score the results against a dictionary of frequently used words,
the scoring operation finds the number of matches found in

International Journal of Future Computer and Communication, Vol. 3, No. 6, December 2014

396

the decryption results from the dictionary list, after that we
get the top scorers “Highly fit options” and use them to
generate the next generation of nodes by using the crossover
operation, the crossover operation also has to be meaningful
with the aim to produce a more fit generation, the number of
generations depends on the key length; for example a key of
four digits will have less generations than a key with ten
digits and so on, the formula used to generate the number of
generations to go through is the following:

G = G (K-1) × 1.5

where G is the number of generations, and K is the length of
the key considered, starting with G = 4 for the key length 5,
this formula is the result of experimentation, increasing the
number of generations increases the accuracy; however also
increases the time, we have found that this formula give us
constant accuracy for 10 attempts to be from 65% - 100% so
at least one of the results will be very easily readable if not
perfect., at the end of testing all the keys from all the dividers
in each generation, the algorithm returns the best scoring key,
as the most probable key used in the encryption, the results
are mostly a perfect match or a very close one.

This was a brief of the steps and the following details these
steps.

Step 1: Get Cipher Text Dividers
After acquiring the cipher text, in this step the length of the

cipher text is divided by all the numbers from 2 until the
parameterized key length, since the transposition cipher is a
block cipher; the cipher text will always construct a rectangle,
that is rows and columns, the length of the row is the length
of the key and the length of columns is the cipher length
divided by the key length, and the extra slots will be filled
‘padded’ with ‘X’s or any other character to make the rows
with the same length as we saw in Fig. 1, for example if the
length of the cipher text is: 224 then these are possible key
length in the encryption process given that the maximum
specified is 10: 2,4,7,8. These numbers divided 224 evenly.

Step 2: Generate the Start Generation
Randomly generate N keys to act as the first generation, we

use the random generation as a quick way to create valid keys,
the number of these keys is going to be relative to the key
length, according to the following formula:

N = K×50

where N is the number of keys and K is the key length.
After we get the number of starting keys; randomly

generate N keys with length K that will be the starting
generation for our algorithm, for each index in the key a
random number will be assigned that is within the key length.
For example if the key length is 6 we could start with a
random option for index 0 from (0-5) for example, if the
random option was 4, then index 1 will have the options (0, 1,
2, 3, 5,) and so on until we generate a valid key, this process
will be repeated for all the keys, the key will be neglected if in
the rare case the key is repeated.

Step 3: Execute the Genetic Algorithm
In this step, for each of the dividers perform the following:
 Decrypt the cipher text using keys in the starting

generation, and score the results based on the number of
matches found in the plain text against a dictionary of
most frequently used English words [7] scoring each
higher according to their frequency, so for example the
word "the" will have a higher score than the word
"most", an addition of giving minus scores if certain
patterns were encountered such as three same
consecutive letters.

 Select a small percentage of this generation with the
highest scores “Most Fit” depending on the key size and
use them in the crossover operation to participate in the
next generation, note that these keys could survive the
next generation and be used in another crossover loop to
create more keys if their score is high enough, this
feature corresponds more naturally to the genetic
operation where ancestors could live longer than
descendants if they are more fit or if the new child is
weak.

 Perform the crossover operation which described by Fig.
4.

Fig. 4. The crossover operation.

 In this operation, for each pair of keys, called parents

here, and ordered by their fitness, so the most fit is
going to “marry” the second most fit and so on, first we
randomly select an index in the first parent P1, we call
this the “crossover index”, then the numbers in the cells
with index larger than crossover index are switched
with the numbers in indices of the same value in the
other parent, then the same process will be repeated for
the number in indices lower that the crossover index to

International Journal of Future Computer and Communication, Vol. 3, No. 6, December 2014

397

produce the second child, this process is repeated on
each parent and for both sides of the selected index to
generate four children. The novelty here is that this
crossover operation tries to get better children by
merging two features of the parents, so the index of
numbers at the fit parent P1, could be better if replaced
with the index of the same number in another fit parent
P2 and so on this way we are taking two fit parents and
merging their properties to generate possibly better
offspring.

 Perform the mutation operation which is defined by
randomly selecting two indices in the key and swapping
their values.

 From the new generation that includes the parents and
their children perform the fitness operation by scoring
this population against the dictionary, and extract the
top percentage of the new population then perform the
crossover operation, to produce next and probably
better generation of keys, note that parents can survive
more the one generation if they always score high.

 Repeat steps from 2 to 4 until we go through all the keys
in all the generations, and always test to see if a better
key was tested, otherwise keep the highest one so far, an
addition if a key survives a generation, we use the same
score found before and thus saving processing time.

 At the end a key with the highest score amongst all the
dividers and all the generations is selected as the best
possible key.

IV. EXPERIMENTS AND RESULTS
A Java application was developed to test this algorithm,

several experiments were performed on different texts with
lengths (200 – 500 – 1000) characters, and the results of
cracking the key were recorder, the keys used to encrypt the
plain text were random keys of length from 5 to 20, the
accuracy as described earlier is very high and mostly optimal,
otherwise; the key would be very close the original
encryption key and the plain text would be understandable.

One of the experiments we made using our algorithm was
aimed to find the average time to crack the encryption key
using different cipher text lengths, we made 10 experiments
on each key length and Table I shows the average time
needed to crack the encryption key with different text sizes,
the average accuracy of the results if from 65% - 100%,
which means at least of the 10 results will be acceptably
readable.

TABLE I: TIME TAKEN TO CRACK THE CIPHER

The performance of our algorithm can be demonstrated in

the Fig. 5.
Another experiment we made was aimed to find the

amount of key successfully recovered, The criteria we used is
the amount of key recovered for the given cipher text size,
given that an index of a number in the key is considered

correct if the neighbors of this number are the same except
the first and last index, in addition of course to being at the
same index, the results of this experiments are shown in
Table II.

Fig. 5. Algorithm performance.

TABLE II: AMOUNT OF KEY RECOVERED

We made a comparison between our results with the
results of R.Tomeh [5], Fig. 6 demonstrated this comparison.

Fig. 6. Comparison with R.Thomeh [5] results.

These results show that this algorithm performs faster and

has much smaller growth rate function than the fastest
algorithm so far [5] moreover the genetic algorithm approach
have been proved to be the best and faster performing method
to crack a transposition cipher [8].

The application was developed so that the results could be
tweaked, and the user could change some of the parameters to
achieve better results, these parameters are: the number of
generations, the mutation frequency, and the initial pool
percentage.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a new algorithm to crack the

transposition cipher in linear time, our algorithm was tested
against several other algorithms in the same field and proved
to be better in performance in at least 50%, the main key
feature in our algorithm is the novel crossover operation that
helped in producing better keys and reaching the optimal key

International Journal of Future Computer and Communication, Vol. 3, No. 6, December 2014

398

in a very short time and skim through the huge search space
in a very fast and efficient manner, another advantage is the
use of a dictionary of most common words in the English
language in contrast to the bi-gram and tri-grams method
used heavily in other research, this algorithm has one of the
features that was exclusive in the Tabu search which is that
the keys stay in the pool of keys and survive generations until
better keys are introduced in the pool of highly fit keys[3].
The last distinct feature of this algorithm is that several
factors that affect the genetic algorithm are de-pendent on the
key size which makes it produce the same quality of result for
all key lengths.

For future work we are going to test our algorithm on
longer key lengths, and we also are going to try improve the
performance of some parts of the algorithm through
experimentation, another area that could be explored is
testing the same algorithm on the bi and tri-gram matching
method used in similar papers, a possible improvement at the
performance of the algorithm is the usage of parallelization,
since the key testing do not require to be sequential and there
is no dependency between several parts of the algorithm,
parallelizing them will certainly improve the performance..

REFERENCES
[1] A. Dimovski and D. Gligoroski, “Attacks on the transposition ciphers

using optimization heuristics,” in Proc. the International Conference
on Environmental Science and Technology, 2003, pp. 1-4.

[2] S. M. Hameed and D. N. Hmood, “Particles swarm optimization for the
cryptanalysis of transposition cipher,” Journal of Al-Nahrain
University, vol. 13, no. 4, December, 2010, pp. 211-215

[3] A. K. Verma, M. Dave, and R. C. Joshi, “Genetic algorithm and tabu
search attack on the mono-alphabetic subsitution cipher in adhoc
networks,” Journal of Computer Science, vol. 3, no. 3, 2007.

[4] M. D. Russell, J. A. Clark, and S. Stepney, “Making the most of two
heuristics: Breaking transposition ciphers with ants,” in Proc. 2003
Congress on the Evolutionary Computation, vol. 4, 2003.

[5] R. Toemeh and S. Arumugam, “Breaking transposition cipher with
genetic algorithm,” Electronics and Electrical Engineering, vol. 79
2007.

[6] M. Heydari, L. S. Gholamreza, and M. H. Mohammad, “Cryptanalysis
of transposition ciphers with long key lengths using an improved
genetic algorithm,” World Applied Sciences Journal, vol. 21, no. 8,
2013.

[7] Oxford English Dictionary. (2013). [Online]. Available:
http://www.oxforddictionaries.com/words/the-oec-facts-about-the-lan
guage.

[8] P. Garg, “Genetic algorithms, tabu search and simulated annealing: a
comparison between three approaches for the cryptanalysis of
transposition cipher,” Journal of Theoretical & Applied Information
Technology, vol. 5, no. 4, 2009.

Omar Alkathiry was born in Saudi Arabia, 1986. He received a bachelor’s
degree in information systems in 2008, and a master’s degree in computer
science in 2014, both from the College of Computer and Information Sciences
of King Saud University in Riyadh, Saudi Arabia.

He has worked as a programmer analyst, then as a java developer, followed
by a software engineer, and now he works as a senior software engineer at
Technology Control Company, Riyadh, Saudi Arabia.

Ahmad Al-Mogren obtained his PhD in computer sciences from Southern
Methodist University, Dallas, Texas, USA in 2002. Previously, he worked as
an assistant professor of Computer Science and the head of the Scientific
Council at Riyadh College of Technology. He also served as the dean of
Computer College and the head of the Council of Academic Accreditation at
Al Yamamah University.

Presently, he works as the vice dean for quality and development at King
Saud University in Saudi Arabia. He has taught several courses such as
computer networks, mobile computing, databases, digital communication,
clustering and fault tolerance. His research areas of interest include
networking, mobile computing, computer security and data consistency.

International Journal of Future Computer and Communication, Vol. 3, No. 6, December 2014

399

