

Abstract—Objective of this paper is to create optimized

Schedule for a set of jobs on a single machine which minimize
the total early and tardy penalty. No preemption of jobs is
allowed while scheduling. During the process of scheduling, no
machine idle time is allowed and the jobs are assumed to be
continuously available. This problem of reducing the machine
idle time is an NP class problem. The proposed bee schedule
algorithm uses the swarm intelligence approach to solve the
single machine early/tardy scheduling problem. The solution
obtained using the proposed algorithm contains a local selective
search procedure to further improve the schedule. This helps to
fine tune and achieve more optimal solution to this scheduling
problem. The pairwise interchange procedure is also
implemented on the schedule obtained in several passes till the
range value is obtained, thus attaining the best solution to the
problem. The proposed algorithm is tested and found that it
outperforms the existing algorithms like dynamic programming
and genetic algorithms. Experimental analysis proves that the
proposed algorithm is suitable for similar problems also.

Index Terms—Bee schedule algorithm, early/tardy
scheduling, NP class problem, single machine scheduling.

I. INTRODUCTION
In this paper, a single machine scheduling problem is

considered where the jobs are supposed to be completed
within due time, otherwise they may incur early/tardy penalty.
The Scheduling based on both the earliness and tardiness
penalties are needed in many real life problems. Production
activities in a manufacturing plant or scheduling of the
aircrafts that are waiting for the landing and take-off process,
etc. are few examples for the earl/tardy scheduling problem.

Consider the example of scheduling the production of
products in a manufacturing plant where the goods produced
have holding costs and goods may spoil by time when the
products are produced in advance. Also late delivery leads to
loss of loyal customers and the shipping costs are also
increased. In such places the just in time production of goods
is needed. The early/tardy scheduling deals with these just in
time scheduling where the jobs are to be scheduled with the
due date constraint and least penalty value, Conway (1967)
[1]. The machines and the jobs are available continuously for
processing. The early tardy scheduling problem is that given
a set of n independent jobs J1, J2... Jn, each of which has to be
processed on a single machine. The preemption of jobs is not
allowed. Each job Jj has a processing time pj and the job

Manuscript received March 19, 2014; revised April 28, 2014.
The authors are with the Department of Computer Science and

Engineering at Coimbatore Institute of Technology, Coimbatore, India
(e-mail: mahavishnu.vc@gmail.com, senthilvel.cit.cse@gmail.com,
umamaheswari@cit.edu.in).

should be finished exactly on its due date dj. The early and the
tardy penalties of job Jj are epj and lpj respectively.

The earliness Ej of a job Jj can be defined as Ej = max (0, dj
− Cj) and tardiness Tj of the job Jj can be defined as Tj = max
(Cj −dj, 0), where Cj is the completion time of the job Jj. The
main idea of the Early/Tardy Scheduling Problem (ETSP) is
to find a schedule with the minimum total penalty.

 Total penalty (ep)n
j j j jj
E lp T= +∑ (1)

The early/tardy scheduling problem enforces the condition
that the machine is available continuously for the processing
of the jobs i.e., a machine can be idle only when there is no
jobs waiting for processing. This suits those production
environments where the demands are high or operating and
startup costs of the machine exceed the cost of producing
some jobs early, Conway (1967).

For the ETSP, there are many procedures to find the
schedules have been proposed in the recent years. Among
these procedures Li (1977) [2] used the branch-and-bound
methods to find the exact solution based on the Lagrangian
relaxation procedure. Abdul-Razaq and Potts (1998) [3]
proposed the exact solution using Dynamic programming
which is based on state-space relaxation for single-machine
scheduling. Tanaka (2007) [4] proposed a solution based on
the successive sublimation technique with relaxations using
dynamic programming.

The heuristic approaches also provide a solution to the
ETSP where the filtered beam search procedure was used by
Ow and Morton (1989) [5]. The filtered beam search
procedure was very slow for the scheduling of more than 50
jobs. Heuristic procedure based on neighborhood search that
is better than filtered beam search procedure in terms of both
solution quality and running time. The greedy heuristics with
some improvements to reduce the total costs were proposed
by Valente and Alves (2005) [6].

The Genetic algorithms were used to solve this type of
scheduling problem. There were different genetic algorithms
of which Valente et al. (2006) [7] proposed twelve variants of
a hybrid genetic algorithm. All these twelve genetic
algorithms were from the current generation, where the best
10% of the population unaltered to the next generation. No
mutation operator was used in these algorithms. These
genetic algorithms employ a local search in a single pass or
up to eight passes of an adjacent interchange procedure.
During each pass, the adjacent interchange procedure starts
with the first job in the schedule and interchanges two
adjacent jobs whenever doing so reduces the cost of the
schedule. The dispatching procedure and the NSearch
algorithm were also used with genetic algorithms. These
methods were faster than the previous approaches mentioned

Bee Colony Optimization Solution to Single Machine Just
in Time Scheduling Problem

V. C. Mahavishnu, A. N. Senthilvel, and S. Umamaheswari

International Journal of Future Computer and Communication, Vol. 3, No. 6, December 2014

40010.7763/IJFCC.2014.V3.336DOI:

above. Pan et al. (2006) [8] presented a discrete particle
swarm optimization algorithm for minimizing the total
earliness and tardiness penalties. The problem with common
due dates for all jobs is considered on a single machine for the
optimization.

Swarm intelligence (SI) is a type of artificial intelligence
based on the collective behavior of decentralized,
self-organized systems. Over the past twenty years, a number
of studies have addressed the collective behavior of animals
in a fixed social hierarchy. Kennedy, Kazemi, Pedersea have
described the parameters and described the swarm
intelligence and particle swarm optimizations (PSO) [9]-
[11].

These studies have led to the development of various
distributive collective problem solving strategies. More
formally, Engelbrecht defines Swarm Intelligence (SI) as the
property of a system whereby the collective behaviors of
unsophisticated agents, which interact locally with their
environment, cause coherent functional global patterns to
emerge. These concepts include emergence, social
intelligence and adaptation, Shi and Beernaert (2001) [12].
Sha. and Hsu [13] has proposed a hybrid algorithm based on
the PSO to solve the scheduling problem.

A swarm intelligence technique based on the collective
behavior and self-organization characteristics of swarm like
honey bees were somewhat similar to this ETSP. Based on
this foraging behavior of honey bee swarm, Karaboga (2005)
[14] proposed the Artificial Bee Colony (ABC) algorithm.
This algorithm was very simple and was used mostly for
many scheduling problems. Tasgetiren and Pan et al. (2011)
[15] describes an application of ABC algorithm for solving
the flow shop scheduling problem. ABC algorithm is fine
tuned to meet the requirement of the ETSP, in which a local
selective search is used to further improve the schedules
obtained through the algorithm. This will help us to find a
more optimal solution to this scheduling problem. The
pairwise interchange procedure is implemented on the
schedule obtained to minimize the total Early and Tardy
penalties.

This paper is organized as follows: Section II provides
details about the bee colony optimizations; Section III
describes the procedures used for solving the ETSP. The
Computational results are analyzed in the Section IV and
Section V contains the conclusions from the proposed
algorithm.

II. BEE COLONY OPTIMIZATION
The bee colony optimization is a type of particle swarm

optimization techniques. The optimizations are based on the
nectar collecting technique used by the honey bees. The
honey bees in a hive work as three category or groups i.e.,
scout bees, employed bees and the onlooker bees. Scout bees
are the ones involved in the process of searching food sources
around the hive in a random manner. They continue this
process of searching the food until the source with the food is
found. Once the food source is found out, the scout bees
re-categorize themselves to the category of employed bees.
The employed bees work to get the food from the source to
the hive. The employed bees act as a communication agent to
the onlooker bees. The employed bees perform a wangling

dance which helps the onlooker bees to find out the food
source and the amount of food in the source. The onlooker
bees wait in the dance area and watch many dances by the
different employed bees and select the food source with
abundant food. The probability that the onlooker bees select a
food source is proportional to the amount of the nectar in that
food source. Once an onlooker bee selects a food source, it is
re-categorized as an employed bee. Once the food in the
source is exhausted, the employed bees are re-categorized as
scout or onlooker bees.

Based on this behavior of honey bees, Bee colony
optimization algorithms were proposed. Further this concept
was extended for the selection and permutation problems.
The solution to the problem is considered similar to the food
source and the probability of the solution to be the best
solution is similar to the amount of food in the source. The
bee colony algorithms have a fixed number of solutions at the
start and they are all random solutions. An exhaustive search
is made until the optimal solution is obtained. In every phase
of the algorithm, a new solution is searched in the
neighborhood and if the solution is better continue the
algorithm with that schedule. The phases, stop criteria and the
solutions are dependent on the problem definition.

The probability that a neighborhood solution is selected for
the next stage depends upon the probability that the
neighborhood solutions lead to the optimal solution. The
selection procedure is based on the roulette wheel selection
procedure. The solution which will lead to the global
optimum is selected and further processed. If a solution is not
improved by selecting the food source for a predetermined
number of times, the algorithm is stopped and the solution is
declared to be the best solution but not the optimal one.
Another random solution is created and proceeded to get the
new solution that may lead to the global optimal solution.
Based on many survey by akay and karaboga (2009) [16], it is
found that the bee swarm intelligence is more advantage to
the other existing algorithms.

III. BEE SCHEDULE ALGORITHM
The proposed bee schedule algorithm works mainly in six

stages. The input to the algorithm is a file containing the input
details for the algorithm. The job ID, job processing time,
early penalty, late penalty and the due dates for the several
jobs in that file. The first step is the initial random solution
generation from which the further process proceeds. This step
is done based on the first come first serve ordering.

The next step is the creation of a random nearby solution
where the solution is obtained by the ordering of the jobs with
the odd job id first criteria. The next stage is the selection
method where we decide to do the selective-multi-point
insertion where the jobs are placed at positions where the jobs
will incur less penalties and then the alternate point swap is
done or the algorithm directly flows to the alternate point
swap procedure without doing the selective multi point swap
when the solution is not improved. At this stage of alternate
point swap, a schedule is obtained which is further improved
by the local selective search procedure. The pairwise
interchange procedure is applied to the improved schedule to
get the global optimal schedule. The flow of the algorithm for
solving the early/tardy scheduling problem is shown in Fig. 1.

International Journal of Future Computer and Communication, Vol. 3, No. 6, December 2014

401

Fig. 1. Bee schedule algorithm.

A. Real Time Queue
The early/tardy scheduling problem is a type of

combinatorial optimization problem. Hence the first come
first serve basis is considered for the generation of the first
schedule. The above scenario is analogous to areal time
queue. This schedule denotes the ordering of execution of the
jobs. The early penalty and the late penalty are calculated for
the schedule s. This schedule s is saved for the further
processing. The next step is to find a random nearby solution.

B. Neighboring Solution
The schedule based on the first come first serve basis is

considered and the random nearby solution is generated. In
this process of the random generation, the random schedule is
changed by sequencing the jobs with the criteria that process
the odd jobs first. The schedule s obtained in the previous
stage is taken and a new empty schedule s* is created. Based
on the criteria the jobs are taken from the schedule s and
inserted into the schedule s*. The odd jobs are followed by
the even jobs and a new schedule is created. This solution is
considered to be Neighboring solution. This process is
repeated until all the jobs in the schedule s are taken
completely and inserted into s*.

There are two different schedules that are based on the
given input. The selection of one of the schedules is to be
done at this point to proceed to the next stage of the algorithm.
The schedule with the higher probability to get an optimized
solution is chosen and the next step in the algorithm is started
with this solution. The problem structure of the early/tardy
scheduling problem is a type of permutation problem.
Permutation of the n jobs is to be done to get the n! different
combinations of the neighboring solution. The procedures
like the selective-multi-point insert and the alternate point
swap are used along with the local selective search and the
pairwise interchange to get the neighboring solutions.

C. Selective-Multi Point Insert Procedure
The selective-multi-point insert procedure to find the

neighboring solution uses the parts of the schedule previously

obtained. This procedure focuses on selecting points from the
previous schedule where the jobs placed at those points
produces good results. There is a high probability of
producing good results by placing these points in our new
solution. To implement this procedure, the previous schedule
obtained in the previous stage is taken and a new empty
schedule is created. The best points from the previous
schedule are copied to the same position in the new schedule.
The total number of points to be copied from the previous
schedule is determined by the range value. The range value is
selected by a random value from 1 to 10. This range value
determines the percentage of the number of jobs that are to be
copied from the previous schedule to the next schedule. All
points except those inserted from the previous schedule are
empty. In order to fill the empty slots in the schedule, the
remaining jobs are sorted and arranged in the empty locations.
Thus the schedule is complete and the total penalty for this
schedule can be created from (1). This schedule is used for
the alternate point swap procedure. There are certain cases
where the schedule created by the multi-point insert
procedure will be equal to the previous schedule. In such
scenarios the multi-point insert procedure is avoided to
reduce the complexity.

D. Alternate Point Swap Procedure
This procedure is important because this helps to reach the

global optimal solution. The previous procedures concentrate
on the local optimal solution. The initial step in the alternate
point swap procedure is to copy the initial solution and select
alternate points in random from the schedule. Considering
that the alternate points selected are x,y and z, and the two
swap operations are to be carried out with these alternate
points. Initially the points x and y are swapped. The new job
at the position x is swapped with the job in the position y.
This procedure of swapping two times using the alternate
points is more effective compared to the single swap. Thus
the alternate point swap procedure will lead us to the global
optimal solution.

The solution obtained by the alternate point swap is more
close to the global solution. This schedule is further improved
by applying a local selective search with the help of the
alternate point swap procedure and pairwise interchange
procedure.

E. Local Selective Search Procedure
The quality of the schedule obtained in the alternate point

swap is improved by the multiple passes of the local selective
search procedure. This is an exhaustive search where the
solution of the alternate point swap is inserted at the various
possible combinations of the alternate points that are chosen
to create a new schedule. The stop criteria used for the local
selective search procedure is when the schedule is not
improved for five consecutive searches. The local selective
search procedure is more effective when the alternate points
chosen randomly are swapped after selecting the best
combination by permutation of the alternate points.

F. Pairwise Interchange Procedure
Improved schedule obtained using the local selective

search procedure is further improved with the pairwise
interchange procedure. The pairwise interchange procedure
swaps the job in the schedule with the adjacent one. The new

International Journal of Future Computer and Communication, Vol. 3, No. 6, December 2014

402

schedule does not totally deviate from the original schedule
and the interchanging positions will help to improve the
schedule and thus achieving the global optimal solution.

The algorithm does not stick to a single schedule and
improve that schedule, but it choses various random
schedules and selects the best schedule and optimizes it. Thus
this algorithm is more advantageous than the other
procedures available for this problem.

IV. COMPUTATIONAL ANALYSIS
The proposed algorithm was compared with the existing

solutions of the dynamic programing (DP), heuristic
approaches and the genetic algorithms (GA). The input file to
the algorithm consists of a set of jobs with the job id,
processing time pj and the early penalty epj and tardy penalty
lpj and the due date dj. The input datasets were comma
separated files having instances with 100, 500, 750or 1000
jobs each.

TABLE I: COMPARISON OF BSA WITH OTHER ALGORITHMS

Table I describes the average percentage deviation (APD)

and the average computation time (ACT) for the various
algorithms. The overall penalty values obtained with the
proposed algorithm were compared with dynamic
programming and the genetic algorithms to get the average
percentage deviation. The APD is calculated by comparing
the results of instances with the best known or the optimal
solutions as done by Valente et al. The results prove that
there is a significant reduction in the overall penalty values
with the proposed algorithm. The proposed algorithm works
well with all types of the input jobs given to the algorithm and
APD values proves that the proposed algorithm produces
better results compared to the existing algorithms.

The overall penalty values obtained with the proposed
algorithm were compared with the dynamic programming
and the genetic algorithms. The results prove that there is a
significant reduction in the overall penalty values with the
proposed algorithm. The Fig. 2 describes the results of the
analysis.

Fig. 2. Total Penalty Analysis.

The experimental results show that the proposed algorithm
has improved the schedule significantly compared to the
dynamic programming and also better than the genetic
algorithm. Bee schedule algorithm has good results for the
instances with 100 or more jobs. Considering the complexity
of the algorithm as a parameter for comparison the dynamic
programming has an exponential complexity whereas the
proposed algorithm has a polynomial complexity. Thus the
proposed algorithm is better compared to the existing
algorithms in terms of the complexity also. Although the
proposed algorithm produces good results for most inputs,
they may not be the optimal solution always.

V. CONCLUSIONS
The bee schedule algorithm was tested against the existing

algorithms to solve the early/tardy scheduling problem.
Performance of the bee schedule algorithm was proved better
compared to other existing methods. Results were analyzed
with instances having a maximum of 500 jobs. The results
also show that the bee schedule algorithm can also be used to
solve all combinatorial optimization problems and similar
problems also.

In future work, we would like to extend this bee schedule
algorithm to the other real time optimization problems like
rail route optimizations with timing constraints, laying
pipelines by cutting minimum number of roads, providing
Automated Teller Machines(ATM) in many locations with
the security constraints.

REFERENCES
[1] W. R. Conway, W. L. Maxwell, and L. W. Miller, Theory of

Scheduling, Dover Publications, 1967.
[2] G. Li, “Single machine earliness and tardiness scheduling,” European

Journal of Operational Research, vol. 96, 1977, pp. 546–558.
[3] T. S. A. Razaq and C. N. Potts, “Dynamic programming state-space

relaxation for single-machine scheduling,” Journal of the Operational
Research Society, vol. 39, 1988, pp. 141–142.

[4] S. Tanaka, “An exact algorithm for single-machine scheduling without
idle time,” in Proc. the third Multidisciplinary International
Scheduling Conference, MISTA 2007, pp. 614–617.

[5] P. S. Ow and T. E. Morton, “The single machine early-tardy problem,”
Management Sciences, vol. 35, 1989, pp. 177–191.

[6] J. M. S. Valente and R. A. F. S. Alves, “Improved heuristics for the
early/tardy scheduling problem with no idle time,” Computers and
Operations Research, vol. 32, pp. 557–569, 2005.

[7] J. M. S. Valente, J. F. Gonçalves, and R. A. F. S. Alves, “A hybrid
genetic algorithm for the early/tardy scheduling problem,” Asia-Pacific
Journal of Operational Research, vol. 23, pp. 393–405, 2006.

[8] Q. K. Pan, M. F. Tasgetiren, and Y. C. Liang, “Minimizing total
earliness and tardiness penalties with a common due date on a
single-machine using a discrete particle swarm optimization
algorithm,” Lecture Notes in Computer Science, vol. 4150, pp.
460–467, 2006.

[9] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.
the IEEE International Conference on Neural Networks, 1995, pp
1942-1948.

[10] A. L. Kazemi and C. K. Mohan, “Discrete multi-phase particle swarm
optimization,” Information Processing with Evolutionary Algorithms,
Berlin, Germany: Springer, 2006, pp. 306-326.

[11] M. E. H. Pedersea, “Good parameters for particle swarm
optimization,” Technical Report, Hvass Laboratories, 2010.

[12] Y. Shi and R. C. Eberhart, “Fuzzy adaptive particle swarm
optimization” in Proc. IEEE International Conference on Evolutionary
Computing, vol. 1, 2001, pp. 101-106.

[13] D. Y. Sha and C. Hsu, “A hybrid particle swarm optimization for job
shop scheduling problem,” Computers and Industrial Engineering, vol.
51, no. 4, pp. 791-808, Dec 2006.

International Journal of Future Computer and Communication, Vol. 3, No. 6, December 2014

403

[14] D. Karaboga, “An idea based on honey bee swarm for numerical
optimization,” Technical Report TR06, Computer Engineering
Department, Erciyes University, Turkey, 2005.

[15] M. F. Tasgetiren, Q. K. Pan, P. N. Suganthan, and T. J. Chua, “A
discrete artificial bee colony algorithm for the lot-streaming flow shop
scheduling problem,” Information Sciences, vol. 181, 2011, pp.
2455–2468.

[16] B. Akay and D. Karaboga, “A survey: algorithms simulating bee
swarm intelligence,” Artificial Intelligence Review, vol. 31, 2009, pp.
61–85.

V. C. Mahavishnu was born in India, He received his
B.E. degree from Anna University Chennai in 2012
and the M.E. degree from Anna University Chennai in
2014, both in computer science and engineering. He is
currently an active researcher planning for his Ph.D.
degree. His research interests include image
processing, hadoop, cloud computing, and scheduling.

A. N. Senthilvel is working as an assistant professor (SG) in the Department
of Computer Science and Engineering at CIT, Coimbatore, India. He is
currently pursuing his Ph.D. degree in the area of scheduling.

S. Umamaheswari is working as an assistant professor (SG) in the
Department of Electronics and Communication Engineering at CIT,
Coimbatore, India. Many researchers are being guided by her in various
disciplines.

International Journal of Future Computer and Communication, Vol. 3, No. 6, December 2014

404

