

Abstract—In software installation, the hardening status of

the target system is difficult to assessed and usually depends on

the expertise and care of system administrator. These

non-functional requirements can be rendered functional by

using misuses in misuse case diagram. This allows the

assessment to be incorporated into the software design process

and implemented as part of the deployment module. The

assessment can thus be carried out automatically during

software installation. As system hardening is mostly

independent from software functionalities, the assessment can

be expressed as design patterns to accommodate the design

process. Four examples of system hardening were used:

program and data memory separation, Mandatory Access

Control (MAC), firewall, and logging.

Index Terms—Misuse, hardening, installation, security

pattern.

I. INTRODUCTION

A key issue in system security is verifying the target

system, the system where application will install [1]. This is

non-functional and is usually taken care by system

administrator with varying degree of expertise [2].

This research employed misuses, in use case diagram, to

change these non-functional requirements to functional ones.

We focused on assessment of hardening of the target system.

The use of misuse will ensure that the assessment will happen

automatically during software deployment without relying on

system administrator.

This work analyzed four cases of hardening as examples:

separation of program and data memory, limiting user

privileges, use of firewall, and recording accesses to system.

We also employed security patterns so it will be easy to apply

functional requirement as hardening assessment during

the installation process.

In section 2 we present theories and related works. Section

3 is the research methodology. In section 4 we present four

security patterns corresponding to the four hardening

examples. In section 5 we test the implementation of the

security patterns in a system hardening assessment module.

And the last section in section 6 we summarize results of this

research and suggest future work.

Manuscript received April 07, 2012; revised May 02, 2012.

The authors are with Department of Computer Engineering,

Chulalongkorn University, Bangkok 10330, Thailand (Corresponding author.

Tel.: +66-22186991, fax: +66-22186955, e-mail:

kwanchanok.l@student.chula.ac.th, 2 yunyong.t@chula.ac.th).

II. THEORIES AND RELATED WORKS

This section consists of three parts: hardening, misuse case

diagram, and software deployment.

A. Hardening

Hardening increases security by reducing the attack

surface [3] and has the following steps [4]:

Reduce attack surface by getting rid of unnecessary

software, users, services, and network ports.

Update patches to eliminate system vulnerabilities.

Install Intrusion Detection System (IDS), Firewall, and

Intrusion Prevention System (IPS).

Examples of hardening for default installation of Linux [5]

include things like encrypting transmitted data up to

disabling Internet Protocol version (IPv6) when not required.

In related works, Linux still has much weakness so many

researches focused on the development of a more secure

Linux. Loscocco and Smalley [6] proposed MAC by using

Security-Enhanced Linux (SELinux) and de Ven [7]

presented Exec Shield to separate the reading and writing

memories. Fox [8] proposed method for preventing intruders

by using SELinux, Exec Shield, and iptables.

B. Misuse Case Diagram

Misuse case diagram is an enhanced use case diagram for

software development. It describes actions that are

inappropriate, and consists of four parts [9]: misuses,

misusers, relationships, and descriptions.

In related works, the constraints on security are usually

considered non-functional requirements. By using misuses

software designer can explicitly express inappropriate

actions and attacks in order to prevent them in advance.

Sindre and Opdahl [10] proposed a format of misuse case

description. Matulevicius, Mayer, and Heymans [11]

presented misuse case with security risk management. Braz,

Fernandez, and VanHilst [12] proposed a collection of

security requirements by using misuses. Okubu, Taguchi, and

Yoshioka [13] proposed misuse case diagram for analyzing

and requirements gathering that focus on resources and

security.

III. RESEARCH METHODOLOGY

This section consists of three parts on system hardening

assessment: conceptual model, analysis of attacks and

preventions, and misuse cases.

A. Conceptual Model

In Fig. 1, we studied hardening assessments which are

non-functional and then employed misuse to express them as

Misuse for Security Hardening Assessment in Application

Software Deployment

Kwanchanok Limbandit and Yunyong Teng-Amnuay

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

147

functional requirements. As the hardening assessments are

rather independent from normal functions of application we

can build security patterns for them. We focused on assessing

hardening status of the target system during software

deployment.

Fig. 1. Conceptual model.

B. Attacks and Preventions

We have to determine attacks, how to attack, and then how

to prevent attacks.

The basic idea is that a malicious action is still an action.

So we can consider non-functional attacks as misuses and

convert malicious activities into definite actions or functional

requirements.

We used the following four hardening activities as

examples for analysis:

Table I.

Table II.

Separation of program and data memory.

 Limiting user privileges.

Table III. Use of firewall.

Table IV. Recording accesses to system.

We also specify how to assess each hardening activity.

This is shown in Table 1.

TABLE I: SYSTEM HARDENING ASSESSMENT.

Attack Misuse Protection Assessment

Memory Mix program memory with data memory Execute restriction Exec Shield

Access control Use Discretionary Access Control (DAC) Use MAC SELinux

Firewall Inject malicious traffic Configure firewall iptables

Log Undetected break-in Keep log rsyslog

 Fig. 2. Misuse case diagram for system hardening assessment.

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

148

From Table 1 an attack on memory can be translated into a

misuse of mixing program memory with data memory. From

this misuse, it is straightforward to find protection

mechanism which in this case is execution restriction using

Exec Shield. So, assessment is to make sure that the target

system has Exec Shield installed and enabled. The other three

attacks also result in the three assessments: SELinux, iptables,

and rsyslog.

C. Misuse Case Diagram

We analyzed and converted Table 1 to misuse case

diagram in Fig. 2. An example of the analysis is as follows. A

misuser is an actor who misuses the system via “Mix program

memory with data memory” misuse case. It can threaten

“Maintain data memory integrity” use case, which is a

functional requirement about memory protection. Therefore

an application developer needs to include “Execution

restriction” use case and “Install and enable ExecShield” use

case respectively in order to mitigate the chance that a misuse

case will complete successfully.

IV. SECURITY PATTERNS AND INTEGRATION SCHEME

As the system hardening assessments are normally not

dependent on functionalities of application we can represent

the assessments as security patterns: separation of program

and data memory, limiting user privileges, configuring

firewall, and recording accesses. For brevity we present only

the first pattern as follows.

Fig. 3. Class diagram for memory assessment.

Fig. 4. Sequence diagram for memory assessment.

A. Pattern for Separation of Program and Data Memory

Context: Determine whether the system is protected from

execution of malicious codes.

Problem: Attacker can inject code through misuse as

shown in upper part of Fig. 2.

Solution: Verify that Exec Shield is installed and enabled.

Structure: Convert upper part of Fig. 2 to class diagram in

Fig. 3.

Dynamics: Use command: cat

/proc/sys/kernel/exec-shield

If result = 1, then separation of program and data memory

is in effect, or active.

Implementation: Perform during installation by assessing

the system. Convert Fig. 3 to sequence diagram in Fig. 4.

Example Resolved: The existence of Exec Shield verifies

a separation of program and data memory.

Variants: Linux only.

Known Uses: Assess that Exec Shield is installed and

enabled.

Consequences: Prevent threats.

V. TESTING ASSESSMENT MODULE

After the security patterns were defined it is rather straight

forward to implement the assessment module from the

patterns. To test the module we used three test cases: system

is not hardened, hardening is installed but disabled, and

hardening is installed and enabled. This is shown in Table 2

and results are in Fig. 5 where in Case A Hardening is not

installed so it is not active, Case B Hardening is not enabled

so it is not active, and Case C Hardening is enabled so it is

active.
TABLE II: CONDITION FOR TESTING.

Case

Installed Enabled

Exec
Shield

SELi
nux

ipta
bles

rsys
log

Exec
Shield

SELi
nux

ipta
bles

rsys
log

A X X X X X X X X

B / / / / X X X X

C / / / / / / / /

Remark: / means hardening is installed or enabled and X

means hardening is not installed or is disabled.

Fig. 5. Results from test cases.

VI. CONCLUSION AND FUTURE WORK

This work proposes a methodology to apply misuse case

diagram in the assessment of system hardening. For the

software designer to express non-functional system

hardening requirements in term of functional ones, attacks

are expressed as misuses, protections as uses, and

assessments as remediations. Four cases of hardening were

used as examples: separation of program and data memory,

limiting user privileges, installation of firewall, and

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

149

recording accesses to system. This targets the system where

the software is to be installed, so the misuses are developed

into assessment of the target system and becomes a part of the

deployment module of the software. Also security patterns

are used to simplify inclusion of hardening assessments into

the design. Expressing hardening assessment as functional

requirements allows for automate assessment to be carried

out during software installation without depending on the

system administrator.

Our examples developed into four security patterns. The

first pattern on separation of program and data memory uses

Exec Shield as the basis for assessment. The second pattern

verifies the use of SELinux to enforce MAC and limit user

privileges. The third pattern verifies that firewall is installed

and activated on the target system. And the last pattern

checks on system logging to thwart undetected intrusions.

We give only one example of constructing and using the

patterns. The pattern on separation of program and data

memory verifies the use of Exec Shield as the solution to the

misuse. This is implemented as an assessment module and the

result of the test is satisfactory.

The use of misuse for attacks, preventions, and

remediations allows automated assessment to be

incorporated into the software requirements and design. As

the assessment depends more on the type of hardening and

the target system than the functionalities of the application,

all types of hardening can further be explored and a library of

security patterns built to accommodate the inclusion of

assessment into secure software.

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

150

REFERENCES

[1] C. P. Pfleege. Security in Computing. 4th. NJ: Pearson Education, 2007.
[2] J. D. Meier, “Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray

Escamilla, and Anandha Murukan,” Improving Web Application
Security: Threats and Countermeasures. [Online]. 2003. Available
from : http://msdn.microsoft.com/en-us/library/ff648644.aspx [2011,
December 1]

[3] C. Kopp, Hardening Your Computing Assets. Computer Magazine
Group, 1997.

[4] Syngress. Hardening the Operation System. [Online]. 2007. Available
from : http://www.syngress.com

[5] Vivek Gite. 20 Linux Server Hardening Security Tips. [Online]. 2009.
http://www.cyberciti.biz/tips/linux-security.html 2011, October 20.

[6] P. A. Loscocco and Stephen D. Smalley. Meeting Critical Security
Objectives with Security-Enhanced Linux. Ottawa Linux Symposium,
2001.

[7] A. v. d. Ven, New Security Enhancements in Red Hat Enterprise. Red
Hat Inc. WHP0006US 8/04, 2004.

[8] T. Fox, Red Hat Enterprise Linux Administration Unleashed. Sams
Indianapolis, 2007.

[9] J. Whittle, D. Wijesekera, and M. Hartong, “Executable Misuse Cases
for Modeling Security Concerns,” 30th International Conference on
Software Engineering (ICSE’08). pp. 121–130, 2008.

[10] G. Sindre and A. L. Opdahl, “Templates for Misuse Case Description,”
7th International Workshop on Requirements Engineering Foundation
for Software Quality (REFSQ'01), 2001.

[11] R. Matulevicius, N. Mayer, and P. Heymans, “Alignment of misuse
cases with security risk management,” 3rd International Conference on
Availability, Reliability and Security (ARES’08). pp. 1397–1404,
2008.

[12] F. A. Braz, Eduardo B. Fernandez, and M. VanHilst, “Eliciting
Security Requirements through Misuse Activities,” 19th International
Conference on Database and Expert Systems Applications. pp.
328-333, 2008.

[13] O. Takao, T. Kenji, and Y. Nobukazu, “Misuse Cases + Assets +
Security Goals,” International Conference on Computational Science
and Engineering. pp. 129-144, 2009.

