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Abstract—In this work our focus is on the cover time 

analysis of an ad-hoc wireless network, when the nodes are 

allowed to move with in an compact space. We consider an 

ad-hoc network in 2-dimensional space, and a sequence

1 2{ , , }n nX X X X , with n nodes distributed uniformly 

over a compact space
2C R . We derive a strong law result 

for the cover time of the network and show that for 

transmission radius 
log

n

n
r

n
 he critical cover time nC is 

at most of order of
5/2( )o n . 

 
Index Terms—Ad-hoc networks, capacity, mobility, 

cover-time. 

 

I. INTRODUCTION 

In this paper, we study the cover time in mobile ad hoc 

network. The line of study starts with the seminal work of 

Gupta and Kumar [1], where they proved the throughput 

capacity of wireless ad-hoc network follows

1

logn n

 
  
 

, when the nodes are uniformly distributed. 

In Gupta and Kumar [7], derived for critical transmission 

range 
log n

n
the network is asymptotically connected 

with probability approaching to one. After Gupta and 

Kumar, a significant contribution in this direction was made 

by Grossglauser and Tse, in [4], authors examined the 

asymptotic throughput capacity of large mobile ad-hoc 

networks. They showed that direct communication between 

sources and destinations alone cannot achieve high through 

put. Grossglauser and Tse [4] propose to spread the traffic to 

intermediate relay nodes to exploit the multiuser diversity 

benefits of having additional “routes” between a source and 

a destination. Grossglauser and Tse [4] considered a mobile 

ad-hoc network and proved that the traffic carrying capacity 

of an ad-hoc network significantly increase when the 

network have mobile nodes. Grossglauser and Tse, also 

showed that the capacity is independent of node density. 

Latter on, Xiaojun Lin, Gaurav and others,[6] studied the 

fundamental tradeoff between delay and capacity for a 

mobile ad-hoc network under the Brownian motion model. 

In [5], Gaurav, Mazumdar and others studied the 

delay-capacity trade-offs in mobile ad-hoc networks. They 
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introduced the notion of critical delay and showed that the 

critical delay is inversely propor- tional to the characteristic 

path length. Gamal, Mammen and others, in [3] gives a 

scheme that achieves the optimal throughput-delay trade-off 

by varying number of hops, transmission range and degree 

of node mobility.  

Yu and Kim [2], studied the same model suggested by 

Gupta and Kumar in [1], with additional condition of node 

mobility. Yu and Kim [2], relate mean delay with partial 

cover time. They derive that the mean delay is per 

source-destination pair as  n or x  and the worst case 

delay is  logn n  or 
logn n

v

 
  
 

, corresponding to 

one slot time length that is either constant or 
1

v n
, where 

n is the number of nodes in the network and v is constant 

speed of the nodes. 

Yu and Kim in [2] have an assumption of homogenous 

network. For being a homogenous E[Yi] must satisfy 

following conditions: For any given   

 
( 1) ( 1)

and  0i i

n i n i
E Y P Y

n n

    
    

 
 

if a network doesn’t satisfies above conditions, is known 

as non-homogeneous network. Yu and Kim derive that the 

mobile cover time of the network in both case is order of

log( )n n . 

In our model we are relaxing the above mentioned 

assumption. 

Here, we adopt the same protocol model as in Gupta and 

Kumar [1] and Yu and Kim [2]. Results in this paper are in 

continuation of the Yu and Kim [2]. 

 

II. OUR MODEL 

We consider an ad-hoc network in 2-dimensional space, 

with n nodes distributed uniformly over a compact space 
2C R . Without loss of generality we can assume 

compact space 
2C R , as a disk of unit area. Also these 

n nodes are allowed to move inside the unite disk with a 

constant speed, v meters per second. We assume that each 

node in the network can be source node for one session and 

destination node for another session. We also assume source 

- destination association does not change with time, 

although nodes themselves can change their location with 

time on the unit disk. A packet can transmit directly from 

the source node to its destination node or they can go 

through one or more other nodes servicing as relay node, 
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depending upon the transmission range nr  of the source 

node. We assume constant transmission range nr  for each 

node in the network and consider as a function of number of 

nodes in the network. A node be covered by a packet from a 

source node if the node receives the packet. Let a node x  

having a packet (started from source node) forward it to a 

next node in his transmission range nr . In case there are 

more then one node in the transmission range of node x , 

the next node for forwarding the packet will be selected 

randomly from nodes in the transmission range of node x . 

This means that the covered node may receive the packet 

and forward it to any other node in its neighborhood. 

 

III. COVER TIME. 

The cover time define as the number of transmission until 

all nodes in the network became covered by a given packet 

started from the source node. 

Let ix  be the number of transmission required to cover 

the ith node, given i-1 nodes of the network are already 

covered by the packet from a source node. Also let iY  be 

the event of successful coverage of ith node from 1thi  

covered node in single transmission attempt. 

For sufficiently large network, the number of nodes lying 

in nr  neighborhood of a point follows the Poisson 

distribution with parameter 
2

nr , where nr  be the 

transmission range of a node in the network. Let ip
 is 

the probability iY
 .Then 

2

     

P[coverage of ith node from  1th node in single attempt]

=P[at least one uncovered node in  nbd of 1th node.]

= 1 n

i i

n

r

p P Y

i

r i

e

 (1) 

Since  ip  is independent of i we have Yi’s are 

independent and identically distributed. (Note: From here on 

ward we use p instead of  ip . 

If the critical transmission range nr is sufficiently small 

and converges to 0, for sufficiently large n. Then 

2

np r
               

(2) 

Clearly for fixed p, we have Xi be the a geometric random 

variable with parameter p, i.e., 
1[ ] (1 ) ,          1,2,3,  . . . ,x

iP X x p p x  

where p be the probability of event Yi. Let Cn be the mobile 

cover-time of a network having n nodes. 

1 2

1 2 1 2

1 1 2 2  

1

[ ]  [     . . .  ]
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n n

n n
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Since  |  ,    1,  2,  . . . ,  i i iX Y n  are 

independently distributed. Than 

1

1
[ ]  

n

n

i

n
E C E

P p
           (3) 

Using (2) in (3), we get 

2
[ ] n

n

n
E C

r
                   (4) 

Similarly, 

2 2

1 2

2 2 2

1

1

[  ]  [(     . . .  ) ]

            E ( )

n n

n

i

i

E C E X X X

x n E X
     (4) 

Since Xi’s are mutually exclusive events, i.e., 

     .i j iX X j  

2 2 2

1 2

2 2

[ ]   , ,..., ,    1,2,...,

            

n i i

i i

E C n E E X Y Y Y i n

n E E X Y
 

Since Xi is independent of 

 ,    1,  2,  . . . ,   1j jY i are independently 

distributed. Than 

2
2 2

2 2

2 (2 )
[  ]  n

p n p
E C n E

p p
      (5) 

Using (2) in (5), we get 

2 2 2
2

2 4 2 4

(2 ) 2
[ ] n

n

n n

n r n
E C

r r
          (6) 

2
2 2

2 4 2

(2 )
 [ ] n

n

n n

n r n
V C

r r
        (7) 

The following result gives the critical cover time above 

which the network is complete covered almost sure. Here 

we consider the same critical transmission range 

 

log  
n

n
r

n
 as suggested in Gupta and Kumar [7]. 

Theorem 3.1 Let transmission range  

log  
n

n
r

n
, 

then the mobile cover time Cn of the random network is 

atmost 
5/2cn , almost surely, i.e., 

5/2

nc cn , almost surely, 

where c, and δ is an arbitrary small positive real number. 

Proof. By Markovs inequality, we have 

2

2

n

n

E C
p c k

k                  

 (8) 

Using (6) in (8), we get 
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2

2 2 4

2
n

n

n
p c k

k r
                 (9) 

Substitute, 
5/2 , , 0k cn c  and transmission 

radius  

log  
n

n
r

n
 in the above expression, we get 

5/2

1 2 2

1

(log )
np c cn

n n
       (10) 

The above probability is summable, i.e., 

5/2

1

n

n

p c cn  

Then by Borel-Cantelli’s Zero-One Law, we have 

5/2 ,      . 1.np c cn i o          (11) 

This implies that 
5/2

nc cn
 (12) 

almost surely, 

where c, and δ is an arbitrary small positive real number. 

From the above theorem it is clear that the cover time Cn 

of a mobile network can’t be more that of order of n5/2. 

 

IV. CONCLUSION 

We are giving an analytic result for a network with 

stationary nodes and we do not have any topological 

information about the node. Our main result is an strong law 

result, gives an almost sure upper bound of the cover time of 

given wireless network. We showed that even in worst case 

the cover time of the network is of order of o(n5/2), where n 

be the number of the nodes in the network. 
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