


Abstract—This paper proposes an application to support

web access over Delay Tolerant Networks (DTN). The

application enables web browsing in the absence of end-to-end

IP connectivity and under challenged network environments

where there are long delays or intermittent network

connectivity. The latter cannot be managed by conventional

Internet transport protocol such as TCP. DTN is resilient to

delay and can avail itself to the opportunistic connectivity due

to its store and forward capability. The absence of IP

connectivity is thus transparent to the web user.

Index Terms—Web browsing, delay tolerant networks.

I. INTRODUCTION

The Internet with the TCP/IP protocol has become a daily

essential in a connected world. There are times that the

access network experienced outages or where connectivity is

lost due to local disaster, partial infrastructure failure or war.

Under such circumstances, an alternative network such as

Delay Tolerant Networks (DTN) [1] – [3] can kick in to

enable some form of connectivity to the Internet. DTN has

been designed to withstand intermittent connectivity and

enable opportunistic contact communication. It operates as

an overlay across existing heterogeneous network

infrastructure by encapsulating application data through its

Bundle protocol [4]. Bundle is the basic data unit in DTN.

Unlike IP, DTN does not require end-to-end connectivity

and it uses a store-and-forward approach to transfer data to

the destination in a hop-by-hop manner. DTN sits in the

application layer of the network stack and the data transfer

is carried out by the convergence layers. By using a TCP

convergence layer, DTN can reuse existing TCP/IP

infrastructure to perform reliable data transfer between two

DTN nodes. In this way, DTN can enable communication in

challenged networks experiencing frequent disruption. A

DTN implementation is required to provide other

functionalities like link management, convergence layer,

neighbour discovery, bundling, etc. In this project, the

DTN2 reference implementation (version 2.7) [5] is used.

The objective of this project is to design and build an

application which leverage on the DTN technology to allow

users to browse the web using their preferred browsers even

though the user may not have direct access to his IP network.

The DTN network will connect the client to a server which

has access to the Internet. As such, the existing web contents

which are accessible by IP networks do not need to be

downloaded to a DTN network.

Manuscript received March 10, 2012; revised April 5, 2012

The authors are with School of Computer Engineering Nanyang

Technological University, Nanyang Avenue, S 639798, Singapore.

II. ARCHITECTURE OF WEB ACCESS OVER DTN

The system architecture of our proposed web access over

DTN is shown in Fig. 1 and comprises two main parts,

namely, the client and the server. The client resides in a

DTN network overlaid on top of the IP network. The server

is situated in an area where IP connectivity is available.

HTTP messages from the client are then forwarded via DTN

nodes until it reaches the server.

III. CLIENT SYSTEM DESIGN

Fig. 1. System architecture

The client is generally a desktop or a laptop with WI-FI

coverage to neighbouring DTN nodes and has no direct

Internet connectivity. The primary function of the client

system is to send bundled requests and receive bundled

responses through wireless connection in DTN. Fig. 2 shows

the client system design.

A. Client Sending

In order for the client to send the web request as DTN

bundles, the application must have cached a copy of the

requests and bundled it as a DTN bundle. The cached copy

of the request can be acquired by setting up a socket and

setting the web browser as a proxy to its local host on the

particular socket. A unique and unused port number is used

for this application, 8555. Web browser that sets its proxy to

local and port 8555 will then have its request cached and

ready to be sent by the application. Files containing the

cached request together with its process ID are created to

minimize memory space required. These files are named

after its process ID with an extension of .req. Multiple

threads are run to support multiple requests through either

multi-tabs or parallel web request.

The ID of the thread (Process ID) will have to be sent

together with the request. This is due to DTN corrupting the

original Internet TCP sequence number with its own DTN

Web Access over Delay Tolerant Networks

Zoebir Bong, Peng Boon Sng, and Chai Kiat Yeo

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

202

TCP sequence number. Hence an identifier is needed to

match the correct thread which sends the request since

multiple requests are sent and multiple replies may be

received. The inevitable matching of IDs will lead to higher

processing burden.

Fig. 2. Client system design

Each thread will then bundle its request and send it to the

server by stating the location of its file. Relay nodes are not

specified in the application as it could be declared in the

DTN configuration file. The bundling process uses the

existing DTN API [6] which has existing functions for

bundling a packet into DTN bundle. Each thread will be

dedicated to each request and thus the thread will only be

killed once it has received its subsequent response.

B. Client Receiving

During the procedure of receiving a bundle, there will be

one main receive thread and multiple other threads waiting

for their own replies after sending its request. The task of

the main receive thread is to receive a DTN bundle and

unbundle it before storing it as a file in the database. Mutual

exclusion is used while creating and writing the file into the

database to prevent deadlock and misreading of files among

the threads. Once done, the main receive thread will

continue waiting for new bundles to arrive and perform the

same task repeatedly for the entire duration of the

application.

The files received will be named after the subsequent

Process ID of the request and with extension .res. Response

from the Internet is stored in the file. The other threads will

then keep a lookout for files named after their own Process

ID with .res extension in the database. If the file is found,

the thread will send its subsequent response data to the web

browser.

An HTML file of a web page usually consists of more

than one object, for example its images, icons and other files.

Each individual thread will serve one object request in the

Internet. By doing this way, AJAX can be supported by the

application. Each serving thread will be killed once they

have received their subsequent reply. The replied file will

also be deleted after sending it to the browser.

The reason of having a main thread is that the DTN

implementation does not support multiple threads for

receiving a bundle. Only one thread could be used for

receiving DTN bundles. Thus multiple threads are not

allowed to receive DTN bundles, rather they are to poll for

its own replies that reside in the database written by the

main thread.

C. Server System Design

Similar to client, the server has wireless connection and it

is connected to the Internet directly to send web request and

receive web responses. Vice versa to the client, server

unbundles requests before sending it to Internet and bundles

the responses received before sending them back to the

client through DTN. The server thus acts as a proxy for the

client to send the web requests and receive responses on

behalf of the client to/from the Internet. Fig. 3 shows the

system server design.

Fig. 3. Server system design

Functions Results Remarks

Search Bar 

Search bar on Firefox, Opera

and URL search bar on

Chrome working

Downloading Files 

Multi-tab 

Back Button 

Support Intermittent

Connectivity


Intermittent Connectivity are

performed by switching off

the relay nodes in between

Client and Server

Fig. 4. Web browser functionality table

The Server application is also split into two parts, namely

the main and its child processes. It runs on a main receiving

thread which will spawn multiple child threads. For the

Main thread, its primary job is almost similar to the receive

function in the Client application. It will poll for arriving

request bundles. On receiving the request bundle, it will

unbundle the request and store it in the database which will

then be read. New Child threads will be spawned for every

request received.

The new threads produced by the Main are called Child

threads. The job of these Child threads is to send the

subsequent request into the Internet. As the response time

may differ for different objects in the Internet, multiple

threads are required to prevent bottleneck while waiting for

replies from the Internet. Sockets are used for the packet

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

203

injection into Internet.

Once its subsequent response is received, it will store its

response into the database together with the Process ID

received previously. The extension of this file will be .res

and its name is the previous Process ID received. The file

will eventually be bundled and sent over the DTN network

back to the Client.

Genre Websites Results Remarks

Static Page and

Search

Google

(www.google.com.sg)
 AJAX in search bar working and search functionality works

Yahoo

(www.yahoo.com)
 AJAX in search bar working and search functionality works

Bing

(www.bing.com)
 AJAX in search bar working and search functionality works

Wikipedia

(www.wikipedia.org)
 Search function working

Blogs
Ieatishootipost

(ieatishootipost.sg)
 Photos loaded in reasonable speed

Flash

Square Enix

(www.square-enix.com/na/)
 Flash working

Miniclips

www.miniclips.com
 Flash games working

Video
Youtube

(www.youtube.com)
 Video playing but no visually sequential streaming

News

Asiaone

(www.asiaone.com)


Multiple formats in website working but alignment different in

Chrome and Opera

Soccernet

(soccernet.espn.go.com)
 Multiple objects working

Fig. 5. Test results of web pages

IV. RESULTS AND DISCUSSION

Google reported that on average about 44 resources are

needed for each web page [8]. Average network size

transferred for each web page is 320KB. Images contribute

most to the network size. Different Web pages contains

different objects and references. The format and sizes of the

objects will differ too. Hence the testing of the application

involve web pages that contains different component and of

different sizes. Web pages consisting AJAX, Flash,

JavaScript and web browser common functions are tested to

evaluate the functionality of the application as well as its

capabilities to accommodate delays and intermittent

connectivity. Three popular web browsers, Mozilla Firefox,

Google Chrome and Opera browser are tested. Figs. 4 and 5

show the test results. All three web browsers work with the

application and their main functions are all supported by the

application. The application also enables surfing of most

HTTP web pages with AJAX and Flash objects fully

functioning and search can be performed. Under stress test

with intermittent connectivity, the application is able to

tolerate long delays (tested up to 5 days) by storing the

messages in its database before sending it out.

V. RELATED WORK

A project that is related to our proposed project is the

DTN-enabled Web Server [7] developed by Lauri Peltola of

Helsinki University of Technology. DTN-enabled web

server is a server that can receive DTN packets, also known

as bundles, containing HTTP requests and then returns the

response bundles using MHTML. A separate proxy is

created which allows client to access the DTN web servers

using DTN bundles. The main difference between this

project and our proposed project is that this project assumes

that web servers are in DTN network instead of the Internet.

Hence the entire web site, including all its resources, is

downloaded into the DTN web servers in order for the client

to receive the responses. For example, when a client

requests for google.com, it must assume that there is an

available DTN web server, google.dtn, which has the entire

website resources. There is no interaction between the web

and the DTN network in general since bundles are only sent

within the DTN network and no packet is sent to the Internet.

This will limit the clients to visiting static pages with a

limited number of websites (only those downloaded) and no

direct interaction with the Internet, for example querying a

word using Google.

VI. CONCLUSION

This paper proposes a DTN application to allow users

without direct access to the Internet to browse the web via

Delay Tolerant Networks. The DTN is essentially overlay

over the IP networks and when IP connectivity is lost, web

access is still enabled via this DTN networks. Test results

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

204

http://www.miniclips.com/

show that the proposed DTN application work for all the

main web browsers and is tolerant of long delays and can

survive intermittent loss in network connectivity unlike IP

based web browsing.

REFERENCES

[1] V. Cerf, A. Hooke, R. Durst, K. Scott, K. Fall, and H. Weiss,

“Delay-Tolerant Networking Architecture,” RFC 4838, Apr. 2007.

[2] K. Fall, “A delay-tolerant network architecture for challenged

internets,” in SIGCOMM ’03: Proceedings of the 2003 conference

on Applications, Technologies, Architectures and Protocols for

Computer Communications, New York, NY, USA: ACM, 2003, pp.

27–34.

[3] K. Fall and S. Farrell, “DTN: an architectural retrospective,”

Selected Areas in Communications, IEEE Journal on, vol. 26, no. 5,

pp. 828–836, June 2008.

[4] K. Scott and S. Burleigh, “Bundle Protocol Specification,” RFC

5050 (Experimental), Nov. 2007.

[5] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, and R. Patra,

“Implementing Delay Tolerant Networking,” IRB-TR-04-020, 28

December, 2004.

[6] M. Demmer, “Architecture of DTN2,” Delay Tolerant Network

Research Group. [Online].Available:

http://dtn.sourceforge.net/DTN2/doc/manual/arch.html#DTN2%20ap

i

[7] Lauri Peltola, “DTN-enabled Web Server,” Helsinki University of

Technology, May. 2008. [Online]. Available:

http://www.netlab.tkk.fi/tutkimus/dtn/web/index.html

[8] Sreeram Ramachandran, “Web metrics: Size and number of

resources,” Google Code, May. 2010. [Online]. Available:

http://code.google.com/speed/articles/web-metrics.html

International Journal of Future Computer and Communication, Vol. 1, No. 2, August 2012

205

