
 

  

 

Abstract—Particle swarm optimization (PSO) is the most 

important and popular algorithm to solving the engineering 

optimization problem due to its simple updating formulas and 

excellent searching capacity.  This algorithm is one of 

evolutionary computations and is also a population-based 

algorithm.  Traditionally, to demonstrate the convergence 

analysis of the PSO algorithm or its related variations, 

simulation results in a numerical presentation are often given.  

This way may be unclear or unsuitable for some particular cases.  

Hence, this paper will adopt the illustration styles instead of 

numeric simulation results to more clearly clarify the 

convergence behavior of the algorithm.  In addition, it is well 

known that three parameters used in the algorithm, i.e., the 

inertia weight w, position constants c1 and c2, sufficiently 

dominate the whole searching performance.  The influence of 

these parameter settings on the algorithm convergence will be 

considered and examined via a simple two-dimensional function 

optimization problem.  All simulation results are displayed 

using a series of illustrations with respect to various iteration 

numbers.  Finally, some simple rules on how to suitably assign 

these parameters are also suggested 
 

Index Terms—Particle swarm optimization (PSO), 

convergence analysis, illustration styles.  

 

I. INTRODUCTION 

Particle swarm optimization (PSO) algorithm was 

originally introduced by Kennedy and Eberhart in 1995 [1].  

It belongs to one of evolutionary computations and is also a 

population-based algorithm.  The initial concept of this 

algorithm is to simulate the social behavior of bird flock and 

fish school.  Over the past two decades, the PSO algorithm 

has attracted a considerable attention of many researchers and 

gradually become a popular optimal algorithm because of 

possessing some good features such as real-valued 

manipulations, simple updating formulas, easy 

implementation into computer programs, and quick 

convergence.  Owing to these advantages, a variety of 

physical engineering optimization problems have been 

successfully solved via the proposed PSO algorithm, 

including optimizing reader deployment in RFID systems [2], 

power and energy optimization [3]-[5], optimal controller 

design [6], [7], medical diagnosis [8], and other applications 

[9]-[14].  All of simulation results obtained from them fully 

revealed that the PSO is a rather powerful and effective 

algorithm in solving the optimized problems.   
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In recent years, in order to further prompt and enhance the 

searching capacity of the algorithm, some variations of the 

PSO were successively developed [15]-[22].  It is well known 

that the PSO algorithm only uses two updating formulas to 

update the particle positions; that is, the velocity and position 

updating formulas.  In the velocity formula, three system 

parameters need to be assigned when the algorithm is 

executed, including the inertia weight w and two positive 

constants 1c  and 2c , respectively.  These parameters will 

dominate the final simulation results derived while different 

value settings are given.  As a result, most of the PSO 

variations mentioned above are to propose a modified version 

or a new updating scheme for them.  In Ref. [15], for example, 

the authors applied an improved self-adaptive PSO algorithm 

to the fuzzy clustering in which these three parameters are 

varying with respect to the number of iteration, not a fixed 

value, in order to achieve the ideal balance between local and 

global search.  Another updating scheme for w, 1c , and 2c  

was introduced in [19].  These three parameters are the linear 

function of iteration number, and the maximal iteration 

number is also taken into account.  Based on the modified 

PSO version, the pretension optimization of a double-ring 

deployable cable net antenna was achieved. In [20], a 

monotonically decreasing logarithmic function was 

employed for updating the inertia weight, where the 

maximum inertia weight maxw  and minimal inertia weight 

minw , and maximum number of iterations were involved.  

Furthermore, they thought that chaotic sequences embedded 

in the optimization algorithm are always able to improve the 

exploitation capacity of the algorithm in the search space.  

Consequently, in the developed algorithm the inertia weight 

w decreases linearly with maxw  and minw , and the original 

uniformly random number utilized in the velocity updating 

formula is replaced by the chaotic random sequences 

generated by a simple logistic map chaotic system [22].   

In the traditional fashion, the authors always provide a 

series of numerical results and comparisons to show the 

performance of their proposed PSO algorithms over the 

general algorithms.  For some special cases, it seems to be 

slightly unclear and unsuitable and there may be no senses to 

most of the readers.  As a result, this paper will illustrate the 

convergence analysis of the PSO algorithm with a large 

number of illustrations, instead of numerical results, with 

respect to the number of iterations in which a simple two-

dimensional function optimization problem is considered.  

Moreover, different sets of parameter settings for three 

parameters w, 1c , and 2c  utilized in the algorithm are 

examined to show their influences on finding out the correct 

system solution.  The remainder of this paper is simply 
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outlined as follows.  In Section II the general PSO algorithm 

is introduced in detail including its two updating formulas.  In 

addition, the stability analysis of a simple first-order 

difference equation is addressed because it is related with the 

velocity updating formula of the algorithm.  Various 

simulation results by illustration styles are provided in 

Section III and how to assign these three parameters is 

concluded as well.  Finally, Section IV gives some simple 

conclusions and future study direction. 

 

II. THE GENERAL PSO ALGORITHM AND ITS STABILITY 

ANALYSIS 

A.  PSO Algorithm 

Over the past two decades, the PSO algorithm has been 

proven to be a powerful but simple optimal algorithm by 

successfully examining a variety of optimization problems.  

This algorithm is motivated by the social behavior of a flock 

of birds and a school of fishes, and it is also an iterative and 

population-based algorithm.  In the general PSO, a particle 

also called an individual is a collection of all the designed 

variables and can be regarded as a candidate solution of the 

optimized problem.  Usually, the algorithm needs a large 

number of particles to construct a so-called population.  This 

population will be further evolved by the two simple updating 

formulas of the PSO including the velocity and position 

formulas so that all the particles are able to move toward the 

better system solutions over the search space.  During the 

evolution, two important factors are necessary to be recorded, 

i.e., the individual best denoted by pbest for each particle and 

the global best by gbest for the whole population.  These two 

factors are utilized in the velocity updating formula to 

significantly guide the moving of all particles.  Moreover, the 

performance of each particle is evaluated by its 

corresponding cost function which is defined previously.  

Generally speaking, it is a better particle when its cost 

function value is smaller. 

Before introducing the updating formulas of the algorithm, 

let the representation of a particle be ],,,[ 21 n =  

where j  is the designed variable of the optimized system for 

nj ,,2,1 = , and n is the total of designed variables.  Also, 

let ],,,[ 21 iniii  =  be the representation of the ith 

particle for PSi ,,2,1 =  where PS stands for the 

population size; that is, the number of particles within the 

population.  Eqs. (1) and (2) are the velocity and position 

updating formulas, respectively, to adjust the positions of 

each particle 

))()(()()1( 11 kkpbestrckvwkv ijijijij −+=+  

))()((22 kkgbestrc ijj −+ ,                        (1) 

)1()()1( ++=+ kvkk ijijij  ,                             (2) 

 

where )(kij , )(kpbestij , and )(kgbest j  represent the jth 

position components of the ith particle, the ith individual best 

particle, and the global best particle at kth iteration, 

respectively, )(kvij  is the jth velocity component of the ith 

particle at kth iteration, w is the inertia weight that is assigned 

by the designer to balance the global and local search, 1c  and 

2c  are two assigned positive constants, 1r  and 2r  are two 

uniformly random numbers chosen from the interval  1,0 .  

The complete design steps for the general PSO algorithm 

execution can be listed below and its flow chart 

corresponding to design steps is shown in Fig. 1. 

Step I. Create an initial population consisting of PS 

particles all produced from the search interval  maxmin ,  

randomly.   

Step II. If the number of iterations is attained, then the 

algorithm stops.  

Step III. Evaluate the cost function of each particle and 

record the individual best particle pbest and the global best 

particle gbest, respectively.   

Step IV. Perform the velocity updating formula of Eq. (1) 

and position updating formula of Eq. (2) for each particle 

within the population.   

Step V. Check the derived particle position by Eq. (3) 
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Step VI. Go back to Step III. 

 

Start

Create an initial population consisting of PS particles 

all produced from the search interval

randomly. 

Is the number

 of iterations 

attained? 

Evaluate the cost function of each particle and 

record the individual best par ticle pbest and the 

global best particle gbest, respectively.

Perform the velocity updating formula of Eq. (1) 

and position updating formula of Eq. (2) for each 

particle within  the population. 

Check the derived particle position by Eq. 

(3).

Stop
Yes

No

 maxmin ,

 
Fig. 1.  Design flow chart of the general PSO algorithm execution. 

 

To solve the optimization problem using the PSO 

algorithm, it is very crucial for properly assigning a set of 

values for w, 1c  and 2c  because these parameters play the 

key roles in finding the system solution.  Thus, this paper will 
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discuss and analyze the effect of these three assigned 

parameters w, 1c  and 2c  on convergence behavior in solving 

the function optimization problem.  All the simulation results 

are displayed by a series of illustrations with respect to 

different iteration numbers to clearly clarify the searching 

procedures toward the correct solution.  Furthermore, a 

theoretical analysis for the inertia weight w is discussed 

according to the stability theorem of digital system.  This will 

be introduced in the next subsection and the importance of 1c  

and 2c  to the final results obtained is addressed as well. 

B. A Simple First-Order Difference Equation 

Let us consider a simple first-order difference equation 

expressed by Eq. (4) 

)()1( kyaky =+ ,                                  (4) 

where y represents the system output and a means the system 

coefficient.  According to the stability theorem, the 

coefficient a fully determines whether the discrete system of 

Eq. (4) is stable or not.  In general, there are three different 

classifications: stable, marginally stable, and unstable cases.  

The discrete system of Eq. (4) is said to be stable if 1a , 

the system with 1=a  is marginally stable, and otherwise the 

system is said to be unstable when 1a .  These three 

classifications can be simply verified by giving an initial 

condition )0(y  with different values of a to excite the output 

response of this discrete system.  Comparing Eq. (4) with Eq. 

(1), they are the same when the last two terms on the right 

side of Eq. (1) are omitted.  It means that the inertia weight w 

in the velocity updating formula plays the same role as the 

coefficient a in the first-order discrete system.  That is, the 

new velocity output will grow without bound if 1w  is 

assigned.  After that, the next position output by Eq. (2) is 

also unbounded.  The velocity output is likely to be 

marginally stable, i.e. neither convergence nor divergence 

when the inertia weight is given by 1=w .  It will cause the 

position of particles failing to sufficiently converge to the 

system optimum.  In the third situation, the velocity output 

will die away when 1w  is given, and subsequently the 

position output settles to some steady state.  In Section 3, we 

will provide a large number of simulation illustrations to 

confirm these. 

 

III. A SIMPLE TWO-DIMENSIONAL FUNCTION OPTIMIZATION 

In order to show the effect of the algorithm parameters on 

convergence analysis in the form of illustrations, a simple 

function optimization problem with two variables x and y is 

illustrated.  The optimized function can be simply expressed 

by Eq. (5) 

22 )1()2(),( +++= yxyxf .                          (5) 

It is very clear that Eq. (5) has only one function minimum 

point occurred at )1,2(),( −−=yx .  In the case, the searching 

interval is constrained by 66 − x  and 66 − y , 

respectively, i.e.,    6,6, maxmin −=  used in Eq. (3).  For all 

the simulations, the software of Borland C++ Builder with 

version 6 is utilized to implement the above PSO algorithm 

by means of illustration styles.  The number of particles used 

in the algorithm is fixed and is chosen by 20=PS  for any 

case simulation.  Besides, in the figure the red point stands 

for the correct solution of the function optimization that is the 

point )1,2( −− , and the global best particle gbest within the 

whole population is denoted by the green point.  As to the 

other particles, they are then marked by the black.  

Furthermore, three different kinds of circumstances are 

considered including (a) the fixed parameters 1c  and 2c , and 

adjustable parameter w, (b) the fixed parameters w and 2c , 

and adjustable parameter 1c , and (c) the fixed parameters w 

and 1c , and adjustable parameter 2c  to explain the 

convergence behavior of all the particles on x-y plane.  

 Fixed parameters 5.01 =c  and 5.02 =c , and 

adjustable parameter w 

In this circumstance, six different kinds of cases are further 

considered including  

Case 1: 5.01 =c , 5.02 =c , and 2=w ;    

Case 2: 5.01 =c , 5.02 =c , and 1=w ;  

Case 3: 5.01 =c , 5.02 =c , and 8.0=w ;    

Case 4: 5.01 =c , 5.02 =c , and 5.0=w ;  

Case 5: 5.01 =c , 5.02 =c , and 1.0=w ;    

Case 6: 5.01 =c , 5.02 =c , and 0=w .   

After executing the PSO algorithm by the Borland C++ 

Builder 6, simulation results are displayed in Figs. 2-7 for six 

different cases in illustration styles.  In the first case, 

convergence behaviors of all particles are displayed by 

iteration=0, iteration=10, and iteration=20.  Simulation 

results are shown in Fig. 2 for Case 1.  In Case 1, the 

parameter 2=w  is given.  Thus, it can be seen from Fig. 2 

that all the particles except for the global best diverge from 

the correct solution )1,2( −−  and are eventually pushed into 

four corners of the search space as shown in Fig. 2(c).  The 

final optimal solution (the global best particle) marked by the 

red still locates at =),( yx )077583.1,026924.2( −− , and it is 

not a correct solution.  The PSO algorithm cannot seek for the 

system optimum for such a simple optimized function under 

the kind of parameter settings.  This fully conforms to the 

stability analysis of Section II for 1w .   

 

 
Fig. 2(a).  Iteration 0. 
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Fig. 2(b). Iteration 10. 

 

 
Fig. 2(c). Iteration 20. 

 

 
Fig. 3(a). Iteration 10. 

 

Fig. 3 displays the convergence behavior of all particles by 

various iterations for Case 2 with 1=w .  We can find out 

from these figures that all particles neither converge nor 

diverge on the search space due to the parameter 1=w .  It is 

the case of marginally stable and causes all the particles 

failing to approximate to the correct solution.  In Case 2, the 

derived optimal solution marked by the green is 

028547.2−=x  and 994665.0−=y .  The PSO algorithm 

neither catches the correct function solution nor forces all 

particles toward it for the above two cases. 
 

 
Fig. 3(b). Iteration 20. 

 

In the following, the circumstance of 1w  including 

Cases 3-6 is considered.  Simulation results for Case 3 with 

8.0=w  are displayed in Fig. 4.  It is clearly seen from Fig. 4 

that the moving trend of all the particles is towards the correct 

function solution )1,2( −− .  After about executing 50 

iterations, the global best particle (green point) can accurately 

catch the correct solution. 

 

 
Fig. 4(a). Iteration 10. 

 

 
Fig. 4(b). Iteration 20. 
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In Case 4 with 5.0=w , its simulation illustrations are 

displayed in Fig. 5.  About performing 20 iterations, the PSO 

algorithm successfully solves for the correct function solution.  

Fig. 5 clearly reveals the evidence that all particles can 

quickly converge on the system optimum )1,2( −−  over than 

those of Case 3. 

 

 
Fig. 5(a). Iteration 10. 

 

 
Fig. 5(b). Iteration 20. 

 

Moreover, Figs. 6 and 7 then show the convergence 

behavior of particles in the population for Case 5 with 

1.0=w  and Case 6 with 0=w , respectively.  It is clearly 

seen from Figs. 6 and 7 that in both cases the PSO algorithm 

can also seek for the function optimum.  It needs about 25 

iterations for Case 5 and about 30 iterations for Case 6 to 

solve for the correct solution.  Notice that in Case 6 the 

correct solution can also be derived by the PSO even though 

the parameter 0=w  is given.  It means that the role of the 

inertia weight w seems not to be important for solving such a 

function minimization problem.  Some simple conclusions 

based on the above simulation results are addressed in the 

following. 

(a) The PSO algorithm cannot perform well if 1w  such 

as Cases 1 and 2.   

(b) The PSO can accurately find out the correct function 

solution when 1w  such as Cases 3-6.   

(c) The best result is Case 4: 5.01 =c , 5.02 =c , and 

5.0=w .  

(d) The PSO algorithm can also derive the correct solution 

when 0=w . 

 

 
Fig. 6(a). Iteration 10. 

 

 
Fig. 6(b). Iteration 20. 

 

 
Fig. 7(a). Iteration 10. 

 

 Fixed parameters 5.0=w  and 5.02 =c , and 

adjustable parameter 1c  

In this subsection, the parameters 5.0=w  and 5.02 =c  

are fixed and parameter 1c  is adjustable.  Totally, we have 
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the following four different kinds of cases:  

Case 7: 5.0=w , 5.02 =c , and 11 =c ; 

Case 8: 5.0=w , 5.02 =c , and 6.01 =c ; 

Case 9: 5.0=w , 5.02 =c , and 2.01 =c ; 

Case 10: 5.0=w , 5.02 =c , and 01 =c . 

 

 
Fig. 7(b). Iteration 20. 

 

After executing the PSO algorithm with the above 

parameters, simulation results that are in the form of 

illustrations are displayed in Figs. 8-11 with respect to 

different iteration numbers.  Fig. 8 is shown for Case 7, and 

the correct solution can be obtained by executing 20 iterations.  

In this case, all particles also quickly converge to the function 

minimum point )1,2( −− .  Similarly, simulation illustrations 

for Cases 8-10 are displayed in Figs. 9-11, respectively.  As 

can be seen from these figures, the correct function solution 

can be rapidly caught about performing 20 iterations for any 

of parameter settings.  Based on these simulation results, we 

can conclude that 

(e) The individual best pbest  that corresponds to the 

parameter 1c  in Eq. (1) is not a key factor of the PSO 

algorithm.   

(f) Because the parameter 01 =c  is given in Case 10, the 

PSO algorithm can also perform well for solving this function 

optimization problem. 

 

 
Fig. 8(a). Iteration 10. 

 
Fig. 8(b). Iteration 20. 

 

 
Fig. 9(a). Iteration 10. 

 

 
Fig. 9(b). Iteration 20. 

 

 
Fig. 10(a). Iteration 10. 
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Fig. 10(b). Iteration 20. 

 

 
Fig. 11(a). Iteration 10. 

 

 
Fig. 11(b). Iteration 20. 

 

 
Fig. 12(a). Iteration 10. 

 

 
Fig. 12(b). Iteration 20. 

 

 
Fig. 13(a). Iteration 10. 

 

 Fixed parameters 5.0=w  and 5.01 =c , and 

adjustable parameter 2c  

The final examination for parameter settings is the fixed 

parameters 5.0=w  and 5.01 =c , and adjustable parameter 

2c .  Four different sets of parameters are here considered:  

Case 11: 5.0=w , 5.01 =c , and 12 =c ; 

Case 12: 5.0=w , 5.01 =c , and 6.02 =c ; 

Case 13: 5.0=w , 5.01 =c , and 2.02 =c ; 

Case 14: 5.0=w , 5.01 =c , and 02 =c . 

Again, after executing the PSO algorithm, simulation 

results for Cases 11-14 are displayed in Figs. 12-15, 

respectively.  Fig. 12 illustrates the convergence behavior of 

particles for Case 11 with various iteration numbers, and the 

correct solution can be accurately solved by executing 25 

iterations.  As to Cases 12 and 13, they are shown in Figs. 13 

and 14, and the correct solution is solved about 20 and 25 

iterations, respectively.  All of simulation results for Cases 

11-13 are almost the same.  However, Fig. 15 is the 

simulation illustrations for Case 14 with 02 =c .  It can be 

easily seen from Fig. 15 that all the particles on x-y plane are 

not any moved and they are identical with initial distribution 

of particles (iteration 0).  Referring to the velocity updating 

formula of Eq. (1), the next velocity output )1( +kvij  will be 

zero when 02 =c  at the beginning of the algorithm with 

0)0( =ijv , and then it causes all the particle positions no any 

change by Eq. (2).  In accordance with these results, it can be 
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concluded that  

(g) the global best particle gbest that corresponds to the 

parameter 2c  is the most important factor in the PSO 

algorithm.  The algorithm will fail without it. 
 

 
Fig. 13(b). Iteration 20. 

 

 
Fig. 14(a). Iteration 10. 

 

 
Fig. 14(b). Iteration 20. 

 
Fig. 15(a). Iteration 10. 

 

 
Fig. 15(b). Iteration 20. 

 

IV.  CONCLUSIONS AND FUTURE WORK 

In the traditional fashion, simulation results in numerical 

presentations are always provided to show the searching 

performance of the PSO algorithm.  However, in this paper 

we have utilized simulation illustrations instead of numerical 

results to more clearly explain the particle convergence 

behaviors.  The influences of three parameter settings of the 

PSO on the searching outcomes are also successfully 

examined by various sets of numerical values.  In addition, 

according to the stability theorem of digital systems the 

convergence analyses of inertia weight w for the PSO 

algorithm are addressed and also confirmed by some 

illustration results.  In the future work, a simplified version of 

the PSO algorithm may be presented based on the conclusions 

that are obtained in this paper because some parameters seem 

not to be important for solving the system solution.  
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