

Abstract—Particle swarm optimization (PSO) is the most

important and popular algorithm to solving the engineering

optimization problem due to its simple updating formulas and

excellent searching capacity. This algorithm is one of

evolutionary computations and is also a population-based

algorithm. Traditionally, to demonstrate the convergence

analysis of the PSO algorithm or its related variations,

simulation results in a numerical presentation are often given.

This way may be unclear or unsuitable for some particular cases.

Hence, this paper will adopt the illustration styles instead of

numeric simulation results to more clearly clarify the

convergence behavior of the algorithm. In addition, it is well

known that three parameters used in the algorithm, i.e., the

inertia weight w, position constants c1 and c2, sufficiently

dominate the whole searching performance. The influence of

these parameter settings on the algorithm convergence will be

considered and examined via a simple two-dimensional function

optimization problem. All simulation results are displayed

using a series of illustrations with respect to various iteration

numbers. Finally, some simple rules on how to suitably assign

these parameters are also suggested

Index Terms—Particle swarm optimization (PSO),

convergence analysis, illustration styles.

I. INTRODUCTION

Particle swarm optimization (PSO) algorithm was

originally introduced by Kennedy and Eberhart in 1995 [1].

It belongs to one of evolutionary computations and is also a

population-based algorithm. The initial concept of this

algorithm is to simulate the social behavior of bird flock and

fish school. Over the past two decades, the PSO algorithm

has attracted a considerable attention of many researchers and

gradually become a popular optimal algorithm because of

possessing some good features such as real-valued

manipulations, simple updating formulas, easy

implementation into computer programs, and quick

convergence. Owing to these advantages, a variety of

physical engineering optimization problems have been

successfully solved via the proposed PSO algorithm,

including optimizing reader deployment in RFID systems [2],

power and energy optimization [3]-[5], optimal controller

design [6], [7], medical diagnosis [8], and other applications

[9]-[14]. All of simulation results obtained from them fully

revealed that the PSO is a rather powerful and effective

algorithm in solving the optimized problems.

Manuscript received June 15, 2021; revised August 12, 2021. This work

was supported in part by the Ministry of Science and Technology of Taiwan
under Grant MOST 108-2221-E-366-003.

W. D. Chang is with the Department of Computer and Communication,

Shu-Te University, Kaohsiung, Taiwan (e-mail: wdchang@stu.edu.tw).

In recent years, in order to further prompt and enhance the

searching capacity of the algorithm, some variations of the

PSO were successively developed [15]-[22]. It is well known

that the PSO algorithm only uses two updating formulas to

update the particle positions; that is, the velocity and position

updating formulas. In the velocity formula, three system

parameters need to be assigned when the algorithm is

executed, including the inertia weight w and two positive

constants 1c and 2c , respectively. These parameters will

dominate the final simulation results derived while different

value settings are given. As a result, most of the PSO

variations mentioned above are to propose a modified version

or a new updating scheme for them. In Ref. [15], for example,

the authors applied an improved self-adaptive PSO algorithm

to the fuzzy clustering in which these three parameters are

varying with respect to the number of iteration, not a fixed

value, in order to achieve the ideal balance between local and

global search. Another updating scheme for w, 1c , and 2c

was introduced in [19]. These three parameters are the linear

function of iteration number, and the maximal iteration

number is also taken into account. Based on the modified

PSO version, the pretension optimization of a double-ring

deployable cable net antenna was achieved. In [20], a

monotonically decreasing logarithmic function was

employed for updating the inertia weight, where the

maximum inertia weight maxw and minimal inertia weight

minw , and maximum number of iterations were involved.

Furthermore, they thought that chaotic sequences embedded

in the optimization algorithm are always able to improve the

exploitation capacity of the algorithm in the search space.

Consequently, in the developed algorithm the inertia weight

w decreases linearly with maxw and minw , and the original

uniformly random number utilized in the velocity updating

formula is replaced by the chaotic random sequences

generated by a simple logistic map chaotic system [22].

In the traditional fashion, the authors always provide a

series of numerical results and comparisons to show the

performance of their proposed PSO algorithms over the

general algorithms. For some special cases, it seems to be

slightly unclear and unsuitable and there may be no senses to

most of the readers. As a result, this paper will illustrate the

convergence analysis of the PSO algorithm with a large

number of illustrations, instead of numerical results, with

respect to the number of iterations in which a simple two-

dimensional function optimization problem is considered.

Moreover, different sets of parameter settings for three

parameters w, 1c , and 2c utilized in the algorithm are

examined to show their influences on finding out the correct

system solution. The remainder of this paper is simply

Convergence Analysis of Particle Swarm Optimization

via Illustration Styles

Wei-Der Chang

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

29doi: 10.18178/ijfcc.2021.10.3.576

outlined as follows. In Section II the general PSO algorithm

is introduced in detail including its two updating formulas. In

addition, the stability analysis of a simple first-order

difference equation is addressed because it is related with the

velocity updating formula of the algorithm. Various

simulation results by illustration styles are provided in

Section III and how to assign these three parameters is

concluded as well. Finally, Section IV gives some simple

conclusions and future study direction.

II. THE GENERAL PSO ALGORITHM AND ITS STABILITY

ANALYSIS

A. PSO Algorithm

Over the past two decades, the PSO algorithm has been

proven to be a powerful but simple optimal algorithm by

successfully examining a variety of optimization problems.

This algorithm is motivated by the social behavior of a flock

of birds and a school of fishes, and it is also an iterative and

population-based algorithm. In the general PSO, a particle

also called an individual is a collection of all the designed

variables and can be regarded as a candidate solution of the

optimized problem. Usually, the algorithm needs a large

number of particles to construct a so-called population. This

population will be further evolved by the two simple updating

formulas of the PSO including the velocity and position

formulas so that all the particles are able to move toward the

better system solutions over the search space. During the

evolution, two important factors are necessary to be recorded,

i.e., the individual best denoted by pbest for each particle and

the global best by gbest for the whole population. These two

factors are utilized in the velocity updating formula to

significantly guide the moving of all particles. Moreover, the

performance of each particle is evaluated by its

corresponding cost function which is defined previously.

Generally speaking, it is a better particle when its cost

function value is smaller.

Before introducing the updating formulas of the algorithm,

let the representation of a particle be],,,[21 n =

where j is the designed variable of the optimized system for

nj ,,2,1 = , and n is the total of designed variables. Also,

let],,,[21 iniii  = be the representation of the ith

particle for PSi ,,2,1 = where PS stands for the

population size; that is, the number of particles within the

population. Eqs. (1) and (2) are the velocity and position

updating formulas, respectively, to adjust the positions of

each particle

))()(()()1(11 kkpbestrckvwkv ijijijij −+=+

))()((22 kkgbestrc ijj −+ , (1)

)1()()1(++=+ kvkk ijijij  , (2)

where)(kij ,)(kpbestij , and)(kgbest j represent the jth

position components of the ith particle, the ith individual best

particle, and the global best particle at kth iteration,

respectively,)(kvij is the jth velocity component of the ith

particle at kth iteration, w is the inertia weight that is assigned

by the designer to balance the global and local search, 1c and

2c are two assigned positive constants, 1r and 2r are two

uniformly random numbers chosen from the interval  1,0 .

The complete design steps for the general PSO algorithm

execution can be listed below and its flow chart

corresponding to design steps is shown in Fig. 1.

Step I. Create an initial population consisting of PS

particles all produced from the search interval  maxmin ,

randomly.

Step II. If the number of iterations is attained, then the

algorithm stops.

Step III. Evaluate the cost function of each particle and

record the individual best particle pbest and the global best

particle gbest, respectively.

Step IV. Perform the velocity updating formula of Eq. (1)

and position updating formula of Eq. (2) for each particle

within the population.

Step V. Check the derived particle position by Eq. (3)















=

maxmax

maxmin

minmin









ij

ijij

ij

ij

if

if

if

, for PSi ,,2,1 = and

nj ,,2,1 = . (3)

Step VI. Go back to Step III.

Start

Create an initial population consisting of PS particles

all produced from the search interval

randomly.

Is the number

 of iterations

attained?

Evaluate the cost function of each particle and

record the individual best par ticle pbest and the

global best particle gbest, respectively.

Perform the velocity updating formula of Eq. (1)

and position updating formula of Eq. (2) for each

particle within the population.

Check the derived particle position by Eq.

(3).

Stop
Yes

No

 maxmin ,

Fig. 1. Design flow chart of the general PSO algorithm execution.

To solve the optimization problem using the PSO

algorithm, it is very crucial for properly assigning a set of

values for w, 1c and 2c because these parameters play the

key roles in finding the system solution. Thus, this paper will

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

30

discuss and analyze the effect of these three assigned

parameters w, 1c and 2c on convergence behavior in solving

the function optimization problem. All the simulation results

are displayed by a series of illustrations with respect to

different iteration numbers to clearly clarify the searching

procedures toward the correct solution. Furthermore, a

theoretical analysis for the inertia weight w is discussed

according to the stability theorem of digital system. This will

be introduced in the next subsection and the importance of 1c

and 2c to the final results obtained is addressed as well.

B. A Simple First-Order Difference Equation

Let us consider a simple first-order difference equation

expressed by Eq. (4)

)()1(kyaky =+ , (4)

where y represents the system output and a means the system

coefficient. According to the stability theorem, the

coefficient a fully determines whether the discrete system of

Eq. (4) is stable or not. In general, there are three different

classifications: stable, marginally stable, and unstable cases.

The discrete system of Eq. (4) is said to be stable if 1a ,

the system with 1=a is marginally stable, and otherwise the

system is said to be unstable when 1a . These three

classifications can be simply verified by giving an initial

condition)0(y with different values of a to excite the output

response of this discrete system. Comparing Eq. (4) with Eq.

(1), they are the same when the last two terms on the right

side of Eq. (1) are omitted. It means that the inertia weight w

in the velocity updating formula plays the same role as the

coefficient a in the first-order discrete system. That is, the

new velocity output will grow without bound if 1w is

assigned. After that, the next position output by Eq. (2) is

also unbounded. The velocity output is likely to be

marginally stable, i.e. neither convergence nor divergence

when the inertia weight is given by 1=w . It will cause the

position of particles failing to sufficiently converge to the

system optimum. In the third situation, the velocity output

will die away when 1w is given, and subsequently the

position output settles to some steady state. In Section 3, we

will provide a large number of simulation illustrations to

confirm these.

III. A SIMPLE TWO-DIMENSIONAL FUNCTION OPTIMIZATION

In order to show the effect of the algorithm parameters on

convergence analysis in the form of illustrations, a simple

function optimization problem with two variables x and y is

illustrated. The optimized function can be simply expressed

by Eq. (5)

22)1()2(),(+++= yxyxf . (5)

It is very clear that Eq. (5) has only one function minimum

point occurred at)1,2(),(−−=yx . In the case, the searching

interval is constrained by 66 − x and 66 − y ,

respectively, i.e.,    6,6, maxmin −= used in Eq. (3). For all

the simulations, the software of Borland C++ Builder with

version 6 is utilized to implement the above PSO algorithm

by means of illustration styles. The number of particles used

in the algorithm is fixed and is chosen by 20=PS for any

case simulation. Besides, in the figure the red point stands

for the correct solution of the function optimization that is the

point)1,2(−− , and the global best particle gbest within the

whole population is denoted by the green point. As to the

other particles, they are then marked by the black.

Furthermore, three different kinds of circumstances are

considered including (a) the fixed parameters 1c and 2c , and

adjustable parameter w, (b) the fixed parameters w and 2c ,

and adjustable parameter 1c , and (c) the fixed parameters w

and 1c , and adjustable parameter 2c to explain the

convergence behavior of all the particles on x-y plane.

 Fixed parameters 5.01 =c and 5.02 =c , and

adjustable parameter w

In this circumstance, six different kinds of cases are further

considered including

Case 1: 5.01 =c , 5.02 =c , and 2=w ;

Case 2: 5.01 =c , 5.02 =c , and 1=w ;

Case 3: 5.01 =c , 5.02 =c , and 8.0=w ;

Case 4: 5.01 =c , 5.02 =c , and 5.0=w ;

Case 5: 5.01 =c , 5.02 =c , and 1.0=w ;

Case 6: 5.01 =c , 5.02 =c , and 0=w .

After executing the PSO algorithm by the Borland C++

Builder 6, simulation results are displayed in Figs. 2-7 for six

different cases in illustration styles. In the first case,

convergence behaviors of all particles are displayed by

iteration=0, iteration=10, and iteration=20. Simulation

results are shown in Fig. 2 for Case 1. In Case 1, the

parameter 2=w is given. Thus, it can be seen from Fig. 2

that all the particles except for the global best diverge from

the correct solution)1,2(−− and are eventually pushed into

four corners of the search space as shown in Fig. 2(c). The

final optimal solution (the global best particle) marked by the

red still locates at =),(yx)077583.1,026924.2(−− , and it is

not a correct solution. The PSO algorithm cannot seek for the

system optimum for such a simple optimized function under

the kind of parameter settings. This fully conforms to the

stability analysis of Section II for 1w .

Fig. 2(a). Iteration 0.

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

31

Fig. 2(b). Iteration 10.

Fig. 2(c). Iteration 20.

Fig. 3(a). Iteration 10.

Fig. 3 displays the convergence behavior of all particles by

various iterations for Case 2 with 1=w . We can find out

from these figures that all particles neither converge nor

diverge on the search space due to the parameter 1=w . It is

the case of marginally stable and causes all the particles

failing to approximate to the correct solution. In Case 2, the

derived optimal solution marked by the green is

028547.2−=x and 994665.0−=y . The PSO algorithm

neither catches the correct function solution nor forces all

particles toward it for the above two cases.

Fig. 3(b). Iteration 20.

In the following, the circumstance of 1w including

Cases 3-6 is considered. Simulation results for Case 3 with

8.0=w are displayed in Fig. 4. It is clearly seen from Fig. 4

that the moving trend of all the particles is towards the correct

function solution)1,2(−− . After about executing 50

iterations, the global best particle (green point) can accurately

catch the correct solution.

Fig. 4(a). Iteration 10.

Fig. 4(b). Iteration 20.

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

32

In Case 4 with 5.0=w , its simulation illustrations are

displayed in Fig. 5. About performing 20 iterations, the PSO

algorithm successfully solves for the correct function solution.

Fig. 5 clearly reveals the evidence that all particles can

quickly converge on the system optimum)1,2(−− over than

those of Case 3.

Fig. 5(a). Iteration 10.

Fig. 5(b). Iteration 20.

Moreover, Figs. 6 and 7 then show the convergence

behavior of particles in the population for Case 5 with

1.0=w and Case 6 with 0=w , respectively. It is clearly

seen from Figs. 6 and 7 that in both cases the PSO algorithm

can also seek for the function optimum. It needs about 25

iterations for Case 5 and about 30 iterations for Case 6 to

solve for the correct solution. Notice that in Case 6 the

correct solution can also be derived by the PSO even though

the parameter 0=w is given. It means that the role of the

inertia weight w seems not to be important for solving such a

function minimization problem. Some simple conclusions

based on the above simulation results are addressed in the

following.

(a) The PSO algorithm cannot perform well if 1w such

as Cases 1 and 2.

(b) The PSO can accurately find out the correct function

solution when 1w such as Cases 3-6.

(c) The best result is Case 4: 5.01 =c , 5.02 =c , and

5.0=w .

(d) The PSO algorithm can also derive the correct solution

when 0=w .

Fig. 6(a). Iteration 10.

Fig. 6(b). Iteration 20.

Fig. 7(a). Iteration 10.

 Fixed parameters 5.0=w and 5.02 =c , and

adjustable parameter 1c

In this subsection, the parameters 5.0=w and 5.02 =c

are fixed and parameter 1c is adjustable. Totally, we have

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

33

the following four different kinds of cases:

Case 7: 5.0=w , 5.02 =c , and 11 =c ;

Case 8: 5.0=w , 5.02 =c , and 6.01 =c ;

Case 9: 5.0=w , 5.02 =c , and 2.01 =c ;

Case 10: 5.0=w , 5.02 =c , and 01 =c .

Fig. 7(b). Iteration 20.

After executing the PSO algorithm with the above

parameters, simulation results that are in the form of

illustrations are displayed in Figs. 8-11 with respect to

different iteration numbers. Fig. 8 is shown for Case 7, and

the correct solution can be obtained by executing 20 iterations.

In this case, all particles also quickly converge to the function

minimum point)1,2(−− . Similarly, simulation illustrations

for Cases 8-10 are displayed in Figs. 9-11, respectively. As

can be seen from these figures, the correct function solution

can be rapidly caught about performing 20 iterations for any

of parameter settings. Based on these simulation results, we

can conclude that

(e) The individual best pbest that corresponds to the

parameter 1c in Eq. (1) is not a key factor of the PSO

algorithm.

(f) Because the parameter 01 =c is given in Case 10, the

PSO algorithm can also perform well for solving this function

optimization problem.

Fig. 8(a). Iteration 10.

Fig. 8(b). Iteration 20.

Fig. 9(a). Iteration 10.

Fig. 9(b). Iteration 20.

Fig. 10(a). Iteration 10.

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

34

Fig. 10(b). Iteration 20.

Fig. 11(a). Iteration 10.

Fig. 11(b). Iteration 20.

Fig. 12(a). Iteration 10.

Fig. 12(b). Iteration 20.

Fig. 13(a). Iteration 10.

 Fixed parameters 5.0=w and 5.01 =c , and

adjustable parameter 2c

The final examination for parameter settings is the fixed

parameters 5.0=w and 5.01 =c , and adjustable parameter

2c . Four different sets of parameters are here considered:

Case 11: 5.0=w , 5.01 =c , and 12 =c ;

Case 12: 5.0=w , 5.01 =c , and 6.02 =c ;

Case 13: 5.0=w , 5.01 =c , and 2.02 =c ;

Case 14: 5.0=w , 5.01 =c , and 02 =c .

Again, after executing the PSO algorithm, simulation

results for Cases 11-14 are displayed in Figs. 12-15,

respectively. Fig. 12 illustrates the convergence behavior of

particles for Case 11 with various iteration numbers, and the

correct solution can be accurately solved by executing 25

iterations. As to Cases 12 and 13, they are shown in Figs. 13

and 14, and the correct solution is solved about 20 and 25

iterations, respectively. All of simulation results for Cases

11-13 are almost the same. However, Fig. 15 is the

simulation illustrations for Case 14 with 02 =c . It can be

easily seen from Fig. 15 that all the particles on x-y plane are

not any moved and they are identical with initial distribution

of particles (iteration 0). Referring to the velocity updating

formula of Eq. (1), the next velocity output)1(+kvij will be

zero when 02 =c at the beginning of the algorithm with

0)0(=ijv , and then it causes all the particle positions no any

change by Eq. (2). In accordance with these results, it can be

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

35

concluded that

(g) the global best particle gbest that corresponds to the

parameter 2c is the most important factor in the PSO

algorithm. The algorithm will fail without it.

Fig. 13(b). Iteration 20.

Fig. 14(a). Iteration 10.

Fig. 14(b). Iteration 20.

Fig. 15(a). Iteration 10.

Fig. 15(b). Iteration 20.

IV. CONCLUSIONS AND FUTURE WORK

In the traditional fashion, simulation results in numerical

presentations are always provided to show the searching

performance of the PSO algorithm. However, in this paper

we have utilized simulation illustrations instead of numerical

results to more clearly explain the particle convergence

behaviors. The influences of three parameter settings of the

PSO on the searching outcomes are also successfully

examined by various sets of numerical values. In addition,

according to the stability theorem of digital systems the

convergence analyses of inertia weight w for the PSO

algorithm are addressed and also confirmed by some

illustration results. In the future work, a simplified version of

the PSO algorithm may be presented based on the conclusions

that are obtained in this paper because some parameters seem

not to be important for solving the system solution.

REFERENCES

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.

the IEEE International Conference on Neural Networks, vol. IV,
Perth, Australia, 1995, pp. 1942-1948.

[2] M. Tao, S. Huang, Y. Li, M. Yan, and Y. Zhou, “SA-PSO based

optimizing reader deployment in large-scale RFID systems,” Journal
of Network and Computer Applications, vol. 52, pp. 90-100, 2015.

[3] B. B. Zad, H. Hasanvand, J. Lobry, and F. Vallee, “Optimal reactive

power control of DGs for voltage regulation of MV distribution
systems using sensitivity analysis method and PSO algorithm,”

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

36

Electrical Power and Energy Systems, vol. 68, pp. 52-60, 2015.

[4] V. K. Gupta and R. Mahanty, “Optimized switching scheme of
cascaded H-bridge multilevel inverter using PSO,” Electrical Power

and Energy Systems, vol. 64, pp. 699-707, 2015.

[5] S. Panda, B. Mohanty, and P. K. Hota, “Hybrid BFOA–PSO
algorithm for automatic generation control of linear and nonlinear

interconnected power systems,” Applied Soft Computing, vol. 13, pp.

4718-4730, 2013.
[6] M. Ranjani and P. Murugesan, “Optimal fuzzy controller parameters

using PSO for speed control of Quasi-Z Source DC/DC converter fed

drive,” Applied Soft Computing, vol. 27, pp. 332-356, 2015.
[7] A. Lari, A. Khosravi, and F. Rajabi, “Controller design based on

analysis and PSO algorithm,” ISA Transactions, vol. 53, pp. 517-523,

2014.
[8] Y. Z. Hsieh, M. C. Su, and P. C. Wang, “A PSO-based rule extractor

for medical diagnosis,” Journal of Biomedical Informatics, vol. 49,

pp. 53-60, 2014.
[9] C. Y. Tsai and C. J. Chen, “A PSO-AB classifier for solving sequence

classification problems,” Applied Soft Computing, vol. 27, pp. 11-27,

2015.
[10] M. Karimi-Nasab, M. Modarres, and S. M. Seyedhoseini, “A self-

adaptive PSO for joint lot sizing and job shop scheduling with

compressible process times,” Applied Soft Computing, vol. 27, pp.
137-147, 2015.

[11] Q. Liu, H. Niu, W. Xu, and D. Zhang, “A service-oriented spectrum

allocation algorithm using enhanced PSO for cognitive wireless
networks,” Computer Networks, vol. 74, pp. 81-91, 2014.

[12] V. Mangat and R. Vig, “Novel associative classifier based on dynamic

adaptive PSO: application to determining candidates for thoracic
surgery,” Expert Systems with Applications, vol. 41, pp. 8234-8244,

2014.

[13] M. Najjari and R. Guilbault, “Formula derived from particle swarm
optimization (PSO) for optimum design of cylindrical roller profile

under EHL regime,” Mechanism and Machine Theory, Vol. 90, pp.

162-174, 2015.
[14] H. Garg and M. Rani, “An approach for reliability analysis of

industrial systems using PSO and IFS technique,” ISA Transactions,

vol. 52, pp. 701-710, 2013.
[15] T. M. S. Filho, B. A. Pimentel, R. M. C. R. Souza, and A. L. I. Oliveira,

“Hybrid methods for fuzzy clustering based on fuzzy c-means and

improved particle swarm optimization,” Expert Systems with

Applications, Vol. 42, pp. 6315-6328, 2015.

[16] D. E. G. Trigueros, A. N. Modenes, M. A. S. S. Ravagnani, and F. R.
Espinoza-Quinones, “Reuse water network synthesis by modified

PSO approach,” Chemical Engineering Journal, vol. 183, pp. 198-

211, 2012.
[17] B. O. Arani, P. Mirzabeygi, and M. S. Panahi, “An improved PSO

algorithm with a territorial diversity-preserving scheme and enhanced

exploration-exploitation balance,” Swarm and Evolutionary
Computation, vol. 11, pp. 1-15, 2013.

[18] S. Wang and J. Watada, “A hybrid modified PSO approach to VaR-

based facility location problems with variable capacity in fuzzy
random uncertainty,” Information Sciences, vol. 192, pp. 3-18, 2012.

[19] F. Guan, L. Dai, and M. Xia, “Pretension optimization and

verification test of double-ring deployable cable net antenna based on
improved PSO,” Aerospace Science and Technology, vol. 32, pp. 19-

25, 2014.

[20] C. C. Liao, X. L. Zhao, and J. Z. Xu, “Blade layers optimization of
wind turbines using FAST and improved PSO algorithm,” Renewable

Energy, vol. 42, pp. 227-233, 2012.

[21] J. Tang, L. He, and S. Fu, “An improved PSO-based charging strategy
of electric vehicles in electrical distribution grid,” Applied Energy,

vol. 128, pp. 82-92, 2014.

[22] G. Chen, L. Liu, P. Song, and Y. Du, “Chaotic improved PSO-based
multi-objective optimization for minimization of power losses and L

index in power systems,” Energy Conversion and Management, vol.

86, pp. 548-560, 2014.

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

W. D. Chang received his Ph.D. degree in

electrical engineering from National Sun Yat-Sen

University, Kaohsiung, Taiwan in 2002. He is now
a professor at the Department of Computer and

Communication, Shu-Te University, Kaohsiung,

Taiwan. His research interests include the
intelligent signal processing, evolutionary

computations, chaotic secure communication, and

control engineering.

Author’s fo

rmal photo

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

37

https://creativecommons.org/licenses/by/4.0/

