

Abstract—The enormous progress in communication

technology has led to a tremendous need to provide an ideal

environment for the transmission, storing, and processing of

digital multimedia content, where the audio signal takes the

lion's share of it. Audio processing covers many diverse fields,

its main aim is presenting sound to human listeners. Recently,

digital audio processing became an active research area, it

covers everything from theory to practice in relation to

transmission, compression, filtering, and adding special effects

to an audio signal. The aim of this work is to present the

real-time implementation steps of some audio effects namely,

the echo and Flanger effects on Field Programmable Gate

Array (FPGA). Today, FPGAs are the best choice in data

processing because they provide more flexibility, performance,

and huge processing capabilities with great power efficiency.

Designs are achieved using the XSG tool (Xilinx System

Generator), which makes complex designs easier without prior

knowledge of hardware description languages. The paper is

presented as a guide with deep technical details about designing

and real-time implementation steps. We decided to transfer

some experience to designers who want to rapidly prototype

their ideas using tools such as XSG. All the designs have been

simulated and verified under Simulink/Matlab environment,

then exported to Xilinx ISE (Integrated Synthesis Environment)

tool for the rest of the implementation steps. The paper also

gives an idea of interfacing the FPGA with the LM4550 AC’97

codec using VHDL coding. The ATLYS development board

based on Xilinx Spartan-6 LX45 FPGA is used for the real-time

implementation.

Index Terms—Digital audio processing, echo, flanger, FPGA,

XSG, ISE, VHDL, ATLYS, xilinx, digilent, real-time.

I. INTRODUCTION

Sound is an integral part of our lives, it is one of our most

important ways of sensing the world around us. Moreover, it

is fundamental to our communication with our surroundings

and fellow human beings [1]. s communication technology

evolves; digital audio processing has gained great importance

recently, it covers many diverse fields, its main aim is

presenting sound to the human listeners and human-machine

communication, it is a branch of digital signal processing

which consists of applying mathematical models to an audio

signal. Many daily applications are based on digital audio

Manuscript received June 12, 2021; revised August 12, 2021.

L. Merah is with the Department of Electronics, Faculty of Technology,
University of Laghouat, Laghouat 03000, Algeria (e-mail:

l.merah@lagh-univ.dz).

P. Lorenz is with the Institut de Recherche en Informatique,
Mathématiques, Automatique et Signal (IRIMAS), University of Haute

Alsace IUT, 68008 Colmar, France (e-mail: pascal.lorenz@uha.fr).

A. Ali-Pacha and N. Hadj-Said is with the Department of Electronics,
University of Science and Technology of Oran (USTO), Oran 31036,

Algeria (e-mail: a.alipacha@gmail.com,nim_hadj@yahoo.fr).

signal processing, such as:

• Audio broadcasting: Broadcasting audio signals over

satellites and cellular networks need audio processing to

enhance their fidelity or optimize for bandwidth, as an

example audio compression plays an important role in

mobile multimedia broadcasting [2].

• Audio synthesis: Digital audio synthesis is a very broad

topic with a great deal of theory, mathematics, and

engineering [3]. It is the process of generating audio

signals electronically (such as music and human speech),

music is the big area using audio synthesis, which is the

heart of most musical instruments (synthesizers). Speech

recognition is also a part of an audio synthesis, It consists

of algorithms that have the ability to identify words and

phrases, it has a large usage (crime investigation, search

for reports or documents on the computer, give

commands to a machine, authorizing access, etc.).

• Audio effects: This is the subject of this work, audio

effects are algorithms that used for improving,

enhancing, filtering sounds using some control

parameters. Today these algorithms are widely used in

professional or home music production studios,

electronic or virtual musical instruments, and all kinds of

consumer devices, including video game consoles,

portable audio players, smartphones, or appliances [4].

Audio effects can be classified by the way do their

processing [5]; basic Filtering (Lowpass, Highpass filter

etc, Equalizer), Time-Varying Filters (Wah-wah,

Phaser), Delays (Vibrato, Flanger, Chorus, Echo),

Modulators (Ring modulation, Tremolo, Vibrato),

Non-linear Processing (Compression, Limiters,

Distortion, Exciters/Enhancers), and some special

effects (Panning, Reverb, Surround Sound).

In the last decade, it has become apparent that digital

electronics are integral parts of our everyday lives. Today,

computing power is dramatically evolved. A lot of dedicated

algorithms and mathematical systems are ready to use

without prior knowledge of programming, simple commands

are ready to use while hiding behind a big number of

instructions on nowadays high-level synthesis tools.

Computation in digital electronics is performed using two

main ways; hardware and software. Computer software could

support performing different and very complex tasks at the

same time with a high degree of flexibility to modify. These

features serve digital audio processing; most audio

processing systems are software-based implementation. On

the other hand, hardware-based implementation is better in

terms of performance, real-time audio processing, especially

online broadcasting that requires this kind of implementation.

The share of Programmable Logic Devices (PLD),

L. Merah, P. Lorenz, A. Ali-Pacha, and N. Hadj-Said

A Guide on Using Xilinx System Generator to Design and

Implement Real-Time Audio Effects on FPGA

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

38doi: 10.18178/ijfcc.2021.10.3.577

mailto:l.merah@lagh-univ.dz
mailto:pascal.lorenz@uha.fr
mailto:a.alipacha@gmail.com
mailto:nim_hadj@yahoo.fr

especially FPGAs, in the semiconductor logic market is

tremendously growing year-on-year [6]. FPGAs are truly

revolutionary devices that blend the benefits of both

hardware and software. They implement circuits just like

hardware, providing huge power, area, and performance

benefits over software, yet can be reprogrammed cheaply and

easily to implement a wide range of tasks [7]. Initially,

FPGAs are integrated circuits with no mission, contain a

huge number of reconfigurable logic blocks and

interconnects that can be programmed by a Hardware

Description Language (HDL) such as Verilog and VHDL to

perform a specific function. Each FPGA vendor has its own

synthesis tool enabling the developer to synthesize

("compile") their designs through a number of steps until

generating programming file. Synthesis tools have recently

evolved dramatically, they permit today achieving

complicated designs even without prior knowledge of HDL

programming.

The aim of this work is not to propose new ideas in the

context of the audio processing domain, but to present a

design guide helping developers to benefit from the Xilinx

design tools for achieving their designs. For a design guide to

be more practical and helpful, it should contain all the

designing steps; design, simulation, synthesis, and real-time

implementation. Choosing the audio processing subject as an

example of implementation on FPGA is due to the limited

number of works in this context.

The paper is organized as follows: section II is devoted to

presenting the design tools and hardware used for the

implementation, it is the initialization phase in which, the

most important electronic parts are tested before any other

step. We present the LM4550 AC’97 audio codec chip, and

how using VHDL code to interface it with the FPGA chip,

this part is the important one because it converts the incoming

audio signal from outside from analog to digital and sends it

to the FPGA for processing. At the same time, it ensures the

conversion from digital to analog if the audio signal after

processing step and send it to the outside. We create a project

under the ISE tool and add the VHDL component to drive the

LM4550 chip, then after some steps we configure the

ATLYS board and verify the correct working of the hardware

by sending and hearing back an audio signal.

Section III is devoted to presenting the implementation

steps of some audio effects' systems, namely the Echo and

Flanger effects using XSG. The theoretical background of

these effects and details of implementation with simulation

results is presented in this section.

In section IV, the final design steps are presented, we

assembled the two designed systems in one system, then

generated the equivalent VHDL code automatically from the

XSG blocks. The generated code is exported as a component

to the previously created project under ISE. After the

configuration of the ATLYS board using the generated

programming file; the real-time hardware evaluation is done

by hearing the results on speakers.

II. SOFTWARE AND HARDWARE INITIALIZATION

This section is devoted to presenting the design tools and

hardware used for the implementation. More precisely, it

presents the preparation phase of hardware and software tools.

As mentioned previously; designing audio effects systems on

this work are based on XSG tool.

XSG is designed to be a part of the Simulink library that

addressed to hardware developments. It is a system-level

modeling tool that facilitates the FPGA hardware design. It

extends Simulink in many ways to provide a modeling

environment that is well suited to hardware design. With the

advent of the XSG, system architects and FPGA developers

could collaborate in the Simulink environment, using two

major components as follows: The library of dedicated

blocks, Xilinx Block set, for model building in the Simulink

environment; and HDL generator that uses the Xilinx

optimized IP algorithms and generates the synthesized HDL

code with consequent physical implementation of the project

as FPGA, using the Smart-IP [8].

 The design steps are as following : Designing audio

processing (audio effects) systems using XSG blocks library,

simulation of the designs under Simulink for functional

verification, exporting the designs as synthesized VHDL

codes to the ISE tool, adding some additional VHDL codes

(LM4550 chip driving, components instantiation, ..) and

constrains files, generating the bitstream for programming

the FPGA, and finally the real-time verification by loading an

audio signal and hearing the result on speakers.

A. The LM4550 Chip Driving

The ATLYS board includes a LM4550 AC‘97 audio

codec chip (Fig. 1) with four audio jacks for line-out,

headphone-out, line-in, and microphone-in. Audio data at up

to 18 bits and 48 KHz sampling is supported, and the audio in

(record) and audio out (playback) sampling rates can be

different [9]. The LM4550 was designed specifically to

provide a high quality audio path and provide all analog

functionality in a PC audio system. It features full duplex

stereo A/D’s and D/A’s and an analog mixer with 4 stereo

and 3 mono inputs [10].

The first thing that we should to do is to ensure the driving

of the LM4550 AC'97 codec chip using VHDL, it is the main

part in the design, because it ensures the conversion of the

audio signal from analog to digital and from digital to analog

after processing, with additional operations such as

amplification. In this work, the driving of the LM4550 AC’97

is based on the VHDL code written by Tony Storey and Scott

Larson [11]. The principle of working of this code is

summarized in Fig.2, The controller presented in this figure

has the following inputs and outputs :

• Clk: The main clock input comes from the 100 MHZ

ATLYS on-board oscillator.

• Reset: The initialization signal comes from a

push-button on the board.

Fig. 1. The ATLYS board LM4550 AC'97 codec connectivity [9].

• SDATA_IN: The serial data input signal representing

the input audio signal after the Analog/Digital

conversion process over the LM4550.

• 12.88 clock: A 12.288 MHz clock comes from the

LM4550 chip.

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

39

• Source: a 3 bit signal to select the audio signal source

(microphone line, input line, etc.).

• Volume: a 5-bit signal to control the sound level.

• SYNC: a synchronization signal, this signal is

normally a 48 kHz positive pulse with a duty cycle of

6.25 % (16/256). SYNC is sampled on the rising edge

of AUDBIT-CLK, and the codec takes the first

positive sample of SYNC as defining the start of a

new AC Link frame (see [9]).

• SDATA_OUT: The serial data representing the audio

output signal sent to the LM4550 chip for the

Digital/Analog conversion after the processing stage.

• RESET: Initialization signal to reset the conversion

operation.

There are two internal signals to synchronize the main

AC'97 controller with the command state machine

AC-97_CMD" (a small FSM (Finite State Machine) to set up

codec's registers). One of these signals pulses every 20us and

the other is a signal used for error checking during the tag

phase, for more details on the serial frame input/output see

[10], [12].

Fig. 2. The VHDL driving code for the LM4550 AC’97 codec working

principle designed by Tony Storey and Scott Larson [11].

Fig. 3. Basic diagram of the FPGA-based audio processing system.

Before starting the implementation of the desired

algorithms, it is very important to practically check the

proper working of the hardware (the ATLYS board and the

LM4550 chip) as well as the controller of the LM4550 driver

written in VHDL. To carry out this operation, we used the

ISE compiler of XILINX according to the following steps:

1) Creation of a new project under ISE.

2) Addition of new VHDL source top.vhd to collect the

different components.

3) Addition of the LM4550 driver VHDL component

written by Tony Storey and Scott Larson [11] to the

created project.

In this phase, the aim is to test the LM4550 chip before

any other step, so we drive the data issued from the LM4550

ADC directly to the LM4550 DAC without any changes. The

LM4550 can convert 18-bit of parallel data to serial data to

interface the LM4550 chip with the FPGA and recover the

18-bit data serially after the processing phase, in fact, there is

no processing in this stage; the 18-bit audio signal is driven

directly to the output Fig. 3.

Regarding the sound level control, we avoided using the

switches for that as done in [11], we proposed a more

practical method where we invoked two push buttons on the

ATLYS board, the following VHDL code is proposed to

control the volume with the buttons; where clk2h is a clock

which has a frequency of 2 Hz (0.5 seconds), this clock is

used to control the rate of changing of the sound level if we

continuously pushed the buttons btn1 and btn0 (see the

following listing).

-

Sound_vol_proc: process(clk2h, btn1, btn0,

 max_vol, min_vol)

begin

 if rising_edge(clk2h) then

 if (btn1 = '1' and max_vol ='0') then

 Vol <= Vol + 1;

 elsif (btn0 = '1'and min_vol ='0') then

 Vol <= Vol - 1;

 end if;

end if:

end process Sound_Vol_proc;

-

max_vol <= '1' when Vol = "11111" else

 '0';

min_vol <= '1' when Vol = "00000" else

 '0';

-

After instantiating different components, we added the

constraints file (\textit{.ucf}) that must be utilized to assign

FPGA I/O pins correctly. After the synthesis process, the

final step is the generation of the programming file (bitstream)

to configure the FPGA. After the configuration; we use a

laptop as an audio source and a speaker to playback the audio

signal. We also used an oscilloscope to visualize the audio

signal in real-time as shown in Fig. 4.

Fig. 4. Real-time verification of the hardware used for the implementation.

III. AUDIO EFFECTS IMPLEMENTATION USING XSG

This section is devoted to presenting the implementation

steps of some audio effects' systems, namely the Echo and

Flanger effects using XSG. The systems are designed and

simulated separately under Simulink, then collected in one

system for implementation later. After simulation, the whole

system is then exported as one component to the previously

created project under ISE.

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

40

A. The Echo Effect System’s Designing

One of the simplest effects yet most ubiquitous is the

Echo effect, which is sometimes also called the delay effect.

It can be found in many different applications. In this section,

we will present the steps for implementing the system which

adds the echo effect to an audio signal on FPGA.

 Let us first recall the operating principle of the Echo effect,

this effect can simply be considered as a delay of the audio

signal Fig.5. It is produced by repeating the original audio

signal after a fixed period of time. This effect is extremely

applied in microphones and stereos. A FIR filter with a single

delay will achieve this effect. The difference equation for the

FIR filter can be written as follows:

𝑌[𝑛] = 𝑋[𝑛] + 𝑎 × 𝑋[𝑛 − 𝐷] (1)

where 𝑌[𝑛] is the output audio signal, 𝑋[𝑛] the input audio

signal, 𝐷 the delay applied, and 𝑎 the gain of the echo

effect.

The key to implementing the Echo effect is memory; we

need to have a memory to save a version of the audio signal

(delay) to add it to the original signal after a certain time.

Note that the memory size represents the Echo delay, in other

words; it represents the 𝐷 samples. Indeed, for memories of

small sizes, one does not need an external memory, FPGAs

provide embedded memories called Block-RAMs or

B-RAMs. The XC6SLX45 FPGA has 2.1 Mbits of fast

block-RAM. The Fig.6 shows the XSG-based design of the

echo effect system. Details of some blocks are given as

follows:

• From Multimedia File: The role of this block is to

import the audio signal from a file, the audio signal

is mono, with 44100 Hz sampling frequency and 16

bits of size.

• Sound_in: This block has the role of converting the

16-bit audio data of double-precision to an 18 bit

fixed point precision.

• Gain a: Represents the gain in the attenuation of the

Echo effect.

• Single Port RAM : This block represents the

configuration interface of the used memory, this

block can be configured as shown in the Fig.7;

where depth represents the memory size, D = 10000.

The delay 𝑟 can be calculated as follows: 𝑟 =
 𝐷/44100 = 226 𝑚𝑠 . For more information

about the configuration of the BRAM, see [13].

• Counter : It is a counter to control the addresses of

memory (memory reading).

Fig. 5. Basic diagram of the echo effect system.

• Sound_out : This block has the role of converting

back the 18-bit fixed-point precision to double

precision.

• To Audio Device: This block has the role of

exporting the processed signal to the PC sound

equipment (sound card) to listen to the result in real

time.

The obtained result of simulation was sent to the speaker

and showed clearly the Echo effect on the original audio

signal. A portion of the obtained result was also presented on

the Fig. 8.

Fig. 6. The XSG-based design of the Echo effect system.

Fig. 7. The configuration interface of the BRAM.

Fig. 8. The Echo effect system simulation result.

B. The Flanger Effect System’s Designing

The Flanger effect is mathematically similar to the Chorus

effect and the Echo effect, but it sounds quite different. The

Flanger effect is similar to what we experience when a jet

plane flies over our heads. The direct sound from the jet is

mixed with the sound reflecting off the ground, which has a

time-varying delay due to the jet’s movement. Like the

Chorus effect, the Flanger effect is quite popular with guitar

players and it can frequently be found in their pedalboards

and in their racks [1].

Contrary to the conception of the echo effect system

where the value of delay 𝐷 is fixed, the Flanger filter has a

variable delay, it changes periodically. The difference

equation for the Flanger filter can be written as follows:

𝑌[𝑛] = 𝑋[𝑛] + 𝑎 × 𝑋[𝑛 − 𝐷(𝑛)] (2)

The delay 𝐷 [𝑛] is no longer fixed, it is periodic, in

general, a sinusoidal oscillator is used for this. Flanger

emulation is performed using a variable delay line controlled

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

41

by the oscillator. Fig.9 shows the basic structure Flanger

effect system.

The configuration of the Flanger effect system presented

in Fig. 9 has several variable parameters. The depth values

for the Flanger effect generally vary from 1 to 10 ms with a

delay center of 5 𝑚𝑠 or less and a very slow scan rate (0.15

Hz). The delay line output is mixed with the input signal and

the relative mix level (gain) value controls the strength of the

Flanger effect. Decreasing this value creates a more subtle

Flanger effect. The sweep oscillator is used to move the

variable tap back and forth around a nominal delay time

(center). A typical sweep rate is slow, around 0.1 to 0.5 Hz,

but can vary from 0.01 Hz up to around 10 Hz at the

maximum [14].

Fig. 9. The Flanger effect system’s basic structure [14].

The implementation of the Flanger effect system using

XSG is almost similar to the Echo effect except the delay is

now variable and controlled by a sinusoidal oscillator. There

are several methods to implement trigonometric functions in

XSG, one of these methods is using a Direct Digital

Synthesizer (DDS).

Fig. 10. Signal flow through the DDS architecture [15].

A DDS is a method used to create arbitrary waveforms

from a single fixed frequency reference clock. It is used in

applications such as signal generation, local oscillators in

communication systems, function generators, mixers,

modulators, sound synthesizers [15]. A major advantage of a

DDS is that its output frequency, its phase, and its amplitude

can be manipulated precisely and quickly under a digital

control of a processor. Other inherent attributes of DDS

include the ability to tune into the extremely fine frequency

and phase resolution, and to "jump" quickly between

frequencies. These combined features have made this

technology popular in military radar and communication

systems. The basic principle of a DDS is shown in Fig. 10.

The phase accumulator is actually a module-M counter

that increments its stored number each time it receives a

clock pulse. The magnitude of the increment is determined by

the binary coded input word (M). This word forms the phase

step size between reference-clock updates; it effectively sets

how many points to skip around the phase wheel. The larger

the jump size is, the faster the phase accumulator overflows

and completes its equivalent of a sine-wave cycle [15]. The

sinusoidal wave frequency can be calculated as follows:

𝐹𝑜𝑢𝑡 =
∆𝜃 × 𝐹𝑐

2𝑁
 (3)

where:

𝐹𝑜𝑢𝑡 : The output frequency of the sine wave.

∆𝜃 : Phase increment value.

𝐹𝑐 : The reference clock frequency.

𝑁 : Length of the phase accumulator in bits.

Any changes in the value of ∆𝜃 leads to immediate and

continuous changes in the output frequency.

In fact, XSG contains a very rich DDS block, the Fig.11

presents the block as well as the main window for its

configuration, where we can define the phase and the

amplitude sizes of the output in binary, for more information

about XSG DDS compiler, see [16].

Fig. 11. XSG DDS block with its main configuration window.

Fig. 12. XSG-based Flanger effect system.

Fig. 13. The final DDS block output.

The whole Flanger effect system designed using XSG is

presented in Fig.12. The DDS block compiler generates the

sine wave with an amplitude that varies between 1 and -1, the

output is then passed through the Absolute block to convert

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

42

the negative part of the signal into positive, then amplified

and rounded off by the Cmult1 block. In this case, we will

obtain a sinusoidal wave with an amplitude that varies from 0

to 100 (after amplification) with a single alternation as shown

in the Fig. 13.

Fig. 14. Simulation result of the anger effect.

From the defined configuration, the delay scan interval

varies from 0 𝑚𝑠 to 2.2 𝑚𝑠 (100 × (1/44100) =
 2.2 𝑚𝑠), with a center of 1.1 ms. The final output of the

DDS block controls a counter, then the maximum value that

the counter can reach is defined by the sinusoidal wave phase

value (sweep frequency), thereafter the counter will indicate

the delay value. This delay varies periodically due to the

sinusoidal function. The simulation result of the Flanger

effect system applied to an audio signal is presented in Fig.

14.

IV. HARDWARE IMPLEMENTATION OF THE ECHO AND

FLANGER EFFECTS SYSTEMS

In this section the two designs are assembled in a one (Fig.

15) and implemented on the FPGA, the same memory will

be shared between the two systems using a multiplexer, this

multiplexer will be controlled later by a switch on the

ATLYS board. Afterward, the system is exported to the

project created previously under ISE. In this step, the

compiler will generate the equivalent VHDL code of the

whole system from XSG blocks, we can use the XILINX

token to do this. The exported files will be added as a

component named SYS_CP (Fig.16) to the top.vhd source,

the component has six inputs and one output:

• clk44100 : A 44.1 kHz clock input incoming from a

clock divider subprogram.

• SOUND_IN : The audio input vector of 18 bits of

size (original audio signal) incoming from the

LM4550 driver component (LM4550_CP).

• ce : An activation input always fixed to 1.

• SW : A switch to control the MUX.

• delta_plus, delta_minus : signals came from the

ATLYS on board buttons to control the phase

increment value ∆𝜃 and therefore control the

scanning frequency amount.

• SOUND_OUT : The audio output vector of 18 bits

of size (audio signal after processing) routed to the

LM4550 driver component.

After the generation of the programming file and

configuring the board, we can confirm the good results

obtained by hearing the output audio on the speakers.

Fig. 15. Designs assembling and memory sharing.

Fig. 16. Adding the whole design as a component on the ISE created project.

V. CONCLUSION

Through this work, we have transferred some experience

in designing digital systems in general, and more specifically

audio processing systems using XSG and ISE tools and

presenting their FPGA-based hardware implementation steps.

It is a good opportunity to understand how the widely used

LM4550 AC'97 audio codec works and how to interface it

with FPGA using VHDL. Two examples of audio processing

systems have been studied and designed in this work, namely

the Echo effect and the Flanger effect systems. In fact, giving

an idea of how these two systems can be designed and

implemented in real-time is sufficient, because many other

audio processing systems can be easily derived from these

two ones. Chorus, Vibrato, Phaser, Time-Varying and

Fractional Delays effects, and other special effects such as;

Reverberation and Schroeder’s Reverb have in fact the same

concept as the implemented systems, of course, with some

modifications. What should be taken into account is that the

XSG library is richer by a lot of blocks of different

arithmetical operation and processing components, the

designer can follow the steps presented in this work, and

easily design any processing audio system using XSG,

generate its equivalent VHDL and put the designed system as

a component on the same project, and follow the same steps

to program the FPGA (any development board based on

Xilinx FPGAs and has the same AC'97 codec can be used

with minor modifications on this project).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

43

AUTHOR CONTRIBUTIONS

all authors conducted the research, wrote the paper and had

approved the final version.

REFERENCES

[1] M. G. Christensen, Introduction to Audio Processing, Springer, 2019.
[2] F. L. Luo, Mobile Multimedia Broadcasting Standards, New York, NY,

US: springer, 2009.

[3] V. E. Shawn, “Pro android media: Developing graphics, music, video,
and rich media apps for smartphones and tablets,” 2011.

[4] S. Augusto et al., Digital audio Effects, Springer, 2011, pp. 1-2.

[5] D. Marshall. (2011). Digital audio effects. [Online]. Available:
http://users.cs.cf.ac.uk/Dave.Marshall/C\\M0268/PDF/10_CM0268_A

udio_FX.pdf

[6] P. Muthukumar et al., "FPGA performance optimization plan for high
power conversion," in Proc. International Conference on Soft

Computing Systems, Springer, Singapore, 2018.

[7] H. Scott and A. DeHon, Reconfigurable Computing: The Theory and
Practice of FPGA-Based Computation, Elsevier, 2010.

[8] P. Evgeni, Digital Integrated Circuits: Design-For-Test Using

Simulink and Stateflow, CRC Press, 2006.

[9] Atlys Board Reference Manual REV C. Digilent, 2011.

[10] Datasheet. LM4550 AC’97 Rev 2.1 Multi-Channel Audio Codec with

Stereo Headphone Amplifier, Sample Rate Conversion and National
3D Sound, National Instruments, DS100972, Rev 2.1, 2004.

[11] T. Storey and S. Larson. (2017). AC’97 Codec Hardware Driver
Example. [Online]. Available:

https://www.digikey.com/eewiki/display/LOGIC

[12] C. Ababei, Lab 7: Interfacing FPGA Spartan-6 with AC’97 Codec,
Electrical Engineering Department, University at Buffalo, 2012.

[13] LogiCORE IP Block Memory Generator v6.3, DS512. Xilinx, 2012.

[14] D. Mitchell, Basic-Synth, Lulu Press, Inc. 2009.
[15] Eva Murphy and Colm Slattery, All About Direct Digital Synthesis,

Analog Dialogue 38-08, 2004.

[16] LogiCORE IP DDS Compiler v5.0. Xilinx, DS794, 2011.

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Merah Lahcene received the engineering degree in

Electronics (Instrumentation) from University Amar
Telidji of Laghouat - Algeria in 2004. He worked as

an instrumentation engineer within the national

company SONATRACH (2006-2008), where he
acquired good experience in the maintenance of gas

turbines. He received the M.Sc and Ph.D degrees in

telecommunication systems from the University of
science and technology of Oran - Algeria in 2010 and

2016 respectively. He is currently a lecturer at the department of electronics,

University Amar Telidji of Laghouat. His research interests include
information security, chaos-based secure information, Random number

generators, and signal processing on reconfigurable hardware. He has a

number of published works in these contexts. He joined a number of research
laboratories such as Advanced Microsystems Engineering Laboratory - the

University of Quebec (Ottawa - Canada), Coding and Information Security

Laboratory, Coding and Information Security Laboratory, the university of
science and technology of Oran (Algeria), and Signals and Systems

Laboratory, the University Amar Telidji of Laghouat (Algeria).

Pascal Lorenz received his M.Sc. (1990) and Ph.D.

(1994) from the University of Nancy, France.
Between 1990 and 1995 he was a research engineer at

WorldFIP Europe and at Alcatel-Alsthom. He is a

professor at the University of Haute-Alsace, France,
since 1995. His research interests include QoS,

wireless networks and high-speed networks. He is the

author/co-author of 3 books, 3 patents and 200
international publications in refereed journals and

conferences. He is senior member of the IEEE, IARIA fellow and member of

many international program committees. He has organized many
conferences, chaired several technical sessions and gave tutorials at major

international conferences. He was IEEE ComSoc distinguished lecturer Tour

during 2013-2014.

Ali-Pacha Adda was born in Algeria. He received the
engineering degree in telecommunications from the

Institute of Telecommunication of Oran - Algeria in

1986; also, he got university degrees in mathematics
in 1986 from university of Oran I- Algeria and a

magister in signal processing in November 1993, and

later he obtained his Ph.D. in safety data in 2004 from

the University of Sciences and Technology of Oran.

He worked in the telecommunications administration

(PTT Oran) in the position of head of telephone traffic for two years (1986
-1988), He is currently a professor (teacher/researcher) in the Electronics

department of the University of Sciences and Technology of Oran (U.S.T.O).

His research interests are coding, cryptography and security, and digital
signal processing using reconfigurable hardware. He is currently the head of

LAboratory of COding and Security of Information (LACOSI laboratory).

Hadj-Said Naima received the engineering degree in
telecommunications from the Telecommunications

Engineering of Oran (ITO) in 1986, and the magister

degree also from ITO in (1992) and a PhD from
the University of Sciences and Technology, (USTO)

Oran (Algeria) in 2005. She is an associate professor
at the computer sciences department of

University of Sciences and Technology. Her research

interests are in the area of digital communications,

and cryptography.

International Journal of Future Computer and Communication, Vol. 10, No. 3, September 2021

44

http://users.cs.cf.ac.uk/Dave.Marshall/C/M0268/PDF/10_CM0268_Audio_FX.pdf
http://users.cs.cf.ac.uk/Dave.Marshall/C/M0268/PDF/10_CM0268_Audio_FX.pdf
https://www.digikey.com/eewiki/display/LOGIC
https://creativecommons.org/licenses/by/4.0/

