
  

  

Abstract—The enormous progress in communication 

technology has led to a tremendous need to provide an ideal 

environment for the transmission, storing, and processing of 

digital multimedia content, where the audio signal takes the 

lion's share of it. Audio processing covers many diverse fields, 

its main aim is presenting sound to human listeners. Recently, 

digital audio processing became an active research area, it 

covers everything from theory to practice in relation to 

transmission, compression, filtering, and adding special effects 

to an audio signal. The aim of this work is to present the 

real-time implementation steps of some audio effects namely, 

the echo and Flanger effects on Field Programmable Gate 

Array (FPGA). Today, FPGAs are the best choice in data 

processing because they provide more flexibility, performance, 

and huge processing capabilities with great power efficiency.  

Designs are achieved using the XSG tool (Xilinx System 

Generator), which makes complex designs easier without prior 

knowledge of hardware description languages. The paper is 

presented as a guide with deep technical details about designing 

and real-time implementation steps. We decided to transfer 

some experience to designers who want to rapidly prototype 

their ideas using tools such as XSG. All the designs have been 

simulated and verified under Simulink/Matlab environment, 

then exported to Xilinx ISE (Integrated Synthesis Environment) 

tool for the rest of the implementation steps. The paper also 

gives an idea of interfacing the FPGA with the LM4550 AC’97 

codec using VHDL coding. The ATLYS development board 

based on Xilinx Spartan-6 LX45 FPGA is used for the real-time 

implementation. 

 
Index Terms—Digital audio processing, echo, flanger,  FPGA, 

XSG, ISE, VHDL, ATLYS, xilinx, digilent, real-time.  

 

I. INTRODUCTION 

Sound is an integral part of our lives, it is one of our most 

important ways of sensing the world around us. Moreover, it 

is fundamental to our communication with our surroundings 

and fellow human beings [1]. s communication technology 

evolves; digital audio processing has gained great importance 

recently, it covers many diverse fields, its main aim is 

presenting sound to the human listeners and human-machine 

communication, it is a branch of digital signal processing 

which consists of applying mathematical models to an audio 

signal. Many daily applications are based on digital audio 
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signal processing, such as:  

• Audio broadcasting: Broadcasting audio signals over 

satellites and cellular networks need audio processing to 

enhance their fidelity or optimize for bandwidth, as an 

example audio compression plays an important role in 

mobile multimedia broadcasting [2]. 

• Audio synthesis: Digital audio synthesis is a very broad 

topic with a great deal of theory, mathematics, and 

engineering [3]. It is the process of generating audio 

signals electronically (such as music and human speech), 

music is the big area using audio synthesis, which is the 

heart of most musical instruments (synthesizers). Speech 

recognition is also a part of an audio synthesis, It consists 

of algorithms that have the ability to identify words and 

phrases, it has a large usage (crime investigation, search 

for reports or documents on the computer, give 

commands to a machine, authorizing access, etc.). 

• Audio effects: This is the subject of this work, audio 

effects are algorithms that used for improving, 

enhancing, filtering sounds using some control 

parameters. Today these algorithms are widely used in 

professional or home music production studios, 

electronic or virtual musical instruments, and all kinds of 

consumer devices, including video game consoles, 

portable audio players, smartphones, or appliances [4]. 

Audio effects can be classified by the way do their 

processing [5]; basic Filtering (Lowpass, Highpass filter 

etc, Equalizer), Time-Varying Filters (Wah-wah, 

Phaser), Delays (Vibrato, Flanger, Chorus, Echo), 

Modulators (Ring modulation, Tremolo, Vibrato), 

Non-linear Processing (Compression, Limiters, 

Distortion, Exciters/Enhancers), and some special 

effects (Panning, Reverb, Surround Sound). 

In the last decade, it has become apparent that digital 

electronics are integral parts of our everyday lives. Today, 

computing power is dramatically evolved. A lot of dedicated 

algorithms and mathematical systems are ready to use 

without prior knowledge of programming, simple commands 

are ready to use while hiding behind a big number of 

instructions on nowadays high-level synthesis tools. 

Computation in digital electronics is performed using two 

main ways; hardware and software. Computer software could 

support performing different and very complex tasks at the 

same time with a high degree of flexibility to modify. These 

features serve digital audio processing; most audio 

processing systems are software-based implementation. On 

the other hand, hardware-based implementation is better in 

terms of performance, real-time audio processing, especially 

online broadcasting that requires this kind of implementation.  

The share of Programmable Logic Devices (PLD), 
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especially FPGAs, in the semiconductor logic market is 

tremendously growing year-on-year [6]. FPGAs are truly 

revolutionary devices that blend the benefits of both 

hardware and software. They implement circuits just like 

hardware, providing huge power, area, and performance 

benefits over software, yet can be reprogrammed cheaply and 

easily to implement a wide range of tasks [7]. Initially, 

FPGAs are integrated circuits with no mission, contain a 

huge number of reconfigurable logic blocks and 

interconnects that can be programmed by a Hardware 

Description Language (HDL) such as Verilog and VHDL to 

perform a specific function. Each FPGA vendor has its own 

synthesis tool enabling the developer to synthesize 

("compile") their designs through a number of steps until 

generating programming file. Synthesis tools have recently 

evolved dramatically, they permit today achieving 

complicated designs even without prior knowledge of HDL 

programming. 

The aim of this work is not to propose new ideas in the 

context of the audio processing domain, but to present a 

design guide helping developers to benefit from the Xilinx 

design tools for achieving their designs. For a design guide to 

be more practical and helpful, it should contain all the 

designing steps; design, simulation, synthesis, and real-time 

implementation. Choosing the audio processing subject as an 

example of implementation on FPGA is due to the limited 

number of works in this context.  

The paper is organized as follows: section II is devoted to 

presenting the design tools and hardware used for the 

implementation, it is the initialization phase in which, the 

most important electronic parts are tested before any other 

step. We present the LM4550 AC’97 audio codec chip, and 

how using VHDL code to interface it with the FPGA chip, 

this part is the important one because it converts the incoming 

audio signal from outside from analog to digital and sends it 

to the FPGA for processing. At the same time, it ensures the 

conversion from digital to analog if the audio signal after 

processing step and send it to the outside. We create a project 

under the ISE tool and add the VHDL component to drive the 

LM4550 chip, then after some steps we configure the 

ATLYS board and verify the correct working of the hardware 

by sending and hearing back an audio signal.  

Section III is devoted to presenting the implementation 

steps of some audio effects' systems, namely the Echo and 

Flanger effects using XSG. The theoretical background of 

these effects and details of implementation with simulation 

results is presented in this section. 

In section IV, the final design steps are presented, we 

assembled the two designed systems in one system, then 

generated the equivalent VHDL code automatically from the 

XSG blocks. The generated code is exported as a component 

to the previously created project under ISE. After the 

configuration of the ATLYS board using the generated 

programming file; the real-time hardware evaluation is done 

by hearing the results on speakers. 

 

II. SOFTWARE AND HARDWARE INITIALIZATION 

This section is devoted to presenting the design tools and 

hardware used for the implementation. More precisely, it 

presents the preparation phase of hardware and software tools. 

As mentioned previously; designing audio effects systems on 

this work are based on XSG tool. 

XSG is designed to be a part of the Simulink library that 

addressed to hardware developments. It is a system-level 

modeling tool that facilitates the FPGA hardware design. It 

extends Simulink in many ways to provide a modeling 

environment that is well suited to hardware design. With the 

advent of the XSG, system architects and FPGA developers 

could collaborate in the Simulink environment, using two 

major components as follows: The library of dedicated 

blocks, Xilinx Block set, for model building in the Simulink 

environment; and HDL generator that uses the Xilinx 

optimized IP algorithms and generates the synthesized HDL 

code with consequent physical implementation of the project 

as FPGA, using the Smart-IP [8]. 

 The design steps are as following : Designing audio 

processing (audio effects) systems using XSG blocks library, 

simulation of the designs under Simulink for functional 

verification, exporting the designs as synthesized VHDL 

codes to the ISE tool, adding some additional VHDL codes 

(LM4550 chip driving, components instantiation, ..) and 

constrains files,  generating the bitstream for programming 

the FPGA, and finally the real-time verification by loading an 

audio signal and hearing the result on speakers. 

A. The LM4550 Chip Driving 

The ATLYS board includes a LM4550 AC‘97 audio 

codec chip (Fig. 1) with four audio jacks for line-out, 

headphone-out, line-in, and microphone-in. Audio data at up 

to 18 bits and 48 KHz sampling is supported, and the audio in 

(record) and audio out (playback) sampling rates can be 

different [9]. The LM4550 was designed specifically to 

provide a high quality audio path and provide all analog 

functionality in a PC audio system. It features full duplex 

stereo A/D’s and D/A’s and an analog mixer with 4 stereo 

and 3 mono inputs [10].  

The first thing that we should to do is to ensure the driving 

of the LM4550 AC'97 codec chip using VHDL, it is the main 

part in the design, because it ensures the conversion of the 

audio signal from analog to digital and from digital to analog 

after processing, with additional operations such as 

amplification. In this work, the driving of the LM4550 AC’97  

is based on the VHDL code written by Tony Storey and Scott 

Larson [11]. The principle of working of this code is 

summarized in Fig.2, The controller presented in this figure 

has the following inputs and outputs : 

• Clk: The main clock input comes from the 100 MHZ 

ATLYS on-board oscillator. 

• Reset: The initialization signal comes from a 

push-button on the board. 

 

 
Fig. 1.  The ATLYS board LM4550 AC'97 codec connectivity [9]. 

 

• SDATA_IN: The serial data input signal representing 

the input audio signal after the Analog/Digital 

conversion process over the LM4550. 

• 12.88 clock: A 12.288 MHz clock comes from the 

LM4550 chip. 
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• Source: a 3 bit signal to select the audio signal source 

(microphone line, input line, etc.). 

• Volume: a 5-bit signal to control the sound level. 

• SYNC: a synchronization signal, this signal is 

normally a 48 kHz positive pulse with a duty cycle of 

6.25 % (16/256). SYNC is sampled on the rising edge 

of AUDBIT-CLK, and the codec takes the first 

positive sample of SYNC as defining the start of a 

new AC Link frame (see [9]). 

• SDATA_OUT: The serial data representing the audio 

output signal sent to the LM4550 chip for the 

Digital/Analog conversion after the processing stage.  

• RESET: Initialization signal to reset the conversion 

operation. 

 

There are two internal signals to synchronize the main 

AC'97 controller with the command state machine 

AC-97_CMD" (a small FSM (Finite State Machine) to set up 

codec's registers). One of these signals pulses every 20us and 

the other is a signal used for error checking during the tag 

phase, for more details on the serial frame input/output see 

[10], [12]. 

 

 
Fig. 2.  The VHDL driving code for the LM4550 AC’97 codec working 

principle designed by Tony Storey and Scott Larson [11]. 

 

 
Fig. 3.  Basic diagram of the FPGA-based audio processing system. 
 

Before starting the implementation of the desired 

algorithms, it is very important to practically check the 

proper working of the hardware (the ATLYS board and the 

LM4550 chip) as well as the controller of the LM4550 driver 

written in VHDL. To carry out this operation, we used the 

ISE compiler of XILINX according to the following steps: 

1) Creation of a new project under ISE. 

2) Addition of new VHDL source top.vhd to collect the 

different components. 

3) Addition of the LM4550 driver VHDL component 

written by Tony Storey and Scott Larson [11] to the 

created project. 

In this phase, the aim is to test the LM4550 chip before 

any other step, so we drive the data issued from the LM4550 

ADC directly to the LM4550 DAC without any changes. The 

LM4550 can convert 18-bit of parallel data to serial data to 

interface the LM4550 chip with the FPGA and recover the 

18-bit data serially after the processing phase, in fact, there is 

no processing in this stage; the 18-bit audio signal is driven 

directly to the output Fig. 3. 

Regarding the sound level control, we avoided using the 

switches for that as done in [11], we proposed a more 

practical method where we invoked two push buttons on the  

ATLYS board, the following VHDL code is proposed to 

control the volume with the buttons; where clk2h is a clock 

which has a frequency of 2 Hz (0.5 seconds), this clock is 

used to control the rate of changing of the sound level if we 

continuously pushed the buttons btn1 and btn0 (see the 

following listing). 

 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Sound_vol_proc: process(clk2h, btn1, btn0, 

                        max_vol, min_vol) 

begin 

  if rising_edge(clk2h) then  

           if (btn1 = '1' and max_vol ='0') then 

           Vol <= Vol + 1; 

           elsif (btn0 = '1'and min_vol ='0') then 

           Vol <= Vol - 1; 

           end if; 

end if:    

end process Sound_Vol_proc; 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

max_vol <= '1' when Vol = "11111" else 

                     '0'; 

min_vol <= '1' when Vol = "00000" else 

                    '0'; 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

 

After instantiating different components, we added the 

constraints file (\textit{.ucf} ) that must be utilized to assign 

FPGA I/O pins correctly. After the synthesis process, the 

final step is the generation of the programming file (bitstream) 

to configure the FPGA. After the configuration; we use a 

laptop as an audio source and a speaker to playback the audio 

signal. We also used an oscilloscope to visualize the audio 

signal in real-time as shown in Fig. 4. 

 

 
Fig. 4. Real-time verification of the hardware used for the implementation. 

 

III. AUDIO EFFECTS IMPLEMENTATION USING XSG 

This section is devoted to presenting the implementation 

steps of some audio effects' systems, namely the Echo and 

Flanger effects using XSG. The systems are designed and 

simulated separately under Simulink, then collected in one 

system for implementation later. After simulation, the whole 

system is then exported as one component to the previously 

created project under ISE.   
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A. The Echo Effect System’s Designing 

One of the simplest effects yet most ubiquitous is the 

Echo effect, which is sometimes also called the delay effect. 

It can be found in many different applications. In this section, 

we will present the steps for implementing the system which 

adds the echo effect to an audio signal on FPGA.  

 Let us first recall the operating principle of the Echo effect, 

this effect can simply be considered as a delay of the audio 

signal Fig.5. It is produced by repeating the original audio 

signal after a fixed period of time. This effect is extremely 

applied in microphones and stereos. A FIR filter with a single 

delay will achieve this effect. The difference equation for the 

FIR filter can be written as follows: 

 

𝑌[𝑛] =  𝑋[𝑛] +  𝑎 × 𝑋[𝑛 − 𝐷]                     (1) 
 

where  𝑌[𝑛] is the output audio signal, 𝑋[𝑛]  the input audio 

signal, 𝐷  the delay applied, and  𝑎  the gain of the echo 

effect. 

The key to implementing the Echo effect is memory; we 

need to have a memory to save a version of the audio signal 

(delay) to add it to the original signal after a certain time. 

Note that the memory size represents the Echo delay, in other 

words; it represents the 𝐷 samples. Indeed, for memories of 

small sizes, one does not need an external memory, FPGAs 

provide embedded memories called Block-RAMs or 

B-RAMs. The XC6SLX45 FPGA has 2.1 Mbits of fast 

block-RAM. The Fig.6 shows the XSG-based design of the 

echo effect system. Details of some blocks are given as 

follows: 

• From Multimedia File: The role of this block is to 

import the audio signal from a file, the audio signal 

is mono, with 44100 Hz sampling frequency and 16 

bits of size. 

• Sound_in: This block has the role of converting the 

16-bit audio data of double-precision to an 18 bit 

fixed point precision. 

• Gain a: Represents the gain in the attenuation of the 

Echo effect. 

• Single Port RAM : This block represents the 

configuration interface of the used memory, this 

block can be configured as shown in the Fig.7; 

where depth represents the memory size, D = 10000. 

The delay  𝑟   can be calculated as follows: 𝑟 =
 𝐷/44100 =  226 𝑚𝑠  . For more information 

about the configuration of the BRAM, see [13]. 

• Counter : It is a counter to control the addresses of 

memory (memory reading). 

 

 
Fig. 5.  Basic diagram of the echo effect system. 

 

• Sound_out : This block has the role of converting 

back the 18-bit fixed-point precision to double 

precision. 

• To Audio Device: This block has the role of 

exporting the processed signal to the PC sound 

equipment (sound card) to listen to the result in real 

time. 

The obtained result of simulation was sent to the speaker 

and showed clearly the Echo effect on the original audio 

signal. A portion of the obtained result was also presented on 

the Fig. 8. 

 

 
Fig. 6. The XSG-based design of the Echo effect system. 

 

 
Fig. 7. The configuration interface of the BRAM. 

 

 
Fig. 8. The Echo effect system simulation result. 

 

B. The Flanger Effect System’s Designing 

The Flanger effect is mathematically similar to the Chorus 

effect and the Echo effect, but it sounds quite different. The 

Flanger effect is similar to what we experience when a jet 

plane flies over our heads. The direct sound from the jet is 

mixed with the sound reflecting off the ground, which has a 

time-varying delay due to the jet’s movement. Like the 

Chorus effect, the Flanger effect is quite popular with guitar 

players and it can frequently be found in their pedalboards 

and in their racks [1]. 

Contrary to the conception of the echo effect system 

where the value of delay  𝐷  is fixed, the Flanger filter has a 

variable delay, it changes periodically. The difference 

equation for the Flanger filter can be written as follows: 

 

𝑌[𝑛] =  𝑋[𝑛] +  𝑎 × 𝑋[𝑛 − 𝐷(𝑛)]                 (2) 

 

The delay  𝐷 [𝑛]  is no longer fixed, it is periodic, in 

general, a sinusoidal oscillator is used for this. Flanger 

emulation is performed using a variable delay line controlled 
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by the oscillator. Fig.9 shows the basic structure Flanger 

effect system. 

The configuration of the Flanger effect system presented 

in Fig. 9 has several variable parameters. The depth values 

for the Flanger effect generally vary from 1 to 10 ms with a 

delay center of 5 𝑚𝑠 or less and a very slow scan rate (0.15 

Hz). The delay line output is mixed with the input signal and 

the relative mix level (gain) value controls the strength of the 

Flanger effect. Decreasing this value creates a more subtle 

Flanger effect. The sweep oscillator is used to move the 

variable tap back and forth around a nominal delay time 

(center). A typical sweep rate is slow, around 0.1 to 0.5 Hz, 

but can vary from 0.01 Hz up to around 10 Hz at the 

maximum [14]. 

 

 
Fig. 9. The Flanger effect system’s basic structure [14]. 

 

The implementation of the Flanger effect system using 

XSG is almost similar to the Echo effect except the delay is 

now variable and controlled by a sinusoidal oscillator. There 

are several methods to implement trigonometric functions in 

XSG, one of these methods is using a Direct Digital 

Synthesizer (DDS). 

 

 
Fig. 10. Signal flow through the DDS architecture [15]. 

 

A DDS is a method used to create arbitrary waveforms 

from a single fixed frequency reference clock. It is used in 

applications such as signal generation, local oscillators in 

communication systems, function generators, mixers, 

modulators, sound synthesizers [15]. A major advantage of a 

DDS is that its output frequency, its phase, and its amplitude 

can be manipulated precisely and quickly under a digital 

control of a processor. Other inherent attributes of DDS 

include the ability to tune into the extremely fine frequency 

and   phase   resolution,   and   to   "jump"  quickly   between 

frequencies. These combined features have made this 

technology popular in military radar and communication 

systems. The basic principle of a DDS is shown in Fig. 10. 

The phase accumulator is actually a module-M counter 

that increments its stored number each time it receives a 

clock pulse. The magnitude of the increment is determined by 

the binary coded input word (M). This word forms the phase 

step size between reference-clock updates; it effectively sets 

how many points to skip around the phase wheel. The larger 

the jump size is, the faster the phase accumulator overflows 

and completes its equivalent of a sine-wave cycle [15]. The 

sinusoidal wave frequency can be calculated as follows: 

 

𝐹𝑜𝑢𝑡 =
∆𝜃 × 𝐹𝑐

2𝑁
                                      (3) 

 

where: 

 

𝐹𝑜𝑢𝑡 : The output frequency of the sine wave. 

∆𝜃   :  Phase increment value. 

𝐹𝑐    :  The reference clock frequency. 

𝑁    :   Length of the phase accumulator in bits. 

 

Any changes in the value of ∆𝜃 leads to immediate and 

continuous changes in the output frequency. 

In fact, XSG contains a very rich DDS block, the Fig.11 

presents the block as well as the main window for its 

configuration, where we can define the phase and the 

amplitude sizes of the output in binary, for more information 

about XSG DDS compiler, see [16]. 

 

 
Fig. 11. XSG DDS block with its main configuration window. 

 

 
Fig. 12.  XSG-based Flanger effect system. 

 

 
Fig. 13. The final DDS block output. 

 

The whole Flanger effect system designed using XSG is 

presented in Fig.12. The DDS block compiler generates the 

sine wave with an amplitude that varies between 1 and -1, the 

output is then passed through the Absolute block to convert 
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the negative part of the signal into positive,  then amplified 

and rounded off by the Cmult1 block. In this case, we will 

obtain a sinusoidal wave with an amplitude that varies from 0 

to 100 (after amplification) with a single alternation as shown 

in the Fig. 13. 

 

 
Fig. 14. Simulation result of the anger effect. 

 

From the defined configuration, the delay scan interval 

varies from 0 𝑚𝑠  to 2.2 𝑚𝑠  (100 ×  (1/44100)  =
 2.2  𝑚𝑠), with a center of 1.1 ms. The final output of the 

DDS block controls a counter, then the maximum value that 

the counter can reach is defined by the sinusoidal wave phase 

value (sweep frequency), thereafter the counter will indicate 

the delay value. This delay varies periodically due to the 

sinusoidal function. The simulation result of the Flanger 

effect system applied to an audio signal is presented in Fig. 

14. 

 

IV. HARDWARE IMPLEMENTATION OF THE ECHO AND        

FLANGER EFFECTS SYSTEMS 

In this section the two designs are assembled in a one (Fig. 

15)  and  implemented on the FPGA, the  same  memory will 

be shared between the two systems using a multiplexer, this 

multiplexer will be controlled later by a switch on the 

ATLYS board. Afterward, the system is exported to the 

project created previously under ISE. In this step, the 

compiler will generate the equivalent VHDL code of the 

whole system from XSG blocks, we can use the XILINX 

token to do this. The exported files will be added as a 

component named  SYS_CP (Fig.16) to the top.vhd source, 

the component has six inputs and one output: 

• clk44100 : A 44.1 kHz clock input incoming from a 

clock divider subprogram. 

• SOUND_IN : The audio input vector of 18 bits of 

size (original audio signal) incoming from the 

LM4550 driver component (LM4550_CP). 

• ce : An activation input always fixed to 1. 

• SW : A switch to control the MUX. 

• delta_plus, delta_minus : signals came from the 

ATLYS on board buttons to control the phase 

increment value ∆𝜃  and therefore control the 

scanning frequency amount. 

• SOUND_OUT : The audio output vector of 18 bits 

of size (audio signal after processing) routed to the 

LM4550 driver component. 

After the generation of the programming file and 

configuring the board, we can confirm the good results 

obtained by hearing the output audio on the speakers.  

 
Fig. 15. Designs assembling and memory sharing. 

 

 
Fig. 16. Adding the whole design as a component on the ISE created project. 

 

V. CONCLUSION 

Through this work, we have transferred some experience 

in designing digital systems in general, and more specifically 

audio processing systems using XSG and ISE tools and 

presenting their FPGA-based hardware implementation steps. 

It is a good opportunity to understand how the widely used 

LM4550 AC'97 audio codec works and how to interface it 

with FPGA using VHDL. Two examples of audio processing 

systems have been studied and designed in this work, namely 

the Echo effect and the Flanger effect systems. In fact, giving 

an idea of how these two systems can be designed and 

implemented in real-time is sufficient, because many other 

audio processing systems can be easily derived from these 

two ones. Chorus, Vibrato, Phaser, Time-Varying and 

Fractional Delays effects, and other special effects such as; 

Reverberation and Schroeder’s Reverb have in fact the same 

concept as the implemented systems, of course, with some 

modifications.  What should be taken into account is that the 

XSG library is richer by a lot of blocks of different 

arithmetical operation and processing components, the 

designer can follow the steps presented in this work, and 

easily design any processing audio system using XSG, 

generate its equivalent VHDL and put the designed system as 

a component on the same project, and follow the same steps 

to program the FPGA (any development board based on 

Xilinx FPGAs and has the same AC'97 codec can be used 

with minor modifications on this project). 
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