

Abstract—MILS partition scheduling module ensures

isolation of data between different domains completely by

enforcing secure strategies. Although small in size, it involves

complicated data structures and algorithms that make

monolithic verification of the scheduling module difficult using

traditional verification logic (e.g., separation logic). In this

paper, we simplify the verification task by dividing data

representation and data operation into different layers and then

to link them together by composing a series of abstraction

layers. The layered method also supports function calls from

higher implementation layers into lower abstraction layers,

allowing us to ignore implementation details in the lower

implementation layers. Using this methodology, we have

verified a realistic MILS partition scheduling module that can

schedule operating systems (Ubuntu 14.04, VxWorks 6.8 and

RTEMS 11.0) located in different domains. The entire

verification has been mechanized in the Coq Proof Assistant.

Index Terms—MILS, separation kernel, formal methods,

layered methodology.

I. INTRODUCTION

MILS (Multiple Independent Levels of Security and Safety)

architecture is based on the idea of separation [1], building

multiple separate domains with different security levels on

the same hardware platform. As a critical module, the MILS

scheduling module enforces secure strategies, which ensures

data are completely isolated between domains [2], [3]. For

example, when a VCPU is ready to switch to another partition,

it must clear the contents of the previous partition to ensure

its partition security. In order to ensure data isolation

properties of the MILS architecture, it is important to verify

the implementation of its schedule module. Incorrect

implementation of a schedule function can invalidate

essential isolation properties and even crash the entire

system.

α1 α2 α3

...
i

Fig. 1. Single linked list structure.

However, the verification of the schedule module of

foundation software system is a difficult task because it is

usually written in a low-level language that makes use of

Manuscript received February 9, 2021; revised July 23, 2021.

Yang Gao, Xia Yang, Wensheng Guo, and Xiutai Lu are with School of

Information and Software Engineering University of Electronic Science and

Technology of China, Chengdu, China (e-mail: gyang@std.uestc.edu.cn,

xyang@uestc.edu.cn, gws@uestc.edu.cn, 1158829283@qq.com) .

linked list with multi pointers, and it is usually not written

with verification in mind. For example, to formal specify a

simple single linked list as shown in Fig. 1, we need to write

down the following specifications and notations using

traditional separation logic [4] as shown in Fig. 2.

Although the traditional separation logic has capability of

representing simple linked lists intuitively, it is not suitable

for specifying and reasoning more complex linked lists as its

data representation and data operation are mixed in a same

layer. However, for performance considerations, the queue in

the MILS scheduling module is usually implemented by a

complex multi-pointer domain linked list. If the traditional

separation logic method is used to model the linked list, the

reasoning process is extremely complicated and difficult,

which may cause the entire verification work to fail. A

promising approach to the above problems is to build

multiple layers with more abstract computation models as

smaller abstractions tend to be easier to prove and maintain,

while larger abstractions can be still achieved by composing

the smaller ones. Unfortunately, creating abstract models and

linking across them is seen as ad-hoc and tedious additional

work in the traditional separation logic community.

Fig. 2. Separation specifications and notations of a single linked list.

In this paper we show how to reduce the effort required to

define specifications and linking, so that complex code

Formal Verification of MILS Partition Scheduling Module

Using Layered Methods

Yang Gao, Xia Yang, Wensheng Guo, and Xiutai Lu

International Journal of Future Computer and Communication, Vol. 10, No. 4, December 2021

45doi: 10.18178/ijfcc.2021.10.4.578

mailto:gyang@std.uestc.edu.cn
mailto:xyang@uestc.edu.cn
mailto:gws@uestc.edu.cn

verification using layered methods becomes an effective

approach. More precisely, our paper makes the following

contributions:

1) We present a layered methodology with separation

logic for quickly defining multiple abstract models

and their verification layers.

2) We show how our methodology can be used to define

and link different abstraction and implementation

layers.

3) We show how to hierarchize MILS scheduling

modules and define abstract models for each layer of

the scheduling modules.

The rest of this paper is organized as follows. In section 2,

we introduce the scheduling module of MILS. In section 3,

we propose a proof plan for the MILS scheduling module. In

section 4, we take the function of the scheduling module as an

example to introduce the proof method and proof process. In

section 5, we explain related work and summary this paper.

II. THE OVERVIEW OF MILS SCHEDULING MODULE

A. MILS Scheduling Module

void rtsc_vcpu_insert(const struct scheduler *ops, struct vcpu *vc)；

Feature: Insert a VCPU in the ready queue.

Parameters: ops: Scheduler structure variable, which stores the ready queue

 vc: VCPU to be inserted into the ready queue

Return：None

void rtsc_vcpu_remove(const struct scheduler *ops, struct vcpu *vc)；

Feature: Remove a VCPU from the ready queue

Parameters: ops: Scheduler structure variable, which stores the ready queue

 vc: VCPU to be removed

Return：None

struct task_slice rtsc_schedule(const struct scheduler *ops, s_time_t now,

 bool_t tasklet_work_scheduled)；

Feature: The core scheduling function, select a VCPU to run when scheduling is triggerd

Parameters: ops: Scheduler structure variable

 now: Time to trigger the schedule

 tasklet_work_scheduled: Task scheduling status

Return：Return to the next time slice description(the run time, next VCPU, etc)

void rtsc_vcpu_sleep(const struct scheduler *ops, struct vcpu *vc)；

Feature: When the VCPU is sleeping, remove the VCPU from the ready queue.

Parameters: ops: Scheduler structure variable

 vc: VCPU to sleep

Return：None

void rtsc_vcpu_wake(const struct scheduler *ops, struct vcpu *vc)；

Feature: When waking up a VCPU, insert the VCPU into the ready queue

Parameters: ops: Scheduler structure variable

 vc: VCPU being awakened

Return：None

void rtsc_context_saved(const struct scheduler *ops, struct vcpu *vc)；

Feature: When switching context at the end of scheduling, insert the last VCPU that was swapped out

into the ready queue

Parameters: ops: Scheduler structure variable

 vc: The last VCPU

Return：None

Fig. 3. Analysis of key functions of MILS scheduling module.

In the trusted separation kernel of the MILS architecture,

the purpose of the scheduler is to select the most suitable

VCPU from the VCPU’s ready queue according to a certain

scheduling algorithm to occupy PCPU. This paper uses a

scheduling algorithm based on fixed priority [5]. This

algorithm can ensure that real-time tasks in the strong

real-time domain can be completed on time. Its key functions

are shown in Fig. 3.

. Our proof of the scheduling module is the proof of these

key functions

In the next section, we will use our verification method to

propose a verification plan for these functions.

III. OVERVIEW AND PLAN FOR VERIFICATION

Through the analysis of these functions in Fig. 3 and the

source code, we divide the MILS scheduling module into six

abstract models (Fig. 4). And the different models are

connected to each other through function call relationships.

From bottom to top:

Abstract model of VCPU, DOMAIN and the linked list:

This model introduces read and write operations of

VCPU-related data (vcpu_get/set), read and write operations

of DOMAIN-related data, read and write operations of linked

list node.

Abstract model of linked list add/delete/initialize operation:

This model introduces fixed-point insertion and deletion

operations to the linked list and initialization operation for the

linked list (list_add/del_tail/init).

Abstract model of linked list initialization and deletion

function: This model introduces linked list deletion and

initialization operation (list_del_init).

Abstract model of interrupt queue insertion function,

pick/delete suitable VCPU function: This model introduces

the insertion operation of the interrupt queue (irqq_insert),

the picking and deleting VCPUs operations from the ready

queue (vcpu_pick/rm_q).

Abstract model of ready queue related operations: This

model introduces ready queue insertion and update

operations. (runq_insert/update).

Abstract model of VCPU-related operation and scheduling

function : This model introduces the operations of inserting

(rtsc_vcpu_insert), deleting (rtsc_vcpu_remove) VCPU in

the ready queue, the operation of selecting VCPU when

triggering (rtsc_schedule), the operation of deleting VCPU

when it sleeps (rtsc_vcpu_sleep), the operation of inserting

VCPU to the ready queue when it is awakened

(rtsc_vcpu_wake), the operation of switching context

(rtsc_context_saved). After we decompose the MILS

scheduling module, we can separate and verify the

implementation of the upper-layer algorithm and the

lower-layer complex data structure. The advantage of this is

that after we complete the verification of the lower-layer

complex data structure, the proof of the upper-layer model

only needs to verify the function call relationship. We don’t

need to prove the complex data again. This improves

verification efficiency and saves verification time.

After we decompose the MILS scheduling module, we can

separate and verify the implementation of the upper-layer

algorithm and the lower-layer complex data structure. The

advantage of this is that after we complete the verification of

the lower-layer complex data structure, the proof of the

upper-layer model only needs to verify the function call

relationship. We don’t need to prove the complex data again.

This improves verification efficiency and saves verification

time.

In the next section, we illustrate our entire verification

process in detail. Our verification method for this function

can be applied to the verification of the entire scheduling

International Journal of Future Computer and Communication, Vol. 10, No. 4, December 2021

46

module, and even the verification of the entire MILS. It is universal.

Abstract model of VCPU-related operation
and scheduling function

rtsc_vcpu_insert

Abstract model of ready queue
related operations

vcpu_get/set domain_get/setrunq_insert/update

Abstract model of interrupt queue
insertion function, pick/delete
suitable VCPU function

list_add/del_tail

irqq_insert vcpu_get/set domain_get/set list_add/del_tail/init

Abstract model of linked list
initialization and deletion function

domain_get/setlist_del_init list_add/del_tail/init list_get/set

Abstract model of linked list add
/delete/initialize operation

list_get/set

list_add/del_tail/init vcpu_get/set domain_get/set

rtsc_vcpu_remove

vcpu_pick/rm_q

list_del_init

rtsc_schedule

vcpu_pick/rm_q

rtsc_vcpu_sleep rtsc_vcpu_wake rtsc_context_saved

list_del_init

vcpu_get/set

Abstract model of VCPU, DOMAIN
and the linked list

vcpu_get/set domain_get/set list_get/set

list_get/set

 Illustration
Function

implementation
Formal spec Abstract Function call

Fig. 4. Overall verification plan for MILS scheduling module abstract.

IV. METHODOLOGIES AND PROCESS

Fig. 5 is the framework diagram of the verification method.

The program is written and implemented in C language. All

spec definitions, functional correctness proofs, and spec

consistency proofs are completed in the Coq which is an

auxiliary theorem tool. The specific verification process is

divided into three parts:

Program
code

New code

Clight code

Formal spec in the
implementation layer

Formal spec in the
abstraction layer

refactor

convert

Spec of function

build

add

Functional correctness verification

consistency

 Fig. 5. Process architecture diagram of verification method.

The first part is the refactoring of the program code and

convert the code to Clight [6] code.

The second part is to describe the specification of the the

program’s implementation layer based on the separated logic

according to the converted Clight code, and use functional

programming to construct the specification of the program’s

abstract layer.

The third part is to add the described function specification

to the Clight code, and verify the consistency between the

functional abstraction layer and the functional

implementation layer with the corresponding Clight code.

Next, we use the function “list_add_tail” in Fig. 6 to

illustrate the entire verification process of this method.

A. The Overview of Program

Function “list_add_tail” inserts a new node at the previous

node position of the linked list’s node “head”. The insert

operation is done in function “__list_add”.

struct list_head

{

 struct list_head *next, *prev;

};

static inline void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next)

{

 next->prev =new;

 new->next = next;

 new->prev = prev;

 prev ->next = new;

}

static inline void list_add_tail(struct list_head *new, struct list_head *head)

{

 __list_add(new,head->prev,head);

}

Fig. 6. Program source code.

International Journal of Future Computer and Communication, Vol. 10, No. 4, December 2021

47

B. Refactor the Source Code (Source Code Normalization)

For some pointers, structures and other data structures in

the function, especially pointer nesting, structure nesting,

they will be converted to the corresponding nested structure

when the source code is converted. When we describe the

spec of the nested structure of these functions, it will appear

that the described specification may be too long and

complicated. As a result, the deduction strategy cannot be

identified in the actual deduction proof, which makes the

final proof impossible to complete. In order to avoid this

problem, we separate data structures (pointers, structures, etc.)

as an independent function to prove separately. In the final

function, the complex operation is just to call the independent

function, that is, when proving the final function, you do not

need to prove the complex operation, only need to prove the

calling relationship between functions, thus simplifying the

proof process.

Fig. 7 is the program code after refactoring. Pointer

operations are all encapsulated in functions. The parent

function’s verification only needs to call the encapsulation

functions’ proof result After encapsulation functions are

proved.

struct list_head

{

 struct list_head *next, *prev;

};

static list_head* get_list_head_prev(struct list_head *head)

{

 return head->prev;

}

void set_list_head_next(struct list_head *head, struct list_head *t)

{

 head->next = t;

}

void set_list_head_prev(struct list_head *head, struct list_head *t)

{

 head->prev = t;

}

void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next)

{

 set_list_head_prev(next,new);

 set_list_head_next(new,next);

 set_list_head_prev(new,prev);

 set_list_head_next(prev,new);

}

static inline void list_add_tail(struct list_head *new, struct list_head *head)

{

 struct list_head *p;

 p = get_list_head_prev(head);

 __list_add(new,p,head);

}

Fig. 7. Program code after refactoring.

C. Generate the Clight Code

We use Clightgen tool to convert C code to Clight code.

Clightgen is a tool of compiler CompCert [7]. CompCert is a

formalized compiler for the C programming language. The

Clight code after conversion by Clightgen can truly describe

C pointer and can eliminate some difficult-to-model

semantics in C language. In addition, Clightgen can factor out

function calls and assignments from inside subexpressions

(by moving them into their own assignment statements), can

Factor && and || operators into if statements (to capture short

circuiting behavior). And when the -normalize flag is used,

Clightgen can factor each memory dereference into a top

level expression, i.e. “x=a[b[i]];” becomes “t=b[i];x=a[t];”.

Clight code can be recognized by the Coq auxiliary

theorem prover, so all our specification definitions,

functional correctness proofs, and spec consistency proofs

can be completed in Coq. It ensures that the semantic gap

between different formal specs is minimized.

D. Function Specification

We use the refactored code in Fig. 7 as an example to

illustrate the difference between formal spec at different

abstraction levels. The code include the definition of the

linked list’s head structure “list_head” and the

implementation of five functions “get_list_head_prev”,

“set_list_head_next”, “set_list_head_next”, “__list_add”,

“list_add_tail”. The first three functions are used to read and

write data in the linked list, and the fourth function is used to

implement key node insertion operations.

Inductive list_head_abs : Type :=

 |List_head (next:Z) (prev:Z).

Definition list_head_pool := ZMap.t list_head_abs.

Definition get_list_prev_abs(al:Z)(lpool:list_head_pool):list_head_pool * Z:=

 match ZMap.get al lpool with

 |List_head _ aprev =>(lpool,aprev)

 end.

Definition set_list_head_next_abs(lpool:list_head_pool)(ah:Z)(nv:Z):

list_head_pool:=

 match ZMap.get ah lpool with

 |List_head next prev=>ZMap.set ah (List_head nv prev) lpool end.

Definition set_list_head_prev_abs(lpool:list_head_pool)(ah:Z)(pv:Z):

list_head_pool:=

 match ZMap.get ah lpool with

 |List_head next prev=>ZMap.set ah (List_head next pv) lpool end.

Definition list_add_tail_abs(new:Z)(head:Z)(lpool:list_head_pool):

list_head_pool:=

 let p:=snd (get_list_prev_abs head lpool) in

 list_add_abs lpool new p head.

Fig. 8. Formal spec in the abstraction layer for the insertion of the linked list

node.

1) Formal spec in the abstraction layer. “List_head_abs” is

the formal spec of the linked list node struct. “Z” is a

built-in type of Coq that describes integers in

mathematics. “list_head_pool” defines a set of

“list_head” types. “get_list_prev” reads the node of the

linked list, so the post-state of the list set remains

unchanged after executing this function.

“set_list_head_next” and “set_list_head_prev” can set

the list, the post-state of the linked list set is set to the

correct goal state after they are executed. As shown in

Fig. 8, in “set_list_head_next_abs” and

“set_list_head_prev_abs, lpool” uses “ZMap.set”

operator in Coq to update their linked list set’s value.

2) Formal spec in the implementation layer. linked list node

that we define describes the program logic of the

function in a high level of abstraction. It is conducive to

the reasoning and validation of program logic, but the

structure used is too abstract to establish relation with C

structure, which increases the difficulty of consistency

verification between formal specs and program source

code. Therefore, we use VST validation tool [8] to build

the formal spec of functional implementation layer and

prove the correctness of program function, consistency

of spec between the implementation layer and the

abstract layer based on this spec. Finally, we derive the

consistency of spec between the abstraction layer and the

International Journal of Future Computer and Communication, Vol. 10, No. 4, December 2021

48

source implementation. VST is a C language verifiable

tool based on separation logic, we use it to formalize API

function specs, including the data structure of API

operations, preconditions of API functions (assumptions

for input parameters and global variables),

postconditions of API functions (the updated guarantees

for return values and global variables). To formalize a C

language function using VST, you need to follow the

following code as Fig. 9. “PROP(P)LOCAL(Q)SEP(R)”

represents the pre- and post-conditions of spec. “P” is a

list of proposition, “Q” is a list of bound local global

variables, “R” is the list of predicates of separate logic,

“WITH” is used to describe the logical variable “v” ,

which is an abstract mathematical variable that can be

referenced by pre- and post-conditions. Formal spec of

three functions in the implementation describes actions

for the linked list in a way that is very close to C code in

Fig. 10 and Fig. 11. Fig. 10 shows an action for getting

the linked list node, It is consistent with the execution of

the function “get_list_head_prev” in Fig. 7. Fig. 11

shows an action for setting the linked list node, it is

consistent with the execution of the function

“set_list_head_next” in Fig. 7. The spec of the second

function “set_list_head_prev” is similar to

“set_list_head_next”, so we won’t describe it here.

“SEP” uses separation logic assertions “field_at Tsh

t_struct_list_head [] (Vundef,Vundef)” to describe the

contents of the structure “list_head”. Function

“__list_add” and “list_add_tail” implement their

functions by calling intermediate functions, so when we

prove that these intermediate functions are correct,

function “__list_add” and “list_add_tail” are also correct.

The spec in implementation layer of these two functons

does not need to define predicate logic. So, we won’t

introduce them here.

Definition func_spec:=

 DECLARE _func WITH v

 PRE [params] PROP(P) LOCAL(Q) SEP(R)

 POST [returns] PROP(P) LOCAL(Q) SEP(R)

Fig. 9. The VST spec writing format.

Definition get_list_head_prev_spec:=

 DECLARE _get_list_head_prev

 WITH ch:val, cp:val

 PRE [_head OF (tptr t_struct_list_head)]

 PROP () LOCAL (temp _head ch)

 SEP(field_at Tsh t_struct_list_head [] (Vundef,cp) ch)

 POST [tptr t_struct_list_head]

 PROP () LOCAL (temp ret_temp cp)

 SEP(field_at Tsh t_struct_list_head [] (Vundef,cp) ch).

Fig. 10. Formal spec the implementation layer for getting the linked list

node.

3) Consistency between the abstraction layer and the

implementation layer. Since our description of the state

predicates in the spec of the implementation layer is

consistent with the linked list data structure in Fig. 7,

there is no data abstraction relationship between the

implementation layer spec and the source code.

Therefore, the consistency proof between the

implementation layer spec and the code implementation

only requires the functional correctness proof. But for

the consistency proof between the implementation layer

and the abstraction layer, we need to define the relation

between the implementation layer and the abstraction

layer. We use “lpool” to indicate the linked list which is

formalized in the abstraction layer. We use “ch” to

indicate the linked list which is formalized in the

implementation layer. And the relation between the

above two should satisfy: for any address “i”, if address

“ch“ of the linked list node in the implementation layer is

evaluated at “i”, and the value of this node is “(cn,cp)”,

the subscript of linked list node in the abstraction layer is

evaluated at “i”, the value of this node is “List_head an

ap”, Then, the value of an should be equal to “cn”, and

the value of ap should be equal to “cp”. This relation can

be described in formal language as Fig. 12. We can add

the above relation to the “SEP”’s predicate logic of the

function to be proved, when we do the proof, we will

prove the above consistent relation. If there is no

problem with the proof, it can be proved that the

abstraction layer and the implementation layer satisfy

the above relation, and they are consistent.

Definition set_list_head_next_spec:=

 DECLARE _set_list_head_next

 WITH cl:val, tv:Z

 PRE [_head OF(tptr t_struct_list_head), _t OF (tptr t_struct_list_head)]

 PROP () LOCAL(temp _head ch;temp _t (Vint (Int.repr tv)))

 SEP(field_at Tsh t_struct_list_head [] (Vundef,Vundef) ch)

 POST[tvoid]

 PROP() LOCAL()

 SEP(field_at Tsh t_struct_list_head [] ((Vint (Int.repr tv)),Vundef) ch).

Definition set_list_head_prev_spec:=

 DECLARE _set_list_head_prev

 WITH ch:val, tv:Z

 PRE [_head OF(tptr t_struct_list_head), _t OF (tptr t_struct_list_head)]

 PROP () LOCAL(temp _head ch;temp _t (Vint (Int.repr tv)))

 SEP(field_at Tsh t_struct_list_head [] (Vundef,Vundef) ch)

 POST[tvoid]

 PROP() LOCAL()

 SEP(field_at Tsh t_struct_list_head [] (Vundef,(Vint (Int.repr tv))) ch).

Fig. 11. Formal spec in the implementation layer for setting the linked list

node.

Fig. 12. the consistency relationship between the implementation layer and

the abstraction layer.

E. Functional Correctness Verification

We use the VST’s proof tactic to help us prove the theorem,

and we need to follow the spec in Fig. 13.

The predicate “semax_body” states the Hoare tripe of the

function body, ∆ |—{P}C{Q}. P and Q are taken from the

spec which we define in function implementation layer. C is

the body of function, and the type-context ∆ is calculated

from the global type-context overlaid with the parameter- and

International Journal of Future Computer and Communication, Vol. 10, No. 4, December 2021

49

local-types of the function.

When we derive the theorem through the tactic

“start_function”. our proof goal will be transformed into the

Hoare triple. Then we will use some proof tactics that VST

provides to prove the Hoare triple. If it proves successful, it

shows that the function has functional correctness. That is,

this function is safe. Next, we take the function

“set_list_head_prev” as an example to illustrate the whole

proof process. Fig.14 is this function’s proof code.

Definition Vprog : varspecs. mk_varspecs prog. Defined.

Definition Gprog : funspecs := ltac:(with_library prog (func1_spec;func2_spec;]).

Lemma body_func_spec: semax_body Vprog Gprog f_func fcunc_spec.

Proof.

 start_function.

 [Proof_Tactics].

Qed.

Fig. 13. proof spec in VST.

Lemma body_set_list_head_prev: semax_body Vprog Gprog

f_set_list_head_prev set_list_head_prev_spec.

Proof.

 start_function.

 Intros cp;Intros anext;Intros ap.

 forward. forward.

 Exists (Vint (Int.repr tv)).

 Exists anext;Exists tv.

 unfold set_list_head_prev.

 inversion H2.

 entailer!. rewrite ZMap.gss. auto.

Qed.

Fig. 14. “set_list_head_prev” proof code.

After tactic “start_function” is executed, the proof goal

becomes as Fig. 15.

Espec : OracleKind

ch : val

tv : Z

lpool : list_head_pool

ah : Z

Delta_specs : PTree.t funspec

Delta := abbreviate : tycontext

H : 0 <= tv <= Int.max_unsigned

POSTCONDITION := abbreviate : ret_assert

MORE_COMMANDS := abbreviate : statement

______________________________________(1/1)

semax Delta

 (PROP ()

 LOCAL (temp _head ch; temp _t (Vint (Int.repr tv)))

 SEP (EX cp : val,

 (EX anext : Z,

 (EX ap : Z,

 !! (0 <= ap <= Int.max_unsigned /\

 Vint (Int.repr ap) = cp /\

 List_head anext ap = ZMap.get ah lpool) &&

 field_at Tsh t_struct_list_head [] (Vundef, cp) ch))))

 ((_head -> _prev) = _t;

 MORE_COMMANDS) POSTCONDITION
Fig. 15. the proof goal after excuting “start_function.”

Below the line we have one proof goal: the Hoare triple of

the function body. The command P is the

“PROP()LOCAL()SEP()” clause of the preconditions in

“set_list_head_prev_spec”. The contents of “PROP()” clause

has been mentioned above the line as a hypothesis. We do

Hoare logic proof by forward symbolic execution. We follow

the C code execution order, statement by statement to prove.

So the command C shows only one function statement

“_head->_prev=_t”. The remaining function statements are

hidden in “MORE_COMMANDS”.

For many kinds of statements (assignment, return, break,

continue), we derive them by the forward tactic, which

applies a strongest-postcondition style of proof rule to derive

Q.

After we execute the forward more time, the proof target

becomes as Fig. 16.

The proof goal becomes an entailment in separation logic,

P→Q. VST use “ENTAIL ∆,P⊢ Q” for this entailment, and

provide the “entailer!” tactic to derive the entailment.

 And in the end, the successful derivation of all the proof

goals means that the proof of our function is completed, the

function is functionally correct and the function spec is

consistent.

Espec : OracleKind

ch : val

tv : Z

lpool : list_head_pool

ah : Z

Delta_specs : PTree.t funspec

H : 0 <= tv <= Int.max_unsigned

anext, ap : Z

H0 : 0 <= ap <= Int.max_unsigned

H2 : List_head anext ap = ZMap.get ah lpool

Delta : tycontext

PNch : is_pointer_or_null ch

H3 : is_pointer_or_null (Vint (Int.repr tv))

H4 : field_compatible t_struct_list_head [] ch

H5 : value_fits t_struct_list_head (Vundef, Vint (Int.repr tv))

______________________________________(1/1)

field_at Tsh t_struct_list_head [] (Vundef, Vint (Int.repr tv)) ch

|-- EX cp : val,

 (EX anext0 : Z,

 (EX ap0 : Z,

 !! (0 <= ap0 <= Int.max_unsigned /\

 Vint (Int.repr ap0) = cp /\

 List_head anext0 ap0 = ZMap.get ah (set_list_head_prev lpool ah tv))

&&

 field_at Tsh t_struct_list_head [] (Vundef, Vint (Int.repr tv)) ch))

Fig. 16. the intermediate proof goal after executing the second forward

tactic.

V. RELATED WORK AND CONCLUSION

The team of the Department of Computer Science at the

University of Tokyo verified the memory management

provided by the Topsy Operations Department [9]. The

memory management module of the Topsy kernel uses the

heap mode to provide basic dynamic memory allocation

functions: memory initialization, memory allocation,

memory release, and organizes the free memory pool through

the block linked list method. They use Coq as a formal tool to

define the implementation of the memory allocation

algorithm, describe algorithm assertions and specifications

through separation logic, and finally prove the correctness of

the code interactively in Coq. However, the memory

allocation algorithm of the Topsy operating system is too

simple. Its verification is limited to verification at the code

level, and it is not verified for higher levels. Its verification

method is not universal.

The Australian NICTA laboratory initiated the functional

correctness verification of the SeL4 (secure embedded L4)

[10]. They innovatively adopted a functional language

Haskell as an intermediate verification to quickly implement

the system prototype, which on the one hand can make the

International Journal of Future Computer and Communication, Vol. 10, No. 4, December 2021

50

system prototype more convenient to transform into the

theorem prover, on the other hand, the formal verification

results can be quickly fed back to the system designer

through the Haskell prototype [11]. But the work of Sel4

doesn’t perform layered verification of the system, the

verification degree is low, and the verification efficiency is

low. Klein introduced the final verification results in the

report [12]. The SeL4 kernel contains more than 8,700 lines

of C code, and more than 200,000 lines of Isabelle/HOL code

that has been formally defined and proven. This work takes a

total of 20 man-years of work.

The Flint team at Yale University verified the functional

correctness [13] and security properties [14] of the CertiKOS

kernel. The CompCert compiler we use is the basis of this

project. The project adopts a layered verification method to

layer the functional structure of CertiKOS, and each layer is

verified independently, which greatly improves the

verification efficiency. At the beginning of the design,

CertiKOS followed the code structure with simple structure,

clear hierarchy, and low coupling between different modules.

Therefore, based on the above verification method, the

functional correctness verification of more than 3000 lines of

C code and assembly code only took 1 person-year.
Compared with the SeL4 project, its verification efficiency is

improved several times. However, the code of the CertiKOS

project does not support pointer linked lists, and for complex

data structures such as pointer linked lists, this verification

method is not applicable.

The traditional VST verification method supports

separation logic and can be used to verify pointer programs,

but this method does not separate data representation from

operation. For more complex data structures, there will be

problems such as complex specifications and high inference

difficulty.

Our verification method, on the one hand, is based on the

idea of layered verification, which can improve the efficiency

of code verification. We use our method to verify function

“list_add_tail”. Its refactored C code (including data

structure) has 32 lines. The Coq code we use is only 320 lines

in total, and the Coq code that requires manual handwriting is

only 190 lines. On the other hand, our method can verify the

data structure of the pointer linked list, and uses a method of

separating data representation and operation, which greatly

simplifies the difficulty of verification.

We take the function “list_add_tail” in the MILS

scheduling module as an example to show a proof method.

We first separate the complex structure of the function, use

independent functions to encapsulate the complex structure,

use the Clightgen tool of CompCert to convert the code into

Clight code, then build this function’s spec of the abstraction

layer and implementation layer and finally prove the

consistency of the function’s spec of the abstraction layer and

the implementation layer, and proves the functional

correctness of this function. This method can simplify the

proof of complex data structures, which not only be applied

to the proof of the doubly linked list in this example, but also

the proofs of other complex data structures.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Yang Gao, conceptualization, methodology development,

data curation, software programming, validation,

writing–original draft.

Xia Yang, supervision, project administration,

writing–review and editing

Wensheng Guo, Supervision, writing–review and editing.

Xiutai Lu, investigation, resources.

All authors had approved the final version.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their

valuable help and useful comments. Our colleagues also

kindly provided their helpful insights while the trusted

operating system architecture was being certified.

REFERENCES

[1] J. M. Rushby, “Design and verification of secure systems,” ACM

SIGOPS Operating Systems Review, 1981, vo. 15, no. 5, pp. 12-21.

[2] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling framework

for virtual clustering of multiprocessors,” in Proc. 2008 Euromicro

Conference on Real-Time Systems, 2008, pp. 181-190.

[3] A Guasque, P. Balbastre, and A. Crespo, “Real-time hierarchical

systems with arbitrary scheduling at global level,” Journal of Systems

and Software, 2016, vol. 119, pp. 70-86.

[4] J. C. Reynolds, “Separation logic: A logic for shared mutable data

structures,” in Proc. 17th Annual IEEE Symposium on Logic in

Computer Science, IEEE, 2002, pp. 55-74.

[5] R. I. Davis and A. Burns, “Hierarchical fixed priority pre-emptive

scheduling,” in Proc. 26th IEEE International Real-Time Systems

Symposium (RTSS'05), 2005, vol. 10, p. 398.

[6] S. Blazy and X. Leroy, “Mechanized semantics for the Clight subset of

the C language,” Journal of Automated Reasoning, 2009, vol. 43, no. 3,

pp. 263-288.

[7] R. Krebbers, X. Leroy, and F. Wiedijk, “Formal C semantics:

CompCert and the C standard,” in Proc. International Conference on

Interactive Theorem Proving, Springer, Cham, 2014, pp. 543-548.

[8] Q. Cao, L. Beringer, S. Gruetter et al., “VST-Floyd: A separation logic

tool to verify correctness of C programs,” Journal of Automated

Reasoning, 2018, vol. 61, no. 1-4, pp. 367-422.

[9] G. Fankhauser, C. Conrad, E. Zitzler, and B. Plattner, “Topsy - A

Teachable Operating System,” 2000.

[10] J. Liedtke, “On micro-kernel construction,” ACM SIGOPS Operating

Systems Review, 1995, vol. 29, no. 5, pp. 237-250.

[11] G. Heiser, K. Elphinstone, I. Kuz et al., “Towards trustworthy

computing systems: Taking microkernels to the next level,” ACM

SIGOPS Operating Systems Review, 2007, vol. 41, no. 4, pp. 3-11.

[12] G. Klein, K. Elphinstone, G. Heiser et al., “L4: Formal verification of

an OS kernel,” in Proc. ACM SIGOPS 22nd Symposium on Operating

Systems Principles, 2009, pp. 207-220.

[13] R. Gu, “An extensible architecture for building certified sequential and

concurrent OS kernels,” Yale University, 2016.

[14] M. Liu, L. Rieg, Z. Shao et al., “Virtual timeline: a formal abstraction

for verifying preemptive schedulers with temporal isolation,” in Proc.

ACM on Programming Languages, 2019.

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Yang Gao is a post graduate of School of Information

and Software Engineering, Electronic Science and

Technology of China. His current research is focused

on the embedded operating systems and formal

verification.

International Journal of Future Computer and Communication, Vol. 10, No. 4, December 2021

51

https://creativecommons.org/licenses/by/4.0/

Xia Yang is an associate professor of School of

Information and Software Engineering, Electronic

Science and Technology of China. Her research

interests include Software formalization theory and

methods, blockchain and its formal verification,

high-confidence embedded operating system,

embedded virtualization technology.

Wensheng Guo is an associate professor of School of

Information and Software Engineering, Electronic

Science and Technology of China. His research

interests include machine learning, image recognition,

computer vision.

Xiutai Lu is a post graduate of Electronic Science and

Technology of China, Chengdu, China. His current

research areas include embedded operating systems

and Machine learning.

International Journal of Future Computer and Communication, Vol. 10, No. 4, December 2021

52

