
  

Abstract—AWS elastic cache (Redis) is one the most popular 

mechanism for cloud developers to achieve both excellent 

caching as well as persistency of data. As part of our recent 

project of building personalised ad decision system, we needed 

to support stringent performance requirement of 125000 

requests per second and 95% of requests must be served under 

250ms. We used Elastic cache (Redis) for both caching and 

persistency and found number of optimisation techniques which 

helped us to achieve the performance requirement. These 

techniques we used ensured that cost for Elastic cache (and the 

whole project) is much lower than initial estimate. The 

techniques involved choosing appropriate CPU instances for 

Elastic cache, using right cache structure and whole host of 

changes on Redis client side to make this end-to-end system high 

performance, and cost effective. 

 
Index Terms—AWS elasticcache, computer science, 

distributed computing, redis, software architecture and design. 

 

I.  PROBLEM STATEMENT 

We are building a personalised ad decision system (i.e., for 

a given request from an OTT subscriber, system will decide 

which ad is most suited for him/her in this given ad break) 

which uses AWS Elastic cache (Redis) for caching important 

pieces of information. These set of information helps system 

to decide most suited Ad for requester. For every request, ad 

decision system needs to make several Redis calls (both GET 

and SET). 

AWS Elastic cache [5] is quite expensive solution as can 

be seen at pricing page [1]. With the stringent requirements 

for Ad decision component in terms of transactions per 

second (needed to support 125000 requests per second) and 

performance (95% of requests must be completed by 250 ms), 

continually scaling up elastic cache infrastructure to meet 

performance requirement would have been extremely 

expensive. During testing we also figured out having a very 

large ElasticCache module was not meeting our performance 

requirement! 

   Also, during implementation phase, new requirements 

started flowing in and few of them ensured that access to 

Redis cluster need to be serialized (mutually exclusive). This 

would further have adverse impact on performance. 

 

II.  ENVIRONMENT 

Component software was written in JavaScript (Node 

version v14.15.0), and library used for interaction with Redis 

cluster is ioredis [2]. 

Redis cluster is part of AWS ElasticCache ecosystem. 

Following is specification of cluster 
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• Redis engine version 6.0.5 

• Number of shards: 1 

• Number of replicas: 2 

• Multi AZ support: enabled 

Component software works from Kubernetes pods which 

are hosted on EC-2 machines in EKS cluster. Redis cluster 

and pods reside within same VPC. 

The data being stored into Redis cluster are always JSON 

document (key value pairs). 

 

III.  SOLUTION 

Before we start discussing solution, a brief introduction to 

Redis. Redis [14] is an open source (BSD licensed), in-

memory data structure store, can be used as a database, cache, 

and message broker. Redis provides data structures such as 

strings, hashes, lists, sets, sorted sets with range queries, 

bitmaps, hyperloglogs, geospatial indexes, and streams. 

Redis has built-in replication, Lua scripting, LRU eviction, 

transactions, and different levels of on-disk persistence.  

Redis key space is split into 16384 slots, effectively setting 

an upper limit for the cluster size of 16384 master nodes 

(however the suggested max size of nodes is in the order of ~ 

1000 nodes). Each master node in a cluster handles a subset 

of the 16384 hash slots. The base algorithm used to map keys 

to hash slots is the following 

HASH_SLOT = CRC16(key) mod 16384 

There are two main parts of system that was looked while 

developing solution 

• Optimising Redis cluster  

• Optimising access to Redis cluster 

Following sections describe these in more details. 

A. Optimising Redis Cluster  

First and foremost, it is very important to understand what 

type of data (size, both for individual entry and cumulative) 

is being stored and how often it will be accessed (it is also 

important that access is get or set). Also, with the requirement 

of mutual exclusion on data usage for certain type of data has 

triggered some curious discussion. Is mutual exclusion 

required for all the types of data, or we can get away with 

isolating the data requiring mutual exclusion to isolate?  

Amazon supports many CPU instance types [6] to run 

elastic cache cluster on. CPU instance types pertain to 

different categories, some being optimized for memory (R 

series), some are fine tuned to maximize CPU performance 

(C series), and some are more applicable for general purpose 

computing (M series). From reading of AWS documentation 

[9] and experimenting it was clear that we needed to use 

memory optimized CPU instances for Redis cluster. AWS 

Memory optimized CPU instances are useful for following 
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use cases 

• High-performance, relational (MySQL) and NoSQL 

(MongoDB, Cassandra) databases. 

• Distributed web scale cache stores that provide in-

memory caching of key-value type data (Memcached 

and Redis). 

• In-memory databases using optimized data storage 

formats and analytics for business intelligence (for 

example, SAP HANA). 

• Applications performing real-time processing of big 

unstructured data (financial services, Hadoop/Spark 

clusters). 

• High-performance computing (HPC) and Electronic 

Design Automation (EDA) applications. 

Once we have decided memory optimized CPU instances 

are way to go ahead, it was clear that we needed to use the 

latest instance series R6g for best performance. Now the next 

and most important question was how do we structure the 

cluster such that it is optimized both in terms of cost and 

performance? 

We have classified data being stored into three different 

categories as following 

• Large and most frequently read and written. Size of data 

hosted in this cluster would increase over the time. On 

average the size of value associated with each key is 

highest here. Frequency of access to this data can be 

millions of times per second during prime-time TV 

viewing. So, cluster responsible for hosting this 

category data must be able to support high network 

bandwidth throughput and must include CPU capable of 

handling and disposing such high number of requests. 

Also, the cluster must have sufficient storage to persist 

data. Mutual exclusion needs to be applied for this 

category of data. 

• Large (but smaller than previous category), frequently 

read but written only once per day. Size of value 

associated with each key remains constant and moderate. 

So, cluster hosting this category data requires moderate 

storage, CPU requirement is lower than the previous 

category data and storage required by this category data 

is much lesser (going to by calculation, can go up to 50 

Gbytes in average case). Also, no mutual exclusion 

deemed necessary for this type of data. 

• Small and relatively less frequently read (say once in 

few minutes) but written not so often (say once every 

few hours). Size of data set remain relatively constant. 

Thus, for cluster hosting this category of data requires 

moderate network bandwidth, CPU, and storage 

requirement.  

At this point, it was clear that instead of trying to find 

single elastic cache cluster to meet requirements for above 

mentioned data categories, it is better to use specifically 

tailored cluster for each category of data. Based on these three 

categories, we have created three different clusters with 

different Redis node types (CPU instance type).  

• For the first category, using node type r6g.16xlarge 

(largest and most expensive node type allowed today on 

elastic cache) 

• For the second category, using node type r6g.2xlarge 

• For the third category, using node type r6g.xlarge 

Capabilities of each of the chosen elastic cache node type 

(and on demand pricing for it) have been depicted at 

following table. These details are as per AWS page [1] and 

for EU-WEST-1 (Ireland) region (pricing do change over 

different AWS regions) 
 

Node type Number 

of virtual 

CPUs 

Memory Network 

performance 

Price 

per 

hour 

cache.r6g.16xlarge 64 419.09 

GBytes 

25 Gbps USD 

7.327 

cache.r6g.2xlarge 

 

8 52.82 

Gbytes 

Up to 10 Gbps USD 

0.916 

cache.r6g.xlarge 

 

4 26.32 

Gbytes 

Up to 10 Gbps USD 

0.458 

 

While considering the cost, need to remember that to 

maintain high availability, best (and AWS recommended) 

practice is to have one main node and two replicas pertaining 

to different availability zones. We are following this principle, 

and thus the cost seen on last column must be multiplied by 

3 to come up with actual cost. (of course, we are planning to 

use reserved instances on production deployment and thus 

cost is somewhat lower to hat is quoted on table). 

Basically, now we have optimised cluster available for 

each type of data (and its access) from both cost and 

memory/network requirement perspective. 

Instead of this segregation, if we maintained a single 

cluster for all types of data, the cluster would have to be of 

node type r6g.16xlarge and had to horizontally scale (i.e., to 

add more shards. Each shard means basically 3 more nodes), 

which would have solution extremely expensive.  

For each of the cluster, if in an unforeseen scenario, if we 

run out of storage space, we plan to do horizontal scaling (i.e. 

adding more shard). 

Using this right cluster strategy, node type and latest Redis 

version (version 5) helped us to reach the best possible 

performance and cost strategy that can be achieved within the 

ambit of requirements. 

In future, we plan to keep looking at upcoming new node 

types (and Redis versions) made available by AWS for elastic 

cache, which hopefully helps us to achieve more bang per 

buck! 

B. Optimising Access to Redis Cluster 

One of the most important optimizations we considered 

was to reduce payload size associated with each Redis access. 

Reduced payload size ensures that less memory copying 

happening between user and kernel space (both on EC-2 

machine and Redis cluster size) as well as using lesser 

network bandwidth between pods and cluster. To achieve this, 

we have decided that most frequently accessed and large 

payloads in and out of Redis cluster would be compressed 

using zlib.  We have chosen zlib because it provided a right 

amount of balance between CPU usage and compression ratio. 

Using compression also helped us more efficient usage of 

elastic cache cluster storage space (thus improving 

performance while reducing cost!). We have considered 

using zstd and brotli algorithms for compressing data. While 

these algorithms provided better compression ratio, but they 

are more CPU hungry and thus was reducing transaction per 

seconds for each pod. 

Pipelining is something Redis documentation [4] highly 
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recommends.  Creating pipeline of multiple commands and 

then sending them to cluster on single TCP connection 

produced big performance gain.  With this round-trip time for 

each command reduces significantly. Pipelining is not just a 

way to reduce the latency cost associated with the round trip 

time, it greatly improves the number of operations you can 

perform per second in each Redis server. This is the result of 

the fact that, without using pipelining, serving each command 

is very cheap from the point of view of accessing the data 

structures and producing the reply, but it is very costly from 

the point of view of doing the socket I/O. This involves 

calling the read() and write() system call, that means going 

from user land to kernel land. The context switch is a huge 

speed penalty. When pipelining is used, many commands are 

usually read with a single read() system call, and multiple 

replies are delivered with a single write() system call. 

Because of this, the number of total queries performed per 

second initially increases almost linearly with longer 

pipelines, and eventually can reach 10 times the baseline 

obtained without pipelining. 

In ioredis, pipelining can be enabled by setting enable Auto 

Pipelining option to true. In auto pipelining mode, all 

commands issued during an event loop are enqueued in a 

pipeline automatically managed by ioredis. At the end of the 

iteration, the pipeline is executed and thus all commands are 

sent to the server at the same time. 

Another very important aspect to achieve good 

performance is how to achieve appropriate balance of load 

between master and replica nodes within cluster. This can be 

done by directing read queries to replica nodes, while write 

commands always gets processed by master node on cluster. 

With this change, requests (and thus the network traffic in 

and out of nodes) are more balanced between nodes within 

cluster, and stops a single node being overworked (both in 

terms of CPU and network bandwidth usage) in high load 

scenarios, and potentially can save us from scaling cluster up 

(thus reducing cost)! Once this change is made, even on 

highest load scenario, we always have found that all nodes 

within this cluster are well within range of CPU and network 

bandwidth usage.  

 Important thing to remember here is that master node 

asynchronously copies that latest written data to replica nodes, 

and it typically takes few seconds to propagate the latest 

change for a key’s value from master to replica. While going 

for this option, data propagation delay from master to replica 

nodes and its impact must be considered. For our use cases, 

this was never a problem 

In ioredis, this feature can be enabled by setting option 

scaleReads to “slave”. 

Some other implementation specific optimisations we used 

are as following 

• Combining multiple Redis requests to one is another 

change that was made to ensure lesser interaction with 

cluster (and as explained earlier, much lesser number of 

system calls). This again reduces the overheads 

associated with socket I/Os and reduces/removes round-

trip time of making several calls. This required changes 

in the way data was structured, but again amounted to 

considerable performance improvement. 

• Since the data being stored into Redis here was always 

in form of JSON document, shortening the key name 

lengths reduced payload size significantly. 

• For compressed payload, do not further serialise the 

buffer (i.e., don't use JSON.stringify).  Redis cluster can 

store base-64 buffer, and this ensures payload size is 

lower (vis-a-vis JSON stringified version of 

compressed data). 

With all the above optimisations, we achieved our 

performance objective with fraction of initially anticipated 

cost! So, it was really win-win situation. 

C. Mutual Exclusion on Redis Cluster Access 

However, one more challenge joined late in the party is 

need for mutual exclusion to maintain data coherency across 

multiple read/write cycle. Maintaining data coherency on a 

distributed system like ours in Redis can be quite challenging. 

Redis proposes a detailed and failproof mutual exclusion 

mechanism as describe its website [7].    

Crux of it is as follows 

• Before accessing a particular key (k), create another 

unique key (u_k) associated with it and assign a 

unique value to it. All Redis clients accessing the 

cluster must successfully create (using setnx 

command) this unique key (u_k) (akin to acquire lock) 

before accessing key (k). So, there shall be one-to-one 

mapping between k and u_k. 

• However, value being set by each client to u_k shall 

be unique for a given client and that shall not match 

with any other client dealing with u_k. 

• So, let’s say two clients A and B trying to access key 

k. Thus, both would try to create key u_k with setnx 

command. setnx command ensures if the key is 

already present, it will fail, else it will create the key 

and set the requested value. Assuming client A tried 

first, and creates key u_k, B’s attempt to create u_k 

would fail, and B needs to wait till it can acquire the 

lock (i.e., create u_k and set its own value using setnx 

command). A will thus complete required work with 

key k and then it reads the value of key u_k and 

assuming it sees the value is same as what it set during 

create, would delete key u_k. B then can create u_k 

and proceed. While creating u_k, a time to live (ttl) 

would be associated with this key. 

• What happens if for some reason, client A is stuck (or 

worse crashed) post locking u_k? Well, post the 

expiry of u_k’s time to live, client B will be able to 

create u_k (thus acquire lock and gets access to key k). 

• Another use case is let’s say client A has acquired lock 

(i.e., created u_k and set value A1 to it for example) 

and then it got stuck while some processing and time 

to live associated with u_k is over. So, in this case 

client B will be able to create u_k (thus acquire lock, 

and set value say B1 to u_k) and thus access key k. 

Now while B is busy working post acquiring lock, say 

A get invoked again, and it tries to delete u_k. If it can 

delete u_k, then it will create number of further use 

cases of problematic for mutual exclusion! This is 

where unique value for u_k for each client comes 

handy! Before deletion, A would read the value and 

check if value equals to A1. If not, A will figure out it 

does not hold the lock anymore and thus would not 

delete the key. 

International Journal of Future Computer and Communication, Vol. 11, No. 1, March 2022

9



So above theory about Redis lock mechanism ensures that 

there is no way a client will remain stuck forever while 

waiting to acquire lock. At the same time, it ensures a very 

good level of mutual exclusion. 

In our project it became quite a challenge as now for every 

access to Redis cluster, we need to issue few extra Redis calls 

to achieve mutual exclusion which has serious performance 

impact. 

We tried with official NodeJS package [13] node redlock 

recommended by Redis distributed lock [7], but it increased 

average transaction/request time on load scenarios to 4 times 

without it! So clearly, we could ill afford it. 

While going over internet, we could see a paper from 

Alibaba [8], which also echoed the same finding as ours, but 

they solved it using their proprietary wrapper over Redis, thus 

not generic solution (i.e., who are not using this proprietary 

solution) for others. 

Also, we tried with Lua script comprising of several Redis 

command to make it atomic did not get us to desired 

performance level. 

Finally, we have fixed this with pipelining! Since multiple 

client’s accessing same key is relatively rare scenario, we 

decided to go for least penalty approach for average use cases. 

We structured the keys (k and u_k) in such a manner that both 

will be pertaining to same Redis hash slot. Once this is done, 

we can create a Redis pipeline comprising of following 

• setnx command for key u_k (which will create u_k 

and set specific value to u_k). 

• get value of key K. 

If first command on pipeline (setnx command) indicates 

that u_k already exist, we ignore value returned on second 

step, and wait for setnx command to succeed (by periodic 

retries). However, it most cases this is not the case, and thus 

when pipeline returns, we are good to go!  

With this change, we have coupled both set of Redis calls 

under same command. Since we anyway needed to get value 

of key K for every request, we achieve most important part 

of mutual exclusion with almost no extra cost! This helped 

us to achieve performance goals with mutual exclusion on 

maximum load scenario!  

For pipelining to work, keys being subject to command on 

pipeline must pertain to same Redis hash slot. Details about 

Redis hash slot can be found on Reference [10]. To achieve 

this, we needed to change key naming pattern within our 

software for key, so that both key and corresponding lock key 

(for example u_k referred earlier in this document) could 

remain in same hash slot. 

 

IV.  CONCLUSION 

Most of the principles described above shall be applicable 

for any application working with ElasticCache or for that 

matter with Redis engine outside ElasticCache too. Things 

like using pipelining, choosing right node type for the cluster 

(only applicable for ElasticCache), reducing payload 

associated with keys, reducing number of calls to Redis 

Engine shall be always used while interacting with Redis. In 

fact, reducing payload size associated with system calls and 

reduction of system calls are surefire optimization technique 

on any Linux system, irrespective of if it is large distributed 

system running on cloud or a tiny, embedded software 

running on small local device. 

Having said that, understanding the nature of data being 

stored to Redis and how frequently it is accessed is a key 

thing. If for an application only one type of data is being 

stored, there is absolutely no need to have different clusters. 

Similarly, while reading from replica node has, its own 

benefit, if an application needs the value of a key immediately 

after writing (and this value need to be latest), reading from 

replica is not recommended! In such scenario, it is better to 

direct read and write commands to master node. 

One of our findings about mutual exclusion is that it might 

be better to define a key naming structure which allows 

achieving mutual exclusion through pipelining mechanism as 

explained earlier. If this provision is not kept, and 

requirement for mutual exclusion comes later in software 

development lifecycle (and in worse case post the solution is 

in production), we may end up a scenario where the old keys 

(named with existing scheme) stored on cluster is not 

compatible with required new scheme! It is a very difficult 

position to be in! 

While this paper solely focuses on the changes in and 

around Redis usage from software perspective which helped 

us to achieve the target performance, there are few other 

aspects that we optimised and got good results too. For 

example, using right Kubernetes worker CPU type (on which 

our software runs) for the job in hand really added great value. 

AWS provides a series of compute optimized node types [12], 

which we found particularly fit for our purpose. As always, 

while deciding a particular CPU instance type, optimization 

needed to achieve both in cost and performance side.  

For our use case, we needed node types, which includes 

compote optimized CPUs with high network throughput (as 

it interacts largely with Redis cluster almost throughout its 

lifetime). With large amount of testing, we have found node 

type c5a was sufficient to achieve required performance. 

Now that we are very close to production deployment, we 

do see that most of the cost (around 75%) of our system stems 

from Redis cluster and worker nodes (on which our software 

runs). So, squeezing every bit of performance while always 

being aware of cost aspect really helped us to not only create 

a system which meets every stringent performance 

requirement but also remain a reasonably cost-effective 

solution. 
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