

Abstract—AWS elastic cache (Redis) is one the most popular

mechanism for cloud developers to achieve both excellent

caching as well as persistency of data. As part of our recent

project of building personalised ad decision system, we needed

to support stringent performance requirement of 125000

requests per second and 95% of requests must be served under

250ms. We used Elastic cache (Redis) for both caching and

persistency and found number of optimisation techniques which

helped us to achieve the performance requirement. These

techniques we used ensured that cost for Elastic cache (and the

whole project) is much lower than initial estimate. The

techniques involved choosing appropriate CPU instances for

Elastic cache, using right cache structure and whole host of

changes on Redis client side to make this end-to-end system high

performance, and cost effective.

Index Terms—AWS elasticcache, computer science,

distributed computing, redis, software architecture and design.

I. PROBLEM STATEMENT

We are building a personalised ad decision system (i.e., for

a given request from an OTT subscriber, system will decide

which ad is most suited for him/her in this given ad break)

which uses AWS Elastic cache (Redis) for caching important

pieces of information. These set of information helps system

to decide most suited Ad for requester. For every request, ad

decision system needs to make several Redis calls (both GET

and SET).

AWS Elastic cache [5] is quite expensive solution as can

be seen at pricing page [1]. With the stringent requirements

for Ad decision component in terms of transactions per

second (needed to support 125000 requests per second) and

performance (95% of requests must be completed by 250 ms),

continually scaling up elastic cache infrastructure to meet

performance requirement would have been extremely

expensive. During testing we also figured out having a very

large ElasticCache module was not meeting our performance

requirement!

 Also, during implementation phase, new requirements

started flowing in and few of them ensured that access to

Redis cluster need to be serialized (mutually exclusive). This

would further have adverse impact on performance.

II. ENVIRONMENT

Component software was written in JavaScript (Node

version v14.15.0), and library used for interaction with Redis

cluster is ioredis [2].

Redis cluster is part of AWS ElasticCache ecosystem.

Following is specification of cluster

Manuscript received September 1, 2021; revised October 28, 2021.

Rahul Banerjee is with Principal Engineer, Synamedia, Bangalore, India

(e-mail: rahulbec@gmail.com).

• Redis engine version 6.0.5

• Number of shards: 1

• Number of replicas: 2

• Multi AZ support: enabled

Component software works from Kubernetes pods which

are hosted on EC-2 machines in EKS cluster. Redis cluster

and pods reside within same VPC.

The data being stored into Redis cluster are always JSON

document (key value pairs).

III. SOLUTION

Before we start discussing solution, a brief introduction to

Redis. Redis [14] is an open source (BSD licensed), in-

memory data structure store, can be used as a database, cache,

and message broker. Redis provides data structures such as

strings, hashes, lists, sets, sorted sets with range queries,

bitmaps, hyperloglogs, geospatial indexes, and streams.

Redis has built-in replication, Lua scripting, LRU eviction,

transactions, and different levels of on-disk persistence.

Redis key space is split into 16384 slots, effectively setting

an upper limit for the cluster size of 16384 master nodes

(however the suggested max size of nodes is in the order of ~

1000 nodes). Each master node in a cluster handles a subset

of the 16384 hash slots. The base algorithm used to map keys

to hash slots is the following

HASH_SLOT = CRC16(key) mod 16384

There are two main parts of system that was looked while

developing solution

• Optimising Redis cluster

• Optimising access to Redis cluster

Following sections describe these in more details.

A. Optimising Redis Cluster

First and foremost, it is very important to understand what

type of data (size, both for individual entry and cumulative)

is being stored and how often it will be accessed (it is also

important that access is get or set). Also, with the requirement

of mutual exclusion on data usage for certain type of data has

triggered some curious discussion. Is mutual exclusion

required for all the types of data, or we can get away with

isolating the data requiring mutual exclusion to isolate?

Amazon supports many CPU instance types [6] to run

elastic cache cluster on. CPU instance types pertain to

different categories, some being optimized for memory (R

series), some are fine tuned to maximize CPU performance

(C series), and some are more applicable for general purpose

computing (M series). From reading of AWS documentation

[9] and experimenting it was clear that we needed to use

memory optimized CPU instances for Redis cluster. AWS

Memory optimized CPU instances are useful for following

Optimisations on AWS Elastic Cache (Redis) Usage

Rahul Banerjee

International Journal of Future Computer and Communication, Vol. 11, No. 1, March 2022

7doi: 10.18178/ijfcc.2022.11.1.581

https://github.com/luin/ioredis
javascript:;

use cases

• High-performance, relational (MySQL) and NoSQL

(MongoDB, Cassandra) databases.

• Distributed web scale cache stores that provide in-

memory caching of key-value type data (Memcached

and Redis).

• In-memory databases using optimized data storage

formats and analytics for business intelligence (for

example, SAP HANA).

• Applications performing real-time processing of big

unstructured data (financial services, Hadoop/Spark

clusters).

• High-performance computing (HPC) and Electronic

Design Automation (EDA) applications.

Once we have decided memory optimized CPU instances

are way to go ahead, it was clear that we needed to use the

latest instance series R6g for best performance. Now the next

and most important question was how do we structure the

cluster such that it is optimized both in terms of cost and

performance?

We have classified data being stored into three different

categories as following

• Large and most frequently read and written. Size of data

hosted in this cluster would increase over the time. On

average the size of value associated with each key is

highest here. Frequency of access to this data can be

millions of times per second during prime-time TV

viewing. So, cluster responsible for hosting this

category data must be able to support high network

bandwidth throughput and must include CPU capable of

handling and disposing such high number of requests.

Also, the cluster must have sufficient storage to persist

data. Mutual exclusion needs to be applied for this

category of data.

• Large (but smaller than previous category), frequently

read but written only once per day. Size of value

associated with each key remains constant and moderate.

So, cluster hosting this category data requires moderate

storage, CPU requirement is lower than the previous

category data and storage required by this category data

is much lesser (going to by calculation, can go up to 50

Gbytes in average case). Also, no mutual exclusion

deemed necessary for this type of data.

• Small and relatively less frequently read (say once in

few minutes) but written not so often (say once every

few hours). Size of data set remain relatively constant.

Thus, for cluster hosting this category of data requires

moderate network bandwidth, CPU, and storage

requirement.

At this point, it was clear that instead of trying to find

single elastic cache cluster to meet requirements for above

mentioned data categories, it is better to use specifically

tailored cluster for each category of data. Based on these three

categories, we have created three different clusters with

different Redis node types (CPU instance type).

• For the first category, using node type r6g.16xlarge

(largest and most expensive node type allowed today on

elastic cache)

• For the second category, using node type r6g.2xlarge

• For the third category, using node type r6g.xlarge

Capabilities of each of the chosen elastic cache node type

(and on demand pricing for it) have been depicted at

following table. These details are as per AWS page [1] and

for EU-WEST-1 (Ireland) region (pricing do change over

different AWS regions)

Node type Number

of virtual

CPUs

Memory Network

performance

Price

per

hour

cache.r6g.16xlarge 64 419.09

GBytes

25 Gbps USD

7.327

cache.r6g.2xlarge

8 52.82

Gbytes

Up to 10 Gbps USD

0.916

cache.r6g.xlarge

4 26.32

Gbytes

Up to 10 Gbps USD

0.458

While considering the cost, need to remember that to

maintain high availability, best (and AWS recommended)

practice is to have one main node and two replicas pertaining

to different availability zones. We are following this principle,

and thus the cost seen on last column must be multiplied by

3 to come up with actual cost. (of course, we are planning to

use reserved instances on production deployment and thus

cost is somewhat lower to hat is quoted on table).

Basically, now we have optimised cluster available for

each type of data (and its access) from both cost and

memory/network requirement perspective.

Instead of this segregation, if we maintained a single

cluster for all types of data, the cluster would have to be of

node type r6g.16xlarge and had to horizontally scale (i.e., to

add more shards. Each shard means basically 3 more nodes),

which would have solution extremely expensive.

For each of the cluster, if in an unforeseen scenario, if we

run out of storage space, we plan to do horizontal scaling (i.e.

adding more shard).

Using this right cluster strategy, node type and latest Redis

version (version 5) helped us to reach the best possible

performance and cost strategy that can be achieved within the

ambit of requirements.

In future, we plan to keep looking at upcoming new node

types (and Redis versions) made available by AWS for elastic

cache, which hopefully helps us to achieve more bang per

buck!

B. Optimising Access to Redis Cluster

One of the most important optimizations we considered

was to reduce payload size associated with each Redis access.

Reduced payload size ensures that less memory copying

happening between user and kernel space (both on EC-2

machine and Redis cluster size) as well as using lesser

network bandwidth between pods and cluster. To achieve this,

we have decided that most frequently accessed and large

payloads in and out of Redis cluster would be compressed

using zlib. We have chosen zlib because it provided a right

amount of balance between CPU usage and compression ratio.

Using compression also helped us more efficient usage of

elastic cache cluster storage space (thus improving

performance while reducing cost!). We have considered

using zstd and brotli algorithms for compressing data. While

these algorithms provided better compression ratio, but they

are more CPU hungry and thus was reducing transaction per

seconds for each pod.

Pipelining is something Redis documentation [4] highly

International Journal of Future Computer and Communication, Vol. 11, No. 1, March 2022

8

recommends. Creating pipeline of multiple commands and

then sending them to cluster on single TCP connection

produced big performance gain. With this round-trip time for

each command reduces significantly. Pipelining is not just a

way to reduce the latency cost associated with the round trip

time, it greatly improves the number of operations you can

perform per second in each Redis server. This is the result of

the fact that, without using pipelining, serving each command

is very cheap from the point of view of accessing the data

structures and producing the reply, but it is very costly from

the point of view of doing the socket I/O. This involves

calling the read() and write() system call, that means going

from user land to kernel land. The context switch is a huge

speed penalty. When pipelining is used, many commands are

usually read with a single read() system call, and multiple

replies are delivered with a single write() system call.

Because of this, the number of total queries performed per

second initially increases almost linearly with longer

pipelines, and eventually can reach 10 times the baseline

obtained without pipelining.

In ioredis, pipelining can be enabled by setting enable Auto

Pipelining option to true. In auto pipelining mode, all

commands issued during an event loop are enqueued in a

pipeline automatically managed by ioredis. At the end of the

iteration, the pipeline is executed and thus all commands are

sent to the server at the same time.

Another very important aspect to achieve good

performance is how to achieve appropriate balance of load

between master and replica nodes within cluster. This can be

done by directing read queries to replica nodes, while write

commands always gets processed by master node on cluster.

With this change, requests (and thus the network traffic in

and out of nodes) are more balanced between nodes within

cluster, and stops a single node being overworked (both in

terms of CPU and network bandwidth usage) in high load

scenarios, and potentially can save us from scaling cluster up

(thus reducing cost)! Once this change is made, even on

highest load scenario, we always have found that all nodes

within this cluster are well within range of CPU and network

bandwidth usage.

 Important thing to remember here is that master node

asynchronously copies that latest written data to replica nodes,

and it typically takes few seconds to propagate the latest

change for a key’s value from master to replica. While going

for this option, data propagation delay from master to replica

nodes and its impact must be considered. For our use cases,

this was never a problem

In ioredis, this feature can be enabled by setting option

scaleReads to “slave”.

Some other implementation specific optimisations we used

are as following

• Combining multiple Redis requests to one is another

change that was made to ensure lesser interaction with

cluster (and as explained earlier, much lesser number of

system calls). This again reduces the overheads

associated with socket I/Os and reduces/removes round-

trip time of making several calls. This required changes

in the way data was structured, but again amounted to

considerable performance improvement.

• Since the data being stored into Redis here was always

in form of JSON document, shortening the key name

lengths reduced payload size significantly.

• For compressed payload, do not further serialise the

buffer (i.e., don't use JSON.stringify). Redis cluster can

store base-64 buffer, and this ensures payload size is

lower (vis-a-vis JSON stringified version of

compressed data).

With all the above optimisations, we achieved our

performance objective with fraction of initially anticipated

cost! So, it was really win-win situation.

C. Mutual Exclusion on Redis Cluster Access

However, one more challenge joined late in the party is

need for mutual exclusion to maintain data coherency across

multiple read/write cycle. Maintaining data coherency on a

distributed system like ours in Redis can be quite challenging.

Redis proposes a detailed and failproof mutual exclusion

mechanism as describe its website [7].

Crux of it is as follows

• Before accessing a particular key (k), create another

unique key (u_k) associated with it and assign a

unique value to it. All Redis clients accessing the

cluster must successfully create (using setnx

command) this unique key (u_k) (akin to acquire lock)

before accessing key (k). So, there shall be one-to-one

mapping between k and u_k.

• However, value being set by each client to u_k shall

be unique for a given client and that shall not match

with any other client dealing with u_k.

• So, let’s say two clients A and B trying to access key

k. Thus, both would try to create key u_k with setnx

command. setnx command ensures if the key is

already present, it will fail, else it will create the key

and set the requested value. Assuming client A tried

first, and creates key u_k, B’s attempt to create u_k

would fail, and B needs to wait till it can acquire the

lock (i.e., create u_k and set its own value using setnx

command). A will thus complete required work with

key k and then it reads the value of key u_k and

assuming it sees the value is same as what it set during

create, would delete key u_k. B then can create u_k

and proceed. While creating u_k, a time to live (ttl)

would be associated with this key.

• What happens if for some reason, client A is stuck (or

worse crashed) post locking u_k? Well, post the

expiry of u_k’s time to live, client B will be able to

create u_k (thus acquire lock and gets access to key k).

• Another use case is let’s say client A has acquired lock

(i.e., created u_k and set value A1 to it for example)

and then it got stuck while some processing and time

to live associated with u_k is over. So, in this case

client B will be able to create u_k (thus acquire lock,

and set value say B1 to u_k) and thus access key k.

Now while B is busy working post acquiring lock, say

A get invoked again, and it tries to delete u_k. If it can

delete u_k, then it will create number of further use

cases of problematic for mutual exclusion! This is

where unique value for u_k for each client comes

handy! Before deletion, A would read the value and

check if value equals to A1. If not, A will figure out it

does not hold the lock anymore and thus would not

delete the key.

International Journal of Future Computer and Communication, Vol. 11, No. 1, March 2022

9

So above theory about Redis lock mechanism ensures that

there is no way a client will remain stuck forever while

waiting to acquire lock. At the same time, it ensures a very

good level of mutual exclusion.

In our project it became quite a challenge as now for every

access to Redis cluster, we need to issue few extra Redis calls

to achieve mutual exclusion which has serious performance

impact.

We tried with official NodeJS package [13] node redlock

recommended by Redis distributed lock [7], but it increased

average transaction/request time on load scenarios to 4 times

without it! So clearly, we could ill afford it.

While going over internet, we could see a paper from

Alibaba [8], which also echoed the same finding as ours, but

they solved it using their proprietary wrapper over Redis, thus

not generic solution (i.e., who are not using this proprietary

solution) for others.

Also, we tried with Lua script comprising of several Redis

command to make it atomic did not get us to desired

performance level.

Finally, we have fixed this with pipelining! Since multiple

client’s accessing same key is relatively rare scenario, we

decided to go for least penalty approach for average use cases.

We structured the keys (k and u_k) in such a manner that both

will be pertaining to same Redis hash slot. Once this is done,

we can create a Redis pipeline comprising of following

• setnx command for key u_k (which will create u_k

and set specific value to u_k).

• get value of key K.

If first command on pipeline (setnx command) indicates

that u_k already exist, we ignore value returned on second

step, and wait for setnx command to succeed (by periodic

retries). However, it most cases this is not the case, and thus

when pipeline returns, we are good to go!

With this change, we have coupled both set of Redis calls

under same command. Since we anyway needed to get value

of key K for every request, we achieve most important part

of mutual exclusion with almost no extra cost! This helped

us to achieve performance goals with mutual exclusion on

maximum load scenario!

For pipelining to work, keys being subject to command on

pipeline must pertain to same Redis hash slot. Details about

Redis hash slot can be found on Reference [10]. To achieve

this, we needed to change key naming pattern within our

software for key, so that both key and corresponding lock key

(for example u_k referred earlier in this document) could

remain in same hash slot.

IV. CONCLUSION

Most of the principles described above shall be applicable

for any application working with ElasticCache or for that

matter with Redis engine outside ElasticCache too. Things

like using pipelining, choosing right node type for the cluster

(only applicable for ElasticCache), reducing payload

associated with keys, reducing number of calls to Redis

Engine shall be always used while interacting with Redis. In

fact, reducing payload size associated with system calls and

reduction of system calls are surefire optimization technique

on any Linux system, irrespective of if it is large distributed

system running on cloud or a tiny, embedded software

running on small local device.

Having said that, understanding the nature of data being

stored to Redis and how frequently it is accessed is a key

thing. If for an application only one type of data is being

stored, there is absolutely no need to have different clusters.

Similarly, while reading from replica node has, its own

benefit, if an application needs the value of a key immediately

after writing (and this value need to be latest), reading from

replica is not recommended! In such scenario, it is better to

direct read and write commands to master node.

One of our findings about mutual exclusion is that it might

be better to define a key naming structure which allows

achieving mutual exclusion through pipelining mechanism as

explained earlier. If this provision is not kept, and

requirement for mutual exclusion comes later in software

development lifecycle (and in worse case post the solution is

in production), we may end up a scenario where the old keys

(named with existing scheme) stored on cluster is not

compatible with required new scheme! It is a very difficult

position to be in!

While this paper solely focuses on the changes in and

around Redis usage from software perspective which helped

us to achieve the target performance, there are few other

aspects that we optimised and got good results too. For

example, using right Kubernetes worker CPU type (on which

our software runs) for the job in hand really added great value.

AWS provides a series of compute optimized node types [12],

which we found particularly fit for our purpose. As always,

while deciding a particular CPU instance type, optimization

needed to achieve both in cost and performance side.

For our use case, we needed node types, which includes

compote optimized CPUs with high network throughput (as

it interacts largely with Redis cluster almost throughout its

lifetime). With large amount of testing, we have found node

type c5a was sufficient to achieve required performance.

Now that we are very close to production deployment, we

do see that most of the cost (around 75%) of our system stems

from Redis cluster and worker nodes (on which our software

runs). So, squeezing every bit of performance while always

being aware of cost aspect really helped us to not only create

a system which meets every stringent performance

requirement but also remain a reasonably cost-effective

solution.

CONFLICT OF INTEREST

The author declares no conflict of interest

REFERENCES

[1] Amazon ElasticCache Pricin. [Online]. Available:

https://aws.amazon.com/elasticache/pricing/

[2] Ioredis documentation. [Online]. Available:

https://github.com/luin/ioredis

[3] Right sizing Elasticcache Cluster. [Online]. Available:

https://aws.amazon.com/blogs/database/five-workload-

characteristics-to-consider-when-right-sizing-amazon-elasticache-

redis-clusters/

[4] Redis Pipelining. [Online]. Available:

https://redis.io/topics/pipelining

[5] Amazon Elastic Cache. [Online]. Available:

https://aws.amazon.com/elasticache/

[6] Amazon elastic cache supported node types. [Online]. Available:

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-

ug/CacheNodes.SupportedTypes.html

International Journal of Future Computer and Communication, Vol. 11, No. 1, March 2022

10

https://aws.amazon.com/elasticache/pricing/
https://github.com/luin/ioredis
https://aws.amazon.com/blogs/database/five-workload-characteristics-to-consider-when-right-sizing-amazon-elasticache-redis-clusters/
https://aws.amazon.com/blogs/database/five-workload-characteristics-to-consider-when-right-sizing-amazon-elasticache-redis-clusters/
https://aws.amazon.com/blogs/database/five-workload-characteristics-to-consider-when-right-sizing-amazon-elasticache-redis-clusters/
https://redis.io/topics/pipelining
https://aws.amazon.com/elasticache/

[7] Redis Distributed locking. [Online]. Available:

https://redis.io/topics/distlock

[8] Redis lock use case. [Online]. Available:

https://www.alibabacloud.com/help/doc-detail/146758.htm

[9] AWS memory optimized instances. [Online]. Available:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/memory-

optimized-instances.html

[10] Redis cluster spec. [Online]. Available: https://redis.io/topics/cluster-

spec

[11] Kubernetes. [Online]. Available: https://kubernetes.io/

[12] AWS EC2 compute optimized nodes. [Online]. Available:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compute-

optimized-instances.html

[13] Node redlock. [Online]. Available: https://github.com/mike-

marcacci/node-redlock

[14] Redis IO. [Online]. Available: https://redis.io/

Copyright © 2022 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Rahul Banerjee was born at Shibpur, Howrah, West Bengal, India on 17th

September 1981. He has completed his Bachelor of Engineering on

information technology from Bengal Engineering College (currently known

as Indian Institute of Engineering Science and Technology) located at

Shibpur, Howrah, India.

He is currently working at Synamedia Bangalore as Principal Engineer.

Prior to Synamedia, he has worked with Wipro, Marvell Semiconductor and

TATA ELXI Limited.

International Journal of Future Computer and Communication, Vol. 11, No. 1, March 2022

11

https://redis.io/topics/distlock
https://www.alibabacloud.com/help/doc-detail/146758.htm
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/memory-optimized-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/memory-optimized-instances.html
https://redis.io/topics/cluster-spec
https://redis.io/topics/cluster-spec
https://kubernetes.io/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compute-optimized-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compute-optimized-instances.html
https://github.com/mike-marcacci/node-redlock
https://github.com/mike-marcacci/node-redlock
https://redis.io/
https://creativecommons.org/licenses/by/4.0/

