

Abstract—As a low-cost high-performance master-worker-

model-based computing platform for group members, we have

studied the User-PC computing system (UPC). The UPC master

assigns queuing jobs from users to UPC workers that use idling

computing resources of members’ personal computers (PCs). In

this paper, we propose a job-worker assignment algorithm to

minimize the makespan, considering the number of job threads

and the number of CPU cores. For evaluation of the algorithm,

we conducted experiments running 72 jobs on the UPC system

with six workers that have various numbers of threads and CPU

cores. The schedules by the algorithm could significantly reduce

the makespan compared to other algorithms.

Index Terms—UPC, distributed computing, CPU core, thread,

job scheduling, local search, optimization.

I. INTRODUCTION

As machine learning technologies for artificial intelligence

(AI) become useful and common in various applications, the

importance of low-cost and high-performance computing

platforms has increased. On the other hand, the performance

of the personal computer (PC) has been dramatically

enhanced with the advancements of LSI technologies.

Particularly, the number of CPU cores has significantly

increased so that multithreaded programs can run in parallel

and drastically reduce the required CPU time for job

completion.

As a master-worker model based very low-cost and high-

performance computing platform for members of a group

such as a university laboratory or a company section, we have

studied the User-PC computing system (UPC) [1]-[3]. In this

system, 1) a user of the UPC system submits computing jobs

to the UPC master through the UPC web server. 2) The

master assigns the jobs to the proper UPC workers. 3) Each

worker computes the assigned jobs and returns the results to

the master. 4) The user accesses the results through the web

server. To improve the response performance, jobs should be

assigned to workers in such a way that the makespan or the

latency for computing all the requested jobs be minimized.

In this paper, we propose a job-worker assignment

algorithm for the UPC system. To reduce the CPU time by

efficiently using parallel processing, it considers the number

of threads used by a job during execution and the number of

CPU cores in a worker. First, in the static assignment, this

algorithm assigns each available job to a worker to minimize

the makespan. Then, in the dynamic assignment, it assigns

each newly arrived job to a worker when a worker becomes

idle.

For evaluation, we conducted experiments running 72 jobs

Manuscript received on January 3, 2022; revised May 1, 2022.

The authors are with Department of Information and Communication

Systems, Okayama University, Japan (e-mail: funabiki@okayama-u.ac.jp).

on the UPC system with six workers that have different

number of threads and CPU cores. Two extreme cases are

examined to investigate the static assignment and the

dynamic assignment individually. In the first case, all the jobs

are available. In the second one, jobs join the system

dynamically according to a Poisson process. The proposed

algorithm could significantly reduce the makespan compared

to other algorithms.

II. RELATED WORKS

In this section, we overview related works in the literature.

Within our survey, no work has considered the number of

CPU cores and/or the number of job threads.

In [4], Xu et al. proposed the Deadline Preference Dispatch

Scheduling (DPDS) algorithm as a dynamic scheduling

algorithm that considers the deadline constraint priority. They

also proposed the Improved Dispatch Constraint Scheduling

(IDCS) algorithm that uses a risk prediction model to reduce

the waste of computing resources and maximize the number

of completed tasks.

In [5], Amalarathinam et al. proposed the Dual Objective

Dynamic Scheduling Algorithm (DoDySA) that allocates the

tasks based on the Earliest Starting Time (EST) and the

Earliest Finishing Time (EFT) with the two objectives of

maximizing the processor utilization and minimizing the

makespan. The experiments results showed that DoDySA

outperforms the others.

In [6], Bhatia discussed task scheduling algorithms for grid

computing in literature. They are categorized into heuristic

approach ones and nature inspired ones. Their main goal is to

minimize the execution time of each job or to improve the

processing capacity of the available resources.

In [7], Ernemann et al. applied economic models to the

scheduling problem, and came up with a market-economic

method that performs quite well. Their proposal is a

decentralized one where several geographical domains are

defined. Each domain is equipped with a local scheduling

instance called MetaManager.

In [8], Xie et al. proposed the dynamic scheduling

algorithm with security awareness called EDF_OPTS. It can

achieve the high quality of security for real-time tasks while

improving resource utilizations. It is an optimized version of

the Earliest Deadline First (EDF) scheduling algorithm that

maintains high guarantee ratios while maximizing security

values, by adjusting security levels of accepted tasks.

In [9], Wang et al. proposed the DPK (Dynamic priority

and 0-1Knapsack) algorithm to tackle the scheduling problem

for multiple DAG (Directed Acyclic Graph)-structure hard

A Proposal of Job-Worker Assignment Algorithm Considering

CPU Core Utilization for User-PC Computing System

Ariel Kamoyedji, Nobuo Funabiki, Hein Htet, and Minoru Kuribayashi

International Journal of Future Computer and Communication, Vol. 11, No. 2, June 2022

40doi: 10.18178/ijfcc.2022.11.2.586

real-time applications. The latter is a non-preemptive two-

level algorithm that is based on the dynamic job priority

adjustment. It resorts to the 0-1 Knapsack algorithm to keep

CPUs busy during idling periods by assigning jobs to them.

In [10], Pooranian et al. proposed the Group Leaders

Optimization Algorithm (GLOA), which was inspired by the

effect of leaders in social groups. To make the algorithm

converge quickly, they divided the problem space into several

smaller parts called groups. Each group is searched in parallel

to increase the speed. Each separate space can be searched by

its leader, who tries to find a solution by checking whether

it’s the closest member to the local and global minimum.

In [11], Seol et al. proposed the power-aware scheduling

algorithm as an improved version of the Cycle Conserving

Earliest Deadline First (CC-EDF) algorithm. This algorithm

can be applied directly to static systems of the pinwheel task

model and is more effective than other static schemes when

the power-saving is concerned. Their simulation results

showed that the algorithm reduces energy consumptions by

10 to 80% over existing ones.

In [12], Garg et al. proposed the Adaptive Workflow

Scheduling (AWS) algorithm as a decentralized scheduling

algorithm operating in three phases, the resource discovery

and monitoring, the static task scheduling, and rescheduling,

based on dynamic resource availability and using a directed

acyclic graph workflow model. AWS uses an adaptive

scheduling strategy that aims at minimizing the makespan of

the workflow application.

III. JOB-WORKER ASSIGNMENT PROBLEM FORMULATION

In this section, we formulate the job-worker assignment

problem for the UPC system.

A. Symbols

We define the variables and symbols in the formulation.

• Wk: the set of available workers,
• wk: a worker in Wk that is characterized by the number

of the CPU cores, the memory size, and the disk space,
• Jb: the set of given jobs to process,
• jb: a job in Jb that is characterized by the number of

threads and the required memory and disk spaces,
• cjb,wk: the computation cost associated with the

processing of job jb on worker wk ,
• θjb,wk: the processing time associated with the

processing of job jb on worker wk , and
• f(jb,wk): an assignment function with value 1 if job jb

is assigned to worker wk and 0 otherwise.

B. Assumptions on Job-Worker Assignments

We make the assumptions on job-worker assignments:

• any worker can process one job at a time to avoid tasks
swapping,

• any worker can be distinct from others in terms of
number of CPU cores,

• any job can be assigned to any worker that can process
it,

• all the queuing jobs can be assigned to workers at the
same time, and

• any future job arrival cannot be predicted.

C. Problem Formulation

The job-worker assignment problem for the UPC system

can be formulated as a combinatorial optimization problem.

The goal is to minimize the makespan, subject to the

constraints related to available resources on workers. This

assignment problem is NP-hard [13].

1) Objective: To minimize the following function F:

𝐹 = ∑ ∑ 𝑓(𝑗𝑏, 𝑤𝑘)(𝜃𝑗𝑏,𝑤𝑘 − 1)𝑗𝑏∈𝐽𝑏𝑤𝑘∈𝑊𝑘 (1)

2) Constraints

• The total number of assigned jobs must be less than

or equal to the total number of available jobs:

∑ ∑ 𝑓(𝑗𝑏, 𝑤𝑘) ≤ |𝐽𝑏|𝑗𝑏∈𝐽𝑏𝑤𝑘∈𝑊𝑘 (2)

• The total number of job assignments is greater than or

equal to the total number of available workers if there

are more jobs than workers:

∑ ∑ 𝑓(𝑗𝑏, 𝑤𝑘) ≥ |𝑊𝑘|, 𝑖𝑓|𝑊𝑘| ≤ |𝐽𝑏| 𝑗𝑏∈𝐽𝑏𝑤𝑘∈𝑊𝑘 (3)

• A job can be assigned once to a worker that can process

it:

∑ 𝑓(𝑗𝑏, 𝑤𝑘) = 1,⩝ 𝑗𝑏 ∈ 𝐽𝑏𝑤𝑘∈𝑊𝑘 (4)

• A worker can be assigned at most all available jobs:

∑ 𝑓(𝑗𝑏, 𝑤𝑘) ≤ |𝐽𝑏|,⩝ 𝑤𝑘 ∈ 𝑊𝑘𝑗𝑏∈𝐽𝑏 (5)

• The resource requirement of any job on any worker do

never exceed the usage limit specified by the user:

𝑓(𝑗𝑏, 𝑤𝑘)𝑐𝑗𝑏,𝑤𝑘 ≤ 𝑙𝑖𝑚𝑤, ∀(𝑗𝑏, 𝑤𝑘) ∈ (𝐽𝑏 ∗ 𝑊𝑘) (6)

• f is a two-variable binary function:

𝑓(𝑗𝑏, 𝑤𝑘) ∈ {0,1}, ∀(𝑗𝑏, 𝑤𝑘) ∈ (𝐽𝑏 ∗ 𝑊𝑘) (7)

• The job processing time must be a positive real value:

𝜃𝑗𝑏,𝑤𝑘 ∈ 𝑅+
∗ (8)

D. Problem Complexity

Given a set of jobs Jb and a set of workers Wk, the total

number of possible job-worker assignments N is given by:

𝑁 = ∑ {𝑛
𝑖
}𝑃𝑖

𝑘𝑘
𝑖=1 (9)

where {𝑛
𝑖
} represents the number of ways to partition a set of

n objects into i non-empty subsets [14]. It is given by:

 {𝑛
𝑘

} =
1

𝑘!
∑ (−1)𝑘(𝑘

𝑖
)(𝑘 − 𝑖)𝑛 𝑘

𝑖=0 (10)

For instance, for a set of ten jobs and four workers, N =

171,889,200, which means that even for a small size problem,

it is impossible to find the optimal schedule (job-worker

assignments) by analyzing all possible combinations. Thus,

an approximation or heuristic algorithm is necessary to tackle

the job scheduling problem in the UPC system.

IV. JOB-WORKER ASSIGNMENT ALGORITHM

This section presents the job-worker assignment algorithm

composed of the greedy initial stage and the local search

improvement stage for the UPC system.

A. Initial Stage by Greedy Method

The initial stage of the proposed algorithm generates a

feasible solution to the problem from scratch, using a greedy

International Journal of Future Computer and Communication, Vol. 11, No. 2, June 2022

41

method. To efficiently utilize the CPU cores in workers, this

stage groups workers and jobs into several classes according

to the number of available cores for workers or required

threads for jobs. Then, it greedily sets up job-worker

assignments in each class, independently. In this paper, the

number of classes is set to two since all our workers have less

than 20 cores.

1. Algorithm Procedure: The greedy method procedure for
the initial stage is given as follows:

1) Each job in the given job set Jb is assigned to either of
the two job classes depending on their required number
of threads during execution. Actually, a job goes to class
1 if it requires up to four threads during execution and
goes to class 2 otherwise.

2) Each worker in the given worker set Wk is assigned to
either of the two worker classes depending on their
available CPU core number. Actually, a worker goes to
class 1 if it has up to four cores and goes to class 2
otherwise.

3) In each job class, jobs are assigned to workers by using
the following greedy method:
a) Workers are sorted in ascending order of job

processing time.
b) Using the given approximate execution time tjb,wk for

each job jb in the corresponding job class on each
worker wk belonging to the current worker class,
compute for each job a discriminator 𝛿𝑗 =

∑
𝑡𝑗𝑏,𝑤𝑘

𝑡𝑗𝑏,𝑤𝑘+1

|𝑊𝑘|
𝑤𝑘=1 and sort jobs in the class in ascending

order of δ values. Jobs with the lowest values of δ
are to be assigned first for any given job class.

c) For each job in the current job class, find the
available worker in the current worker class that runs
the current job within the shortest amount of time
and assign the latter to it.

2. Pseudo Code: The pseudo code is given in Algorithm 1.
Algorithm 1 Greedy Method for Initial Stage
Input: a set of jobs Jb and a set of workers Wk.
Output: job-worker mapping.
1: workerClasses[2][n] ← ϕ, jobClasses[2][n] ← ϕ
2: for each worker wk ∈ Wk do
3: if current worker wk has ≤ 4 threads then
4: add wk to workerClasses[0]
5: else
6: add wk to workerClasses[1]
7: end if
8: end for
9: for each job jb ∈ Jb do
10: if current job jb uses ≤ 4 threads to execute then
11: add jb to jobClasses[0]
12: else
13: add jb to jobClasses[1]
14: end if
15: end for
16: for i = 0 to 1 do

17:
Sort workers in workerClasses[i] in ascending order of
job processing time (CPU performance).

18: for each job jb ∈ jobClasses[i] do
19: δj ← 0
20: for wk = 0 to count(workerClasses[i]) - 1 do
21: δj ← δj + (tjb, wk / tjb, wk +1)
22: end for
23: end for
24: Sort jobs in jobClasses[i] in ascending order of δ values.

25:
for each job jb ∈ jobClasses[i], from the lowest values
of δ to the highest do

26:
Find the available worker in workerClasses[i] that
processes jb in the shortest amount of time and assign
jb to it.

27: end for
28: end for
29: return the generated job-worker mapping

B. Improvement Stage by Local Search Method

The initial solution generated at the initial stage is

improved by using a randomized multi-start local search

method and additionally, hill climbing method is used to

escape from local minima.

1. Algorithm Procedure: The local search procedure for
the improvement stage is described as follows:

1) Consider the output of the initial stage as the initial

solution and define 4 neighborhood solution generation

functions and a solution evaluation function as follows:

• The first function implements a local search method
that moves jobs from the bottleneck worker (worker
with the highest makespan) to any other available
worker.

• The second function implements a local search
method that moves jobs randomly from any worker
to any other available one.

• The third function implements a local search method
that swaps jobs from the bottleneck worker with any
other jobs being processed on any other workers.

• The fourth function implements a local search
method that randomly swaps jobs from any worker
with any other jobs being processed on any other
workers.

• The evaluation function takes a job-worker mapping
as first parameter, compares it with the mapping
passed in as second parameter and then returns the
best of both (mapping with the shortest makespan).

2) Randomly select one of the aforementioned functions
and run it on the initial solution in order to generate a
new initial solution for the current iteration. Then set the
newly generated initial solution to be the best job-
worker mapping so far.

3) Randomly select one of the aforementioned functions
and run it on the best job-worker mapping (mapping
with the shortest makespan) so far, to improve it.

4) In case a better mapping is found, replace the former best
mapping with it and repeat the previous step and the
current one several times, depending on the number of
jobs. In our experiments, we repeated these steps 50
times for 24 jobs, 100 times for 48 jobs and 150 times
for 72 jobs.

5) Compare the best overall mapping resulting from the
previous step with the best overall mapping so far and
update the latter if it’s no more the best one.

6) Repeat the four previous steps several times depending
on the number of jobs, and return the overall best
mapping found. In our experiments, we repeated these
steps 50 times for 24 jobs, 100 times for 48 jobs and 150
times for 72 jobs.

2. Pseudo Code: The pseudo code is given in Algorithm 2.
Algorithm 2 Local Search for Improvement Stage
Input: The initial job-worker mapping.
Output: The best job-worker mapping found.
1: mapping firstLocalSearchMethod (mapping)
2: mapping secondLocalSearchMethod (mapping)
3: mapping thirdLocalSearchMethod (mapping)
4: mapping fourthLocalSearchMethod (mapping)
5: mapping evaluateMapping (mapping, mapping)

6:
bestOverallMapping←
 initialMapping

7: for i = 1 to 50 do

8:
Randomly select one of the previously mentioned
local search methods.

9:
currentIterationInitialMapping←
 selectedLocalSearchMethod (initialMapping)

10:
bestTemporaryMapping←

 currentIterationInitialMapping
11: for j = 1 to 50 do

12:
Randomly select one of the aforementioned 4 local
search methods.

13:
newMapping←
 selectedLocalSearchMethod
 (bestTemporaryMapping)

14: bestTemporaryMapping←

International Journal of Future Computer and Communication, Vol. 11, No. 2, June 2022

42

evaluateMapping(newMapping,
bestTemporaryMapping)

15:
16:

 end for
 bestOverallMapping ←
 evaluateMapping(bestTemporaryMapping,
 bestOverallMapping)

17: end for
18: return bestOverallMapping

3. Time Complexity: In the greedy algorithm, the
construction of worker classes takes O(|Wk|) while that
of job classes takes O(|Jb|). Then, assuming all sorting
operations are being carried out using quick sort
algorithm, let WC be the set of worker classes, WC[i]
be any worker class and JC[i] be any job class. Given
that the number of worker classes is ≥ 2, the maximum
number of workers in a worker class is |Wk| - 1 and the
second part of the greedy algorithm (comprising δj
calculation for each job in each class, two sorting
operations and jobs assignment to workers) takes:

O(|WC|∗(Max(|WC[i]|)log(Max(|WC[i]|))+Max(|WC[i]|)
∗Max(|JC[i]|)+Max(|JC[i]|)log(Max(|JC[i]|))+Max(|WC[i]
|)∗Max(|JC[i]|)))=O(|WC|∗(Max(|WC[i]|)log(Max(|WC[i]|)
)+2Max(|WC[i]|)∗Max(|JC[i]|)+Max(|JC[i]|)log(Max(|JC[i
]|))))=O(|WC|∗((|Wk|-1)log(|Wk|-1)+(|Jb|-1)log(|Jb|-
1)+2(|Wk|-1)∗(|Jb|-1)))=O(|WC|∗(|Wk|log|Wk|+|Jb|log|Jb|
+|Wk| |Jb|))= O(|WC||Wk||Jb|)

The greedy algorithm thus takes no more than:

O(|WC||Wk||Jb|) + O(|Wk|) + O(|Jb|) = O(|WC||Wk||Jb|)

In the heuristic algorithm, each of the four local search

methods takes O(Max(|WC[i]|) ∗ Max(|JC[i]|)) and the

mapping evaluation algorithm takes O(|Jb|2). Then, assuming

that we run the selected local search algorithm α times and

the multi-start local search algorithm β times and that |Jb| >

|Wk|, the heuristic algorithm takes:
O(α(β(Max(|WC[i]|)∗Max(|JC[i]|)+|Jb|2)+|Jb|2))=O(α(β(

(|Wk|-1)(|Jb|-1)+|Jb|2)+|Jb|2))=O(α(β(|Wk||Jb|+|Jb|2)
+|Jb|2))=O(α(β|Jb|2+|Jb|2))=O(α|Jb|2)=O(|Jb|2)
The heuristic algorithm thus takes no more than O(|Jb|2).

In conclusion, our scheduling method takes:

O(|WC||Wk||Jb|) + O(|Jb|2) = O(|WC||Jb|2) since |Jb| > |Wk|

= O(|Jb|2) since |WC| = CONST.

C. Dynamic Job-Worker Assignment

The dynamic job-worker assignment algorithm repeatedly

calls the static one whenever there are both idling workers

and uncompleted jobs in the system.

1) Pseudo Code: The pseudo code is given in Algorithm 3.

Algorithm 3 Dynamic Job Scheduling Algorithm
Input: a queue of waiting jobs Jb with average arrival

rate λ and a set of workers Wk with average processing
rate µ.

Output: None.
function getIdlingWorkerSet(workerSet)
 idlingWorkerSet ← ∅
 for each worker wk ∈ workerSet do
 if current worker wk is idling then
 Add the current worker to idlingWorkerSet.
 endif
 endfor
 return idlingWorkerSet
end function

1:
Wk, Jb, timer.initialize(), startTime ← 0,
resultingMapping ← ∅, makespan = 0

2: startTime ← timer.getCurrentTime()
3: while true do
4: idlingWorkerSet ← getIdlingWorkerSet(Wk)
5: if idlingWorkerSet , ∅ then

6:
 resultingMapping ← Static Job Scheduling

Method (Wk, Jb)

7:
 Assign jobs to idling workers according to

resultingMapping.
8: Update the queue of waiting jobs Jb.
9: end if

10: if there are no new job arrivals then
11: makespan=timer.getCurrentTime()-startTime
12: return makespan
13: end if
14: sleep for a short while
15: end while

V. EVALUATION

In this section, we evaluate the proposed algorithm by

assigning and running the 24 jobs in Table II on a UPC system

with the six workers in Table I. Table III shows the measured

standard CPU time for each job running on each of the six

workers. The algorithm was run on a PC with an Intel(R) Core

(TM) i5-5200U CPU @ 2.20GHz processor, two CPU Cores,

four threads, 8.00 GB memory and a 64-bit Windows 10

Education.
TABLE I: WORKERS SPECIFICATIONS

worker # Core number type of CPU Clock rate Memory size
master 4 icore5 3.20 GHz 8 GB
worker1 4 icore3 1.70 GHz 2 GB
worker2 4 icore5 2.60 GHz 2 GB
worker3 4 icore5 2.60 GHz 2 GB
worker4 8 icore7 3.40 GHz 4 GB
worker5 16 icore9 3.60 GHz 8 GB
worker6 20 icore9 3.70 GHz 8 GB

A. Evaluation Setup

To evaluate the algorithm with an increasing number of

jobs, each of the 24 jobs was executed once (= 24 jobs in total),

twice (= 48 jobs in total), and three times (= 72 jobs in total).

In our evaluation, jobs join the system in the same order as in

Table II. As performance index for evaluation, the makespan

is calculated as the difference between the first job processing

start time and the last job completion time.

B. Results for Static Job-Worker Assignment

First, we evaluate the static job-worker assignment results

yielded by the proposed algorithm, through comparisons with

reference algorithms.

1) Reference Algorithms for Comparison: To evaluate the

effectiveness of the static scheduling algorithm, we solved the

problems using three baseline algorithms we have devised,

namely: First Come First Served (FCFS), Memory

consumption-based priority scheduling (M-Priority), and

CPU thread usage-based priority scheduling (T-Priority).

The FCFS algorithm assigns queuing jobs to workers on a

first-come first-served basis. The M-Priority algorithm

assigns jobs in descending order of memory consumption.

Actually, the more memory a job consumes, the more

powerful the worker it will be processed on. The T-Priority

algorithm assigns jobs in descending order of number of

threads used during execution. That is, jobs using the highest

number of threads are assigned first to the most powerful

workers. All the reference algorithms as well as the static

scheduling algorithm were implemented in Java.

TABLE II: JOBS SPECIFICATIONS

job # job name
of

threads
disk usage

program1 Network Simulator (NS) 1 0.392 GB

program2 Optimization Algorithm (OA) 1 1.5 GB

program3 DCGAN 17 1.9 GB

program4 RNN 17 1.9 GB

program5 CNN 17 1.9 GB

program6 FFmpeg 18 2.8 GB

program7 Converter 1 1.1 GB

program8 Palabos 2 6.7 GB

International Journal of Future Computer and Communication, Vol. 11, No. 2, June 2022

43

program9 Flow 4 0.438 GB

program10 blockchain mining 1 920 MB

program11 COVID detection 23 2.95 GB

program12 COVID outbreak prediction 4 1.84 GB

program13 multimedia content resizing 18 2.8 GB

program14 multimedia content format changing 18 2.8 GB

program15 OpenFOAM 5W 1 1.4 GB

program16 OpenFOAM 10W 1 1.4 GB

program17 OpenFOAM 15W 1 1.4 GB

program18 OpenFOAM 20W 1 1.4 GB

program19 OpenFOAM 25W 1 1.4 GB

program20 OpenFOAM 30W 1 1.4 GB

program21 OpenFOAM 35W 1 1.4 GB

program22 OpenFOAM 40W 1 1.4 GB

program23 OpenFOAM 45W 1 1.4 GB

program24 OpenFOAM 50W 1 1.4 GB

2) Makespan Results: Table IV compares the makespan

results yielded by the four algorithms for 24, 48 and 72 jobs.

improvement in this table indicates the makespan difference

between our proposed algorithm and the best of the three

reference algorithms. The results clearly show that the

proposed algorithm outperforms the reference algorithms.

For reference, Table V shows the total CPU time required to

process all the jobs on the workers.

TABLE III: JOBS STANDARD PROCESSING TIME

job # worker1 worker2&3 worker4 worker5 worker6

program1 02:14:46 01:06:44 00:54:21 00:39:40 00:36:09

program2 00:41:43 00:26:38 00:20:27 00:13:53 00:13:10

program3 01:37:14 01:09:28 00:22:44 00:12:45 00:11:15

program4 00:17:43 00:12:01 00:07:03 00:05:37 00:04:49

program5 00:26:04 00:22:22 00:07:07 00:05:24 00:04:47

program6 00:46:37 00:31:49 00:13:23 00:07:59 00:06:54

program7 00:17:09 00:11:34 00:05:41 00:04:53 00:04:15

program8 00:12:51 00:08:38 00:05:24 00:04:29 00:03:19

program9 00:25:20 00:14:45 00:11:08 00:08:32 00:07:55

program10 00:36:28 00:09:09 00:07:53 00:05:59 00:04:14

program11 00:39:35 00:24:53 00:10:42 00:04:08 00:03:16

program12 00:13:12 00:06:35 00:05:09 00:03:55 00:03:01

program13 00:34:50 00:19:47 00:12:33 00:07:48 00:07:10

program14 00:36:33 00:24:56 00:10:55 00:05:45 00:04:19

program15 00:12:23 00:07:19 00:06:51 00:05:04 00:04:28

program16 00:29:58 00:19:18 00:16:58 00:13:08 00:11:27

program17 00:45:57 00:30:44 00:25:59 00:20:31 00:17:54

program18 00:55:44 00:36:54 00:32:25 00:25:17 00:22:13

program19 01:20:36 00:52:29 00:46:40 00:36:55 00:32:20

program20 01:37:25 01:05:44 00:56:27 00:45:18 00:39:42

program21 01:44:18 01:12:44 01:06:06 00:51:19 00:44:56

program22 01:52:04 01:26:35 01:14:53 01:00:08 00:52:44

program23 02:14:32 01:30:28 01:19:17 01:03:01 00:55:19

program24 02:22:38 01:32:22 01:23:02 01:07:02 00:58:40

TABLE IV: MAKESPAN RESULTS (H:M:S) FOR STATIC ASSIGNMENT

 24 jobs 48jobs 72 jobs
FCFS 02:58:36 04:55:19 09:03:37
M-Priority 02:37:28 06:07:47 07:37:18
T-Priority 02:47:21 05:02:03 08:20:53
Proposal 02:06:58 04:08:41 06:10:31
improvement 00:30:30 (20%) 00:46:38 (16%) 01:26:47 (19%)

TABLE V: TOTAL CPU TIME RESULTS (H:M:S) FOR STATIC ASSIGNMENT

 24 jobs 48 jobs 72 jobs

FCFS 13:50:34 26:37:15 42:28:37

M-Priority 13:35:17 27:52:08 41:01:32

T-Priority 13:47:05 26:22:36 41:30:02

Proposal 12:29:57 24:43:19 36:54:30

C. Results for Dynamic Job-Worker Assignment

Next, we evaluate the dynamic job-worker assignment

results yielded by the proposed algorithm, through

comparisons with reference algorithms. Here, we assume that

new job arrivals in the UPC system occur according to a

Poisson distribution and jobs are inserted into a non-

preemptive queue [15] as they join the system. The average

job arrival rate λ is set to 1 job/500s. Then, when workers

become idle, queuing jobs are assigned and transmitted to

workers by the algorithm.

1) Reference Algorithms for Comparison: For performance

comparisons, additionally, two algorithms called First Come

First Served (FCFS) and Scheduling Upon Arrival (SUA) are

implemented and applied to the same set-up. FCFS randomly

assigns the first arriving job to the first available worker. SUA

assigns newly arrived jobs to workers as soon as they joined

the system, using the previously described static job

scheduling algorithm. Consequently, if a job is assigned to a

currently busy worker, it has to wait until the worker becomes

free, to be processed. Algorithms were implemented in Java.

2) Results and Analysis: Table VI compares the makespan

results yielded by the three algorithms for 24, 48 and 72 jobs.

Here, improvement means the makespan difference between

the proposed algorithm and the best of the two reference

algorithms. The results show that the proposed algorithm

outperforms the reference algorithms. From the data in Table

III, we could roughly estimate the average worker service rate

in two steps. First, we calculated the average service rate of

each worker over all jobs by:

𝜇𝑎𝑣𝑔𝑤 =
1

|𝐽𝑏|
∑ 𝜃𝑗𝑏,𝑤𝑘 , ∀𝑤𝑘 ∈ 𝑊𝑘.𝑗𝑏∈𝐽𝑏 (11)

Then, we calculated the average of the previous value over

all the workers by:

𝜇𝑎𝑣𝑔𝑤 =
1

|𝑊𝑘|
∑ 𝜇𝑎𝑣𝑔𝑤𝑤 = 1𝑗𝑜𝑏/2023𝑠.𝑤𝑘∈𝑊𝑘 (12)

The response time represents the total amount of time a job

spends both in the queue and in service and is given by [16]:

𝐶(|𝑊𝑘|,𝜆/𝜇)

|𝑊𝑘|𝜇−𝜆
+

1

𝜇
 (13)

Using the previous formula, the average response time of

system can be estimated by:

𝐴𝑣𝑔𝑅𝑡𝑖 =
𝐶(|𝑊𝑘|,𝜆/𝜇)

|𝑊𝑘|𝜇−𝜆
+

1

𝜇
 (14)

The probability that an arriving job is forced to join the

queue that is, all workers are occupied, is given by:

𝐶 (|𝑊𝑘|,
𝜆

𝜇
) =

1

1+(1−𝜌)(
|𝑊𝑘|!

(|𝑊𝑘|𝜌|𝑊𝑘|)
) ∑

(|𝑊𝑘|𝜌)𝑘

𝑘!

|𝑊𝑘|−1
𝑘=0

 (15)

which is Erlang’s C formula [15]. We calculate (14) using

Erlang C formula and ρ value, 𝜌 =
1/500

(6∗1/2023)
≈ 67% , as

follows:

𝐶(|𝑊𝑘|, 𝜆/𝜇) =
1

1 + (1 − 𝜌) (
|𝑊𝑘|!

(|𝑊𝑘|𝜌|𝑊𝑘|)
) ∑

(|𝑊𝑘|𝜌)𝑘

𝑘!
|𝑊𝑘|−1
𝑘=0

≈
1

1 + (
0.33 ∗ 6!

4.026) (∑
4.02𝑘

𝑘!
5
𝑘=0)

≈
1

1 + (0.06 ∗ 43.56)
≈ 0.28.

Thus, 𝐴𝑣𝑔𝑅𝑡1
=

0.28

6∗
1𝑗𝑜𝑏

2023𝑠
−

1𝑗𝑜𝑏

500𝑠

+
1

1𝑗𝑜𝑏

2023𝑠

≈
0.28

6𝑗𝑜𝑏𝑠

2023𝑠
−

1𝑗𝑜𝑏

500𝑠

+

2023𝑠 ≈ 290𝑠 + 2023𝑠 = 2313𝑠 = 38𝑚𝑖𝑛33𝑠.
Using experiment results, the average response time of the

system is estimated for 24 distinct jobs as 47min10s

The theoretical average response time of the system AvgRt1

is quite shorter than the estimated time using the experiment

data AvgRt2. This is mainly due to the fact that 2/3 of

International Journal of Future Computer and Communication, Vol. 11, No. 2, June 2022

44

available jobs use 4 or less than 4 threads during execution

and therefore, they are assigned to either worker1 or worker2

or worker3 (1/2 of available workers). Consequently, the

bottleneck worker is always one of the previously mentioned

workers. This performance drop could be efficiently

mitigated by enabling the dynamic scheduling algorithm to

implement job migration, that is, preempting and moving

already assigned jobs to more powerful or idling workers.

TABLE VI: MAKESPAN RESULTS (H:M:S) FOR DYNAMIC ASSIGNMENT

 24 jobs 48 jobs 72 jobs

FCFS 06:31:49 13:38:40 16:49:14

SUA 06:18:36 11:09:23 15:38:22

Proposal 05:39:48 10:35:38 14:40:01

improvement 00:38:48 (10%) 00:33:45 (5%) 00:58:21 (6%)

TABLE VII: TOTAL CPU TIME RESULTS (H:M:S) FOR DYNAMIC

ASSIGNMENT

 24 jobs 48 jobs 72 jobs

FCFS 14:18:04 33:39:58 46:22:17

SUA 15:09:51 30:55:48 45:47:59

Proposal 14:48:23 30:33:12 45:21:11

D. Discussion

The static scheduling algorithm finds better job-worker

mappings by iteratively testing several mappings and

selecting those that yield the shortest makespans. As an

optimization algorithm, it requires a set of already available

jobs to evaluate the possible job-worker mappings more

efficiently. However, since the dynamic scheduling algorithm

repeatedly calls the static one whenever a worker is idling, it

is very likely that the number of new job arrivals between two

iterations of the static algorithm is low. Thus, the static

scheduling algorithm only runs on a handful of jobs, most of

the time. This is the main reason why the makespan reduction

yielded by the dynamic scheduling algorithm is quite low

compared to that of the static one.

VI. CONCLUSION

This paper presented the job worker assignment algorithm

to minimize the makespan, considering the number of job

threads and the number of CPU cores. For evaluation of the

proposed algorithm, we conducted experiments running 72

jobs on the UPC system with six workers that have various

number of threads and CPU cores. The schedules by the

algorithm could significantly reduce the makespan by up to

20%, compared to other algorithms. Our future work includes

evaluation with more jobs and workers.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Kamoyedji built up the algorithm, generated the data, and

wrote the paper; Htet carried out experiments to verify the

data; Funabiki supervised the whole study and revised the

paper; and Kuribayashi provided advice to improve the paper;

all authors had approved the final version of this paper.

REFERENCES

[1] N. Funabiki, K. S. Lwin, Y. Aoyagi, M. Kuribayashi, and W.-C. Kao,

“A User-PC computing system as ultralow-cost computation platform

for small groups,” Application and Theory of Computer Technology,

vol. 2, no. 3, pp. 10-24, 2017.

[2] H. Htet, N. Funabiki, A. Kamoyedji, and M. Kuribayashi, “Design and

implementation of improved user-PC computing system,” IEICE

Technical Report, vol. 120, no. 69, pp. 37-42, 2020.

[3] H. Htet, N. Funabiki, A. Kamoyedji, M. Kuribayashi, F. Akhter, and

W.-C. Kao, “An implementation of user-PC computing system using

Docker container,” International Journal of Future Computer and

Communication (IJFCC), vol. 9, no. 4, pp. 66-73, Dec. 2020.

[4] L. Xu, J. Qiao, S. Lin and W. Zhang, “Dynamic task scheduling

algorithm with deadline constraint in heterogeneous volunteer

Computing Platforms,” Future Internet, vol. 11, pp. 1-16, 2019.

[5] G. Amalarathinam and A. M. Josphin, “Dual objective dynamic

scheduling algorithm (DoDySA) for heterogeneous environments,”

Advances in Computational Sciences and Technology, vol. 10, no. 2,

pp. 171-183, 2017.

[6] M. K. Bhatia, “Task scheduling in grid computing: A review,”

Advances in Computational Sciences and Technology, vol. 10, no. 6,

pp. 1707-1714, 2017.

[7] C. Ernemann, V. Hamscher, and R. Yahyapour, “Economic scheduling

in grid computing,” Lecture Notes in Computer Science, vol. 2537,

Springer, Berlin, Heidelberg, pp. 128-152, 2002.

[8] T. Xie, A. Sung, and X. Qin, “Dynamic task scheduling with security

awareness in real-time systems,” in Proc. IEEE International Parallel

and Distributed Processing Symposium, pp. 8-15, 2005.

[9] M. Wang, Z. Du, Z. Liu, and S. Hao, “The dynamic priority-based

scheduling algorithm for hard real-time heterogeneous CMP

application,” Journal of Algorithms & Computational Technology, vol.

2, no. 3, pp. 409-427, 2008.

[10] Z. Pooranian, M. Shojafar, J. Abawajy, and M. Singhal, “GLOA: A

new job scheduling algorithm for grid computing,” International

Journal of Artificial Intelligence and Interactive Multimedia, vol. 2, no.

1, pp. 59- 64, 2013.

[11] Y. I. Seol and Y. K. Kim, “Applying dynamic priority scheduling

scheme to static systems of pinwheel task model in power-aware

scheduling,” The Scientific World Journal, ID 587321, pp. 1-9, 2014.

[12] R. Garg, A. Singh, “Adaptive workflow scheduling in grid computing

based on dynamic resource availability,” Engineering Science and

Technology, an International Journal, vol. 18, no. 2, pp. 256-269, 2015.

[13] L. Ozbakir, A. Baykasoglu, and P. Tapkan, “Bees algorithm for

generalized assignment problem,” Applied Mathematics and

Computation, vol. 215, no. 11, pp. 3782-3795, 2010.

[14] R. L. Graham, D. E. Knuth, and O. Patashnik, “Concrete mathematics,”

Addison-Wesley, Reading MA, pp. 244, 1988.

[15] L. Kleinrock, “Queueing systems, volume 1: theory,” Wiley-

Interscience, 1975.

[16] M. Barbeau and K. Evangelos, Principles of Ad-Hoc Networking, John

Wiley & Sons, 2007.

Copyright © 2022 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

A. Kamoyedji received a master’s degree in system

and information engineering from Ashikaga Institute

of Technology, Japan and a bachelor’s degree in

electrical engineering from UATM GASA

Formation, Benin. He is currently a PhD student in

the Graduate School of Natural Science and

Technology at Okayama University, Japan, and a

software engineer. His research interests include

optimization algorithm design and distributed

computing systems.

N. Funabiki received the B.S. and Ph.D. degrees in

mathematical engineering and information physics

from the University of Tokyo, Japan, in 1984 and

1993, respectively. He received the M.S. degree

from Case Western Reserve University, USA, in

1991. In 2001, he joined the Department of

Communication Network Engineering at Okayama

University as a professor. His research interests

include computer networks, optimization

algorithms, and educational technology. He is a member of IEEE, IEICE,

and IPSJ.

International Journal of Future Computer and Communication, Vol. 11, No. 2, June 2022

45

https://creativecommons.org/licenses/by/4.0/

H. Htet received the B.E. and M.E. degrees

in information science and Technology from the

University of Technology (Yatanarpon Cyber

City), Myanmar, in 2015 and 2018, respectively.

He is currently a Ph.D student in the Graduate

School of Natural Science and Technology at

Okayama University, Japan. His research

interests include distributed computing systems,

big data analysis, and computer networks.

M. Kuribayashi received the B.E., M.E., and

D.E. degrees from Kobe University, Japan, in

1999, 2001, and 2004, respectively. In 2002, he

joined the Department of Electrical and

Electronic Engineering, Kobe University, as an

assistant professor. Since 2015, he has been an

associate professor in Graduate School of

Natural Science and Technology, Okayama

University. His research interests include digital

watermarking, information security, cryptography, and coding theory.

He is a senior member of IEEE and IEICE.

International Journal of Future Computer and Communication, Vol. 11, No. 2, June 2022

46

