
  

  

Abstract—As a low-cost high-performance master-worker-

model-based computing platform for group members, we have 

studied the User-PC computing system (UPC). The UPC master 

assigns queuing jobs from users to UPC workers that use idling 

computing resources of members’ personal computers (PCs). In 

this paper, we propose a job-worker assignment algorithm to 

minimize the makespan, considering the number of job threads 

and the number of CPU cores. For evaluation of the algorithm, 

we conducted experiments running 72 jobs on the UPC system 

with six workers that have various numbers of threads and CPU 

cores. The schedules by the algorithm could significantly reduce 

the makespan compared to other algorithms. 

 
Index Terms—UPC, distributed computing, CPU core, thread, 

job scheduling, local search, optimization.  

 

I. INTRODUCTION 

As machine learning technologies for artificial intelligence 

(AI) become useful and common in various applications, the 

importance of low-cost and high-performance computing 

platforms has increased. On the other hand, the performance 

of the personal computer (PC) has been dramatically 

enhanced with the advancements of LSI technologies. 

Particularly, the number of CPU cores has significantly 

increased so that multithreaded programs can run in parallel 

and drastically reduce the required CPU time for job 

completion. 

As a master-worker model based very low-cost and high-

performance computing platform for members of a group 

such as a university laboratory or a company section, we have 

studied the User-PC computing system (UPC) [1]-[3]. In this 

system, 1) a user of the UPC system submits computing jobs 

to the UPC master through the UPC web server. 2) The 

master assigns the jobs to the proper UPC workers. 3) Each 

worker computes the assigned jobs and returns the results to 

the master. 4) The user accesses the results through the web 

server. To improve the response performance, jobs should be 

assigned to workers in such a way that the makespan or the 

latency for computing all the requested jobs be minimized.  

In this paper, we propose a job-worker assignment 

algorithm for the UPC system. To reduce the CPU time by 

efficiently using parallel processing, it considers the number 

of threads used by a job during execution and the number of 

CPU cores in a worker. First, in the static assignment, this 

algorithm assigns each available job to a worker to minimize 

the makespan. Then, in the dynamic assignment, it assigns 

each newly arrived job to a worker when a worker becomes 

idle.  

For evaluation, we conducted experiments running 72 jobs 
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on the UPC system with six workers that have different 

number of threads and CPU cores. Two extreme cases are 

examined to investigate the static assignment and the 

dynamic assignment individually. In the first case, all the jobs 

are available. In the second one, jobs join the system 

dynamically according to a Poisson process. The proposed 

algorithm could significantly reduce the makespan compared 

to other algorithms.  

 

II. RELATED WORKS 

In this section, we overview related works in the literature. 

Within our survey, no work has considered the number of 

CPU cores and/or the number of job threads. 

In [4], Xu et al. proposed the Deadline Preference Dispatch 

Scheduling (DPDS) algorithm as a dynamic scheduling 

algorithm that considers the deadline constraint priority. They 

also proposed the Improved Dispatch Constraint Scheduling 

(IDCS) algorithm that uses a risk prediction model to reduce 

the waste of computing resources and maximize the number 

of completed tasks. 

In [5], Amalarathinam et al. proposed the Dual Objective 

Dynamic Scheduling Algorithm (DoDySA) that allocates the 

tasks based on the Earliest Starting Time (EST) and the 

Earliest Finishing Time (EFT) with the two objectives of 

maximizing the processor utilization and minimizing the 

makespan. The experiments results showed that DoDySA 

outperforms the others. 

In [6], Bhatia discussed task scheduling algorithms for grid 

computing in literature. They are categorized into heuristic 

approach ones and nature inspired ones. Their main goal is to 

minimize the execution time of each job or to improve the 

processing capacity of the available resources.  

In [7], Ernemann et al. applied economic models to the 

scheduling problem, and came up with a market-economic 

method that performs quite well. Their proposal is a 

decentralized one where several geographical domains are 

defined. Each domain is equipped with a local scheduling 

instance called MetaManager. 

In [8], Xie et al. proposed the dynamic scheduling 

algorithm with security awareness called EDF_OPTS. It can 

achieve the high quality of security for real-time tasks while 

improving resource utilizations. It is an optimized version of 

the Earliest Deadline First (EDF) scheduling algorithm that 

maintains high guarantee ratios while maximizing security 

values, by adjusting security levels of accepted tasks. 

In [9], Wang et al. proposed the DPK (Dynamic priority 

and 0-1Knapsack) algorithm to tackle the scheduling problem 

for multiple DAG (Directed Acyclic Graph)-structure hard 
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real-time applications. The latter is a non-preemptive two-

level algorithm that is based on the dynamic job priority 

adjustment. It resorts to the 0-1 Knapsack algorithm to keep 

CPUs busy during idling periods by assigning jobs to them. 

In [10], Pooranian et al. proposed the Group Leaders 

Optimization Algorithm (GLOA), which was inspired by the 

effect of leaders in social groups. To make the algorithm 

converge quickly, they divided the problem space into several 

smaller parts called groups. Each group is searched in parallel 

to increase the speed. Each separate space can be searched by 

its leader, who tries to find a solution by checking whether 

it’s the closest member to the local and global minimum. 

In [11], Seol et al. proposed the power-aware scheduling 

algorithm as an improved version of the Cycle Conserving 

Earliest Deadline First (CC-EDF) algorithm. This algorithm 

can be applied directly to static systems of the pinwheel task 

model and is more effective than other static schemes when 

the power-saving is concerned. Their simulation results 

showed that the algorithm reduces energy consumptions by 

10 to 80% over existing ones. 

In [12], Garg et al. proposed the Adaptive Workflow 

Scheduling (AWS) algorithm as a decentralized scheduling 

algorithm operating in three phases, the resource discovery 

and monitoring, the static task scheduling, and rescheduling, 

based on dynamic resource availability and using a directed 

acyclic graph workflow model. AWS uses an adaptive 

scheduling strategy that aims at minimizing the makespan of 

the workflow application. 

 

III. JOB-WORKER ASSIGNMENT PROBLEM FORMULATION 

In this section, we formulate the job-worker assignment 

problem for the UPC system. 

A. Symbols 

We define the variables and symbols in the formulation.  

• Wk: the set of available workers, 
• wk: a worker in Wk that is characterized by the number 

of the CPU cores, the memory size, and the disk space, 
• Jb: the set of given jobs to process, 
• jb: a job in Jb that is characterized by the number of 

threads and the required memory and disk spaces,  
• cjb,wk: the computation cost associated with the 

processing of job jb on worker wk , 
• θjb,wk: the processing time associated with the 

processing of job jb on worker wk , and  
• f(jb,wk): an assignment function with value 1 if job jb 

is assigned to worker wk and 0 otherwise. 

B. Assumptions on Job-Worker Assignments 

We make the assumptions on job-worker assignments:  

• any worker can process one job at a time to avoid tasks 
swapping,  

• any worker can be distinct from others in terms of 
number of CPU cores, 

• any job can be assigned to any worker that can process 
it, 

• all the queuing jobs can be assigned to workers at the 
same time, and 

• any future job arrival cannot be predicted. 

C. Problem Formulation 

The job-worker assignment problem for the UPC system 

can be formulated as a combinatorial optimization problem. 

The goal is to minimize the makespan, subject to the 

constraints related to available resources on workers. This 

assignment problem is NP-hard [13].  

1) Objective: To minimize the following function F: 

𝐹 =  ∑ ∑ 𝑓(𝑗𝑏, 𝑤𝑘)(𝜃𝑗𝑏,𝑤𝑘 − 1)𝑗𝑏∈𝐽𝑏𝑤𝑘∈𝑊𝑘           (1) 

2) Constraints 

• The total number of assigned jobs must be less than 

or equal to the total number of available jobs: 

∑ ∑ 𝑓(𝑗𝑏, 𝑤𝑘) ≤ |𝐽𝑏|𝑗𝑏∈𝐽𝑏𝑤𝑘∈𝑊𝑘                  (2) 

• The total number of job assignments is greater than or 

equal to the total number of available workers if there 

are more jobs than workers: 

∑ ∑ 𝑓(𝑗𝑏, 𝑤𝑘) ≥ |𝑊𝑘|, 𝑖𝑓|𝑊𝑘| ≤ |𝐽𝑏| 𝑗𝑏∈𝐽𝑏𝑤𝑘∈𝑊𝑘  (3) 

• A job can be assigned once to a worker that can process 

it: 

∑ 𝑓(𝑗𝑏, 𝑤𝑘) = 1,⩝ 𝑗𝑏 ∈ 𝐽𝑏𝑤𝑘∈𝑊𝑘              (4) 

• A worker can be assigned at most all available jobs: 

∑ 𝑓(𝑗𝑏, 𝑤𝑘) ≤ |𝐽𝑏|,⩝ 𝑤𝑘 ∈ 𝑊𝑘𝑗𝑏∈𝐽𝑏               (5) 

• The resource requirement of any job on any worker do 

never exceed the usage limit specified by the user: 

𝑓(𝑗𝑏, 𝑤𝑘)𝑐𝑗𝑏,𝑤𝑘 ≤ 𝑙𝑖𝑚𝑤, ∀(𝑗𝑏, 𝑤𝑘) ∈ (𝐽𝑏 ∗ 𝑊𝑘)   (6) 

• f is a two-variable binary function: 

𝑓(𝑗𝑏, 𝑤𝑘) ∈ {0,1}, ∀(𝑗𝑏, 𝑤𝑘) ∈ (𝐽𝑏 ∗ 𝑊𝑘)     (7) 

• The job processing time must be a positive real value: 

𝜃𝑗𝑏,𝑤𝑘 ∈ 𝑅+
∗                              (8) 

D. Problem Complexity 

Given a set of jobs Jb and a set of workers Wk, the total 

number of possible job-worker assignments N is given by: 

𝑁 =  ∑ {𝑛
𝑖
}𝑃𝑖

𝑘𝑘
𝑖=1                                    (9) 

where {𝑛
𝑖
} represents the number of ways to partition a set of 

n objects into i non-empty subsets [14]. It is given by: 

 {𝑛
𝑘

} =
1

𝑘!
∑ (−1)𝑘(𝑘

𝑖
)(𝑘 − 𝑖)𝑛                  𝑘

𝑖=0 (10) 

For instance, for a set of ten jobs and four workers, N = 

171,889,200, which means that even for a small size problem, 

it is impossible to find the optimal schedule (job-worker 

assignments) by analyzing all possible combinations. Thus, 

an approximation or heuristic algorithm is necessary to tackle 

the job scheduling problem in the UPC system. 

 

IV. JOB-WORKER ASSIGNMENT ALGORITHM 

This section presents the job-worker assignment algorithm 

composed of the greedy initial stage and the local search 

improvement stage for the UPC system.  

A. Initial Stage by Greedy Method 

The initial stage of the proposed algorithm generates a 

feasible solution to the problem from scratch, using a greedy 
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method. To efficiently utilize the CPU cores in workers, this 

stage groups workers and jobs into several classes according 

to the number of available cores for workers or required 

threads for jobs. Then, it greedily sets up job-worker 

assignments in each class, independently. In this paper, the 

number of classes is set to two since all our workers have less 

than 20 cores.  

1. Algorithm Procedure: The greedy method procedure for 
the initial stage is given as follows:  

1) Each job in the given job set Jb is assigned to either of 
the two job classes depending on their required number 
of threads during execution. Actually, a job goes to class 
1 if it requires up to four threads during execution and 
goes to class 2 otherwise.  

2) Each worker in the given worker set Wk is assigned to 
either of the two worker classes depending on their 
available CPU core number. Actually, a worker goes to 
class 1 if it has up to four cores and goes to class 2 
otherwise.  

3) In each job class, jobs are assigned to workers by using 
the following greedy method:  
a) Workers are sorted in ascending order of job 

processing time. 
b)  Using the given approximate execution time tjb,wk for 

each job jb in the corresponding job class on each 
worker wk belonging to the current worker class, 
compute for each job a discriminator 𝛿𝑗 =

∑
𝑡𝑗𝑏,𝑤𝑘

𝑡𝑗𝑏,𝑤𝑘+1

|𝑊𝑘|
𝑤𝑘=1 and sort jobs in the class in ascending 

order of δ values. Jobs with the lowest values of δ 
are to be assigned first for any given job class. 

c)  For each job in the current job class, find the 
available worker in the current worker class that runs 
the current job within the shortest amount of time 
and assign the latter to it. 

2. Pseudo Code: The pseudo code is given in Algorithm 1.  
Algorithm 1 Greedy Method for Initial Stage 
Input: a set of jobs Jb and a set of workers Wk. 
Output: job-worker mapping. 
1: workerClasses[2][n] ← ϕ, jobClasses[2][n] ← ϕ 
2: for each worker wk ∈ Wk do 
3: if current worker wk has ≤ 4 threads then 
4:         add wk to workerClasses[0] 
5: else 
6:     add wk to workerClasses[1] 
7: end if 
8: end for 
9: for each job jb ∈ Jb do 
10:     if current job jb uses ≤ 4 threads to execute then 
11:         add jb to jobClasses[0] 
12:     else 
13:         add jb to jobClasses[1] 
14:      end if 
15:  end for 
16: for i = 0 to 1 do 

17:  
Sort workers in workerClasses[i] in ascending order of 
job processing time (CPU performance). 

18: for each job jb ∈ jobClasses[i] do 
19:    δj ← 0 
20:  for wk = 0 to count(workerClasses[i]) - 1 do 
21:     δj ← δj + (tjb, wk / tjb, wk +1) 
22:  end for 
23: end for 
24: Sort jobs in jobClasses[i] in ascending order of δ values. 

25: 
for each job jb ∈ jobClasses[i], from the lowest values 
of δ to the highest do 

26:  
Find the available worker in workerClasses[i] that 
processes jb in the shortest amount of time and assign 
jb to it. 

27:  end for 
28: end for 
29: return the generated job-worker mapping 

B. Improvement Stage by Local Search Method 

The initial solution generated at the initial stage is 

improved by using a randomized multi-start local search 

method and additionally, hill climbing method is used to 

escape from local minima.  

1. Algorithm Procedure: The local search procedure for 
the improvement stage is described as follows: 

1) Consider the output of the initial stage as the initial 

solution and define 4 neighborhood solution generation 

functions and a solution evaluation function as follows: 

• The first function implements a local search method 
that moves jobs from the bottleneck worker (worker 
with the highest makespan) to any other available 
worker. 

• The second function implements a local search 
method that moves jobs randomly from any worker 
to any other available one. 

• The third function implements a local search method 
that swaps jobs from the bottleneck worker with any 
other jobs being processed on any other workers. 

• The fourth function implements a local search 
method that randomly swaps jobs from any worker 
with any other jobs being processed on any other 
workers. 

• The evaluation function takes a job-worker mapping 
as first parameter, compares it with the mapping 
passed in as second parameter and then returns the 
best of both (mapping with the shortest makespan). 

2) Randomly select one of the aforementioned functions 
and run it on the initial solution in order to generate a 
new initial solution for the current iteration. Then set the 
newly generated initial solution to be the best job-
worker mapping so far. 

3) Randomly select one of the aforementioned functions 
and run it on the best job-worker mapping (mapping 
with the shortest makespan) so far, to improve it. 

4) In case a better mapping is found, replace the former best 
mapping with it and repeat the previous step and the 
current one several times, depending on the number of 
jobs. In our experiments, we repeated these steps 50 
times for 24 jobs, 100 times for 48 jobs and 150 times 
for 72 jobs. 

5) Compare the best overall mapping resulting from the 
previous step with the best overall mapping so far and 
update the latter if it’s no more the best one. 

6) Repeat the four previous steps several times depending 
on the number of jobs, and return the overall best 
mapping found. In our experiments, we repeated these 
steps 50 times for 24 jobs, 100 times for 48 jobs and 150 
times for 72 jobs. 

2. Pseudo Code: The pseudo code is given in Algorithm 2. 
Algorithm 2 Local Search for Improvement Stage 
Input: The initial job-worker mapping. 
Output: The best job-worker mapping found. 
1: mapping firstLocalSearchMethod (mapping) 
2: mapping secondLocalSearchMethod (mapping) 
3: mapping thirdLocalSearchMethod (mapping) 
4: mapping fourthLocalSearchMethod (mapping) 
5: mapping evaluateMapping (mapping, mapping) 

6: 
bestOverallMapping← 
       initialMapping 

7:  for i = 1 to 50 do 

8: 
Randomly select one of the previously mentioned 
local search methods. 

9: 
currentIterationInitialMapping← 
    selectedLocalSearchMethod (initialMapping) 

10: 
bestTemporaryMapping← 

        currentIterationInitialMapping 
11:       for j = 1 to 50 do 

12: 
Randomly select one of the aforementioned 4 local 
search methods. 

13: 
newMapping← 
     selectedLocalSearchMethod 
     (bestTemporaryMapping) 

14:       bestTemporaryMapping← 

International Journal of Future Computer and Communication, Vol. 11, No. 2, June 2022

42



  

evaluateMapping(newMapping, 
bestTemporaryMapping) 

15:  
16: 

       end for 
     bestOverallMapping ← 
         evaluateMapping(bestTemporaryMapping, 
         bestOverallMapping) 

17: end for 
18: return bestOverallMapping 

3. Time Complexity: In the greedy algorithm, the 
construction of worker classes takes O(|Wk|) while that 
of job classes takes O(|Jb|). Then, assuming all sorting 
operations are being carried out using quick sort 
algorithm, let WC be the set of worker classes, WC[i] 
be any worker class and JC[i] be any job class. Given 
that the number of worker classes is ≥ 2, the maximum 
number of workers in a worker class is |Wk| - 1 and the 
second part of the greedy algorithm (comprising δj 
calculation for each job in each class, two sorting 
operations and jobs assignment to workers) takes: 

O(|WC|∗(Max(|WC[i]|)log(Max(|WC[i]|))+Max(|WC[i]|)
∗Max(|JC[i]|)+Max(|JC[i]|)log(Max(|JC[i]|))+Max(|WC[i]
|)∗Max(|JC[i]|)))=O(|WC|∗(Max(|WC[i]|)log(Max(|WC[i]|)
)+2Max(|WC[i]|)∗Max(|JC[i]|)+Max(|JC[i]|)log(Max(|JC[i
]|))))=O(|WC|∗((|Wk|-1)log(|Wk|-1)+(|Jb|-1)log(|Jb|-
1)+2( |Wk|-1)∗(|Jb|-1)))=O(|WC|∗(|Wk|log|Wk|+|Jb|log|Jb| 
+|Wk| |Jb|))= O(|WC||Wk||Jb|) 

The greedy algorithm thus takes no more than: 

O(|WC||Wk||Jb|) + O(|Wk|) + O(|Jb|) = O(|WC||Wk||Jb|) 

In the heuristic algorithm, each of the four local search 

methods takes O(Max(|WC[i]|) ∗ Max(|JC[i]|)) and the 

mapping evaluation algorithm takes O(|Jb|2). Then, assuming 

that we run the selected local search algorithm α times and 

the multi-start local search algorithm β times and that |Jb| > 

|Wk|, the heuristic algorithm takes: 
O(α(β(Max(|WC[i]|)∗Max(|JC[i]|)+|Jb|2)+|Jb|2))=O(α(β(

(|Wk|-1)(|Jb|-1)+|Jb|2)+|Jb|2))=O(α(β(|Wk||Jb|+|Jb|2) 
+|Jb|2))=O(α(β|Jb|2+|Jb|2))=O(α|Jb|2)=O(|Jb|2) 
The heuristic algorithm thus takes no more than O(|Jb|2). 

In conclusion, our scheduling method takes: 

O(|WC||Wk||Jb|) + O(|Jb|2) = O(|WC||Jb|2) since |Jb| > |Wk| 

= O(|Jb|2) since |WC| = CONST. 

C. Dynamic Job-Worker Assignment 

The dynamic job-worker assignment algorithm repeatedly 

calls the static one whenever there are both idling workers 

and uncompleted jobs in the system. 

1) Pseudo Code: The pseudo code is given in Algorithm 3. 

Algorithm 3 Dynamic Job Scheduling Algorithm 
Input: a queue of waiting jobs Jb with average arrival 

rate λ and a set of workers Wk with average processing 
rate µ. 

Output: None. 
function getIdlingWorkerSet(workerSet) 
    idlingWorkerSet ← ∅ 
    for each worker wk ∈ workerSet do 
        if current worker wk is idling then 
            Add the current worker to idlingWorkerSet. 
        endif 
    endfor 
    return idlingWorkerSet 
end function 

1: 
Wk, Jb, timer.initialize(), startTime ← 0, 
resultingMapping ← ∅, makespan = 0 

2: startTime ← timer.getCurrentTime() 
3: while true do 
4: idlingWorkerSet ← getIdlingWorkerSet(Wk) 
5: if idlingWorkerSet , ∅ then 

6: 
        resultingMapping ← Static Job Scheduling   

Method (Wk, Jb) 

7: 
   Assign jobs to idling workers according to 

resultingMapping. 
8:    Update the queue of waiting jobs Jb. 
9: end if 

10: if there are no new job arrivals then 
11:     makespan=timer.getCurrentTime()-startTime 
12:      return makespan 
13: end if 
14: sleep for a short while 
15:  end while 

V. EVALUATION 

In this section, we evaluate the proposed algorithm by 

assigning and running the 24 jobs in Table II on a UPC system 

with the six workers in Table I. Table III shows the measured 

standard CPU time for each job running on each of the six 

workers. The algorithm was run on a PC with an Intel(R) Core 

(TM) i5-5200U CPU @ 2.20GHz processor, two CPU Cores, 

four threads, 8.00 GB memory and a 64-bit Windows 10 

Education. 
TABLE I: WORKERS SPECIFICATIONS 

worker #  Core number type of CPU Clock rate Memory size 
master  4 icore5 3.20 GHz 8 GB 
worker1  4 icore3 1.70 GHz 2 GB 
worker2  4 icore5 2.60 GHz 2 GB 
worker3  4 icore5 2.60 GHz 2 GB 
worker4  8 icore7 3.40 GHz 4 GB 
worker5  16 icore9 3.60 GHz 8 GB 
worker6  20 icore9 3.70 GHz 8 GB 

A. Evaluation Setup 

To evaluate the algorithm with an increasing number of 

jobs, each of the 24 jobs was executed once (= 24 jobs in total), 

twice (= 48 jobs in total), and three times (= 72 jobs in total). 

In our evaluation, jobs join the system in the same order as in 

Table II. As performance index for evaluation, the makespan 

is calculated as the difference between the first job processing 

start time and the last job completion time. 

B. Results for Static Job-Worker Assignment 

First, we evaluate the static job-worker assignment results 

yielded by the proposed algorithm, through comparisons with 

reference algorithms. 

1) Reference Algorithms for Comparison: To evaluate the 

effectiveness of the static scheduling algorithm, we solved the 

problems using three baseline algorithms we have devised, 

namely: First Come First Served (FCFS), Memory 

consumption-based priority scheduling (M-Priority), and 

CPU thread usage-based priority scheduling (T-Priority). 

The FCFS algorithm assigns queuing jobs to workers on a 

first-come first-served basis. The M-Priority algorithm 

assigns jobs in descending order of memory consumption. 

Actually, the more memory a job consumes, the more 

powerful the worker it will be processed on. The T-Priority 

algorithm assigns jobs in descending order of number of 

threads used during execution. That is, jobs using the highest 

number of threads are assigned first to the most powerful 

workers. All the reference algorithms as well as the static 

scheduling algorithm were implemented in Java. 

TABLE II: JOBS SPECIFICATIONS 

job #  job name  
# of 

threads  
disk usage 

program1  Network Simulator (NS)  1  0.392 GB 

program2  Optimization Algorithm (OA)  1  1.5 GB 

program3  DCGAN  17  1.9 GB 

program4  RNN  17  1.9 GB 

program5  CNN  17  1.9 GB 

program6  FFmpeg  18  2.8 GB 

program7  Converter  1  1.1 GB 

program8  Palabos  2  6.7 GB 
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program9  Flow  4  0.438 GB 

program10  blockchain mining  1  920 MB 

program11  COVID detection  23  2.95 GB 

program12  COVID outbreak prediction  4  1.84 GB 

program13  multimedia content resizing  18  2.8 GB 

program14  multimedia content format changing  18  2.8 GB 

program15  OpenFOAM 5W  1  1.4 GB 

program16  OpenFOAM 10W  1  1.4 GB 

program17  OpenFOAM 15W  1  1.4 GB 

program18  OpenFOAM 20W  1  1.4 GB 

program19  OpenFOAM 25W  1  1.4 GB 

program20  OpenFOAM 30W  1  1.4 GB 

program21  OpenFOAM 35W  1  1.4 GB 

program22  OpenFOAM 40W  1  1.4 GB 

program23  OpenFOAM 45W  1  1.4 GB 

program24  OpenFOAM 50W  1  1.4 GB 

 

2) Makespan Results: Table IV compares the makespan 

results yielded by the four algorithms for 24, 48 and 72 jobs. 

improvement in this table indicates the makespan difference 

between our proposed algorithm and the best of the three 

reference algorithms. The results clearly show that the 

proposed algorithm outperforms the reference algorithms. 

For reference, Table V shows the total CPU time required to 

process all the jobs on the workers. 

TABLE III: JOBS STANDARD PROCESSING TIME 

job # worker1 worker2&3 worker4  worker5  worker6 

program1 02:14:46  01:06:44  00:54:21  00:39:40  00:36:09 

program2 00:41:43  00:26:38  00:20:27  00:13:53  00:13:10 

program3 01:37:14  01:09:28  00:22:44  00:12:45  00:11:15 

program4 00:17:43  00:12:01  00:07:03  00:05:37  00:04:49 

program5 00:26:04  00:22:22  00:07:07  00:05:24  00:04:47 

program6 00:46:37  00:31:49  00:13:23  00:07:59  00:06:54 

program7 00:17:09  00:11:34  00:05:41  00:04:53  00:04:15 

program8 00:12:51  00:08:38  00:05:24  00:04:29  00:03:19 

program9 00:25:20  00:14:45  00:11:08  00:08:32  00:07:55 

program10 00:36:28  00:09:09  00:07:53  00:05:59  00:04:14 

program11 00:39:35  00:24:53  00:10:42  00:04:08  00:03:16 

program12 00:13:12  00:06:35  00:05:09  00:03:55  00:03:01 

program13 00:34:50  00:19:47  00:12:33  00:07:48  00:07:10 

program14 00:36:33  00:24:56  00:10:55  00:05:45  00:04:19 

program15 00:12:23  00:07:19  00:06:51  00:05:04  00:04:28 

program16 00:29:58  00:19:18  00:16:58  00:13:08  00:11:27 

program17 00:45:57  00:30:44  00:25:59  00:20:31  00:17:54 

program18 00:55:44  00:36:54  00:32:25  00:25:17  00:22:13 

program19 01:20:36  00:52:29  00:46:40  00:36:55  00:32:20 

program20 01:37:25  01:05:44  00:56:27  00:45:18  00:39:42 

program21 01:44:18  01:12:44  01:06:06  00:51:19  00:44:56 

program22 01:52:04  01:26:35  01:14:53  01:00:08  00:52:44 

program23 02:14:32  01:30:28  01:19:17  01:03:01  00:55:19 

program24 02:22:38  01:32:22  01:23:02  01:07:02  00:58:40 

TABLE IV: MAKESPAN RESULTS (H:M:S) FOR STATIC ASSIGNMENT 

  24 jobs 48jobs 72 jobs 
FCFS  02:58:36 04:55:19 09:03:37 
M-Priority  02:37:28 06:07:47 07:37:18 
T-Priority  02:47:21 05:02:03 08:20:53 
Proposal  02:06:58 04:08:41 06:10:31 
improvement  00:30:30 (20%)  00:46:38 (16%)  01:26:47 (19%) 

 

TABLE V: TOTAL CPU TIME RESULTS (H:M:S) FOR STATIC ASSIGNMENT 

  24 jobs  48 jobs 72 jobs 

FCFS  13:50:34  26:37:15  42:28:37 

M-Priority  13:35:17  27:52:08  41:01:32 

T-Priority  13:47:05  26:22:36  41:30:02 

Proposal  12:29:57  24:43:19  36:54:30 

C. Results for Dynamic Job-Worker Assignment 

Next, we evaluate the dynamic job-worker assignment 

results yielded by the proposed algorithm, through 

comparisons with reference algorithms. Here, we assume that 

new job arrivals in the UPC system occur according to a 

Poisson distribution and jobs are inserted into a non-

preemptive queue [15] as they join the system. The average 

job arrival rate λ is set to 1 job/500s. Then, when workers 

become idle, queuing jobs are assigned and transmitted to 

workers by the algorithm.  

1) Reference Algorithms for Comparison: For performance 

comparisons, additionally, two algorithms called First Come 

First Served (FCFS) and Scheduling Upon Arrival (SUA) are 

implemented and applied to the same set-up. FCFS randomly 

assigns the first arriving job to the first available worker. SUA 

assigns newly arrived jobs to workers as soon as they joined 

the system, using the previously described static job 

scheduling algorithm. Consequently, if a job is assigned to a 

currently busy worker, it has to wait until the worker becomes 

free, to be processed. Algorithms were implemented in Java. 

2) Results and Analysis: Table VI compares the makespan 

results yielded by the three algorithms for 24, 48 and 72 jobs. 

Here, improvement means the makespan difference between 

the proposed algorithm and the best of the two reference 

algorithms. The results show that the proposed algorithm 

outperforms the reference algorithms. From the data in Table 

III, we could roughly estimate the average worker service rate 

in two steps. First, we calculated the average service rate of 

each worker over all jobs by: 

𝜇𝑎𝑣𝑔𝑤 =
1

|𝐽𝑏|
∑ 𝜃𝑗𝑏,𝑤𝑘 , ∀𝑤𝑘 ∈ 𝑊𝑘.𝑗𝑏∈𝐽𝑏             (11) 

Then, we calculated the average of the previous value over 

all the workers by: 

𝜇𝑎𝑣𝑔𝑤 =
1

|𝑊𝑘|
∑ 𝜇𝑎𝑣𝑔𝑤𝑤 = 1𝑗𝑜𝑏/2023𝑠.𝑤𝑘∈𝑊𝑘      (12) 

The response time represents the total amount of time a job 

spends both in the queue and in service and is given by [16]: 

𝐶(|𝑊𝑘|,𝜆/𝜇)

|𝑊𝑘|𝜇−𝜆
+

1

𝜇
                                    (13) 

Using the previous formula, the average response time of 

system can be estimated by: 

𝐴𝑣𝑔𝑅𝑡𝑖 =
𝐶(|𝑊𝑘|,𝜆/𝜇)

|𝑊𝑘|𝜇−𝜆
+

1

𝜇
                     (14) 

The probability that an arriving job is forced to join the 

queue that is, all workers are occupied, is given by: 

𝐶 (|𝑊𝑘|,
𝜆

𝜇
) =

1

1+(1−𝜌)(
|𝑊𝑘|!

(|𝑊𝑘|𝜌|𝑊𝑘|)
) ∑

(|𝑊𝑘|𝜌)𝑘

𝑘!

|𝑊𝑘|−1
𝑘=0

         (15) 

which is Erlang’s C formula [15]. We calculate (14) using 

Erlang C formula and ρ value, 𝜌 =
1/500

(6∗1/2023)
≈ 67% , as 

follows: 

𝐶(|𝑊𝑘|, 𝜆/𝜇) =
1

1 + (1 − 𝜌) (
|𝑊𝑘|!

(|𝑊𝑘|𝜌|𝑊𝑘|)
) ∑

(|𝑊𝑘|𝜌)𝑘

𝑘!
|𝑊𝑘|−1
𝑘=0

 

≈
1

1 + (
0.33 ∗ 6!

4.026 ) (∑
4.02𝑘

𝑘!
5
𝑘=0 )

≈
1

1 + (0.06 ∗ 43.56)
≈ 0.28. 

Thus, 𝐴𝑣𝑔𝑅𝑡1
=

0.28

6∗
1𝑗𝑜𝑏

2023𝑠
−

1𝑗𝑜𝑏

500𝑠

+
1

1𝑗𝑜𝑏

2023𝑠

≈
0.28

6𝑗𝑜𝑏𝑠

2023𝑠
−

1𝑗𝑜𝑏

500𝑠

+

2023𝑠 ≈ 290𝑠 + 2023𝑠 = 2313𝑠 = 38𝑚𝑖𝑛33𝑠. 
Using experiment results, the average response time of the 

system is estimated for 24 distinct jobs as 47min10s 

The theoretical average response time of the system AvgRt1 

is quite shorter than the estimated time using the experiment 

data AvgRt2. This is mainly due to the fact that 2/3 of 
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available jobs use 4 or less than 4 threads during execution 

and therefore, they are assigned to either worker1 or worker2 

or worker3 (1/2 of available workers). Consequently, the 

bottleneck worker is always one of the previously mentioned 

workers. This performance drop could be efficiently 

mitigated by enabling the dynamic scheduling algorithm to 

implement job migration, that is, preempting and moving 

already assigned jobs to more powerful or idling workers. 

TABLE VI: MAKESPAN RESULTS (H:M:S) FOR DYNAMIC ASSIGNMENT 

 24 jobs  48 jobs  72 jobs 

FCFS  06:31:49  13:38:40  16:49:14 

SUA  06:18:36  11:09:23  15:38:22 

Proposal  05:39:48  10:35:38  14:40:01 

improvement  00:38:48 (10%)  00:33:45 (5%)  00:58:21 (6%) 

 

TABLE VII: TOTAL CPU TIME RESULTS (H:M:S) FOR DYNAMIC 

ASSIGNMENT 

 24 jobs 48 jobs 72 jobs 

FCFS 14:18:04 33:39:58 46:22:17 

SUA 15:09:51 30:55:48 45:47:59 

Proposal 14:48:23 30:33:12 45:21:11 

D. Discussion 

The static scheduling algorithm finds better job-worker 

mappings by iteratively testing several mappings and 

selecting those that yield the shortest makespans. As an 

optimization algorithm, it requires a set of already available 

jobs to evaluate the possible job-worker mappings more 

efficiently. However, since the dynamic scheduling algorithm 

repeatedly calls the static one whenever a worker is idling, it 

is very likely that the number of new job arrivals between two 

iterations of the static algorithm is low. Thus, the static 

scheduling algorithm only runs on a handful of jobs, most of 

the time. This is the main reason why the makespan reduction 

yielded by the dynamic scheduling algorithm is quite low 

compared to that of the static one. 

 

VI. CONCLUSION 

This paper presented the job worker assignment algorithm 

to minimize the makespan, considering the number of job 

threads and the number of CPU cores. For evaluation of the 

proposed algorithm, we conducted experiments running 72 

jobs on the UPC system with six workers that have various 

number of threads and CPU cores. The schedules by the 

algorithm could significantly reduce the makespan by up to 

20%, compared to other algorithms. Our future work includes 

evaluation with more jobs and workers. 
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