

Abstract—Chroma key is a popular visual effect and

post-production technique today. The aim of this work is to

design and implement the Chroma-key effect on an FPGA in

real-time. The XSG (Xilinx System Generator) tool is used to

design the effect system, and the Xilinx ISE (Integrated

Synthesis Environment) tool is used to simulate, synthesize, and

implement it. Despite the fact that other techniques for

achieving the Chroma-key effect exist, we have based our work

on the color space conversion technique (RGB to HSV) to

extract the image's background. The mathematical model of the

color space converter (RGB to HSV) of the designed system is

based on the MATLAB rgb2hsv function. The designed

XSG-based system is stimulated under Simulink/Matlab. The

obtained results are compared with the results obtained from a

Chroma-key effect implemented using Matlab scripting. The

obtained results have confirmed the good function of the

designed XSG-based system. The designed system is then

implemented on the FPGA, and a real-time video application is

executed to extract the green background and replace it with a

new background. The obtained results demonstrated that the

designed Chroma-key effect system worked properly. The

paper is presented as a guide with technical details about

designing and real-time implementation of the Chroma-key

effect, and also any other video processing application on

FPGA.

Index Terms—Image processing, chroma-key, green screen,

real-time, Xilinx, XSG, FPGA.

I. INTRODUCTION

Today, the digital image is part of our daily life. Television,

mobile phones, medical imaging, traffic control, robotics,

etc., are all areas where the digital image plays a key role.

Thanks to the availability of sophisticated computers, digital

image processing has become an area of active research. Its

use has grown exponentially over the past few decades. Its

applications range from medicine and entertainment to

geological processing and remote sensing. Multimedia

systems, one of the pillars of the modern information society,

rely heavily on digital image processing [1]. Digital image

processing refers to all the techniques used to modify a digital

Manuscript received October 9, 2022; revised November 30, 2022.

Hocine Merah is with the Physics department, École Normale supéRieure

of Laghouat–Oasis Nord, Laghouat, 03000, Algeria (e-mail:

merah.hossein2@gmail.com).

Lahcene Merah is with the Electronics Department, University Amar

Telidji, BP 37G, Laghouat, Algeria (e-mail: l.merah@lagh-univ.dz).

Noureddine Chaib is with the Computer Science and Mathematics

Laboratory, University Amar Telidji, BP 37G, Laghouat, Algeria (e-mail:

n.chaib@lagh-univ.dz).

Adda Ali-Pacha is with the the Department of Electronics, University of

Science and Technology of Oran (USTO), Oran 31036, Algeria (e-mail:

a.alipacha@gmail.com).

image with the aim of improving it or extracting information

from it.

One of the most commonly used image processing

techniques in video broadcasting and cinema (science fiction)

is the Chroma-key (or keying) effect. It is the most used and

oldest visual effects technique. Simply put, Chroma is

shooting a subject against a solid colored background, then

removing that background in post-production and replacing it

with transparency. Then the subject can be placed in front of

any new background. The most commonly used key colors

are green and blue. Why these two colors? They are in

opposite contrast to the color of human skin.

Generating a Chroma-key effect using a blue or green

background is not the only way to achieve a result. An

alternative is to focus on differences. The idea behind

differences is based on storing the background image and

calculating the difference between the pixels’ values of the

background image and those of any moving object through

this background. When operating in Chroma-key mode, the

program replaces anything it thinks belongs to part of the

original background with the material we wish to key in as

the new background [2]. A common Chroma-key method is

to find a mask (including the Fixed Key Method and the

K-Means Clustering Method [3], [4]) representing the

foreground region extracted from the foreground frame [5].

Another possible alternative (which is our case) is to key

on a color specified by its saturation and value (HSV). The

HSV model provides a more natural way to select color, and

it may be easier to choose a key color using this model than

with the RGB components [2].

Real-time image processing requires powerful computing

platforms. One of the most popular computing platforms

today is the FPGA (Field-Programmable Gate Array). Today,

FPGA circuits have become truly revolutionary devices that

combine the advantages of hardware and software. An FPGA

is an integrated circuit designed to be configured by a

designer after manufacture—thus the term

"Field-programmable" [6]. The FPGA configuration is

usually specified using a Hardware Description Language

(HDL), similar to that used for an Application-Specific

Integrated Circuit (ASIC). FPGAs offer considerable

performance due to the parallel structure of their

programmable logic resources. This advantage allows

FPGAs to become the right choice to implement algorithms

that require high performance, for example image processing

algorithms.

The purpose of this work is to implement an algorithm to

extract and replace the background of an image or video on

an FPGA for real-time applications. The principle is to

choose a range of background colors to extract and replace

Designing and Real-Time FPGA-Based Implementation

of a Chroma-Key Effect System Using Xilinx System

Generator

H. Merah, L. Merah, N. Chaib, and A. Ali-Pacha

International Journal of Future Computer and Communication, Vol. 11, No. 4, December 2022

72doi: 10.18178/ijfcc.2022.11.4.591

mailto:merah.hossein2@gmail.com
mailto:l.merah@lagh-univ.dz
mailto:n.chaib@lagh-univ.dz
mailto:a.alipacha@gmail.com

with a different image. The RGB/HSV converter is the key

component of our design. Using the HSV color space will

simplify the selection of the color range.

We have used the XSG tool to design the Chroma-key

effect system, including the RGB/HSV converter. This tool

makes it possible to create fairly complicated digital systems

without prior knowledge of hardware description languages

such as VHDL. XSG adds blocks to the Simulink/Matlab

library. Some of these blocks are used to design and simulate

the Chroma-key effect system, and then to automatically

generate the VHDL code. The generated VHDL code will be

exported to the ISE (Integrated Synthesis Environment) tool

in order to complete the remaining real-time implementation

steps.

This paper is organized as follows: In Section II, the

conversion from the RGB space to the HSV space and the

implementation of the Chroma-key effect using Matlab

scripting are achieved. The simulation results will be used

later as references to the Chroma-key effect results achieved

using XSG. Section III presents the design, simulation, and

real-time implementation steps of the Chroma-key effect

system using XSG and ISE tools. Section VI is devoted to

presenting the simulation results of the XSG-based designed

Chroma-key effect system. The FPGA-based implementation

and the real-time evaluation of the designed Chroma-key

effect system are the subjects of section V. The paper is

ended by a conclusion about the achieved results.

II. CHROMA KEY EFFECT USING MATLAB

Color is a visual sensation which is produced by the

interaction of the light spectrum on the photoreceptors

represented by the cone cells in the retina of the eye [7]. Cone

cells allow us to see color. There are three kinds, each

responsible for seeing Red, Green, or Blue, respectively

(RGB); the three primary colors that combine to create the

multitude of color beauty we see in our world.

In a digital color image, each pixel is composed of three

color elements, RGB, to form a variety of colors. There are

other color space systems, for instance CIE XYZ, HSV, YUV,

CIELAB, etc. [8]. The General HSV color space is another

expression of the RGB color space. As it expresses the

perception of color contacts clearer than RGB, and the

calculation is very simple, it is widely adopted in image

processing [9].

As previously stated, the design and implementation of the

Chroma-key effect on FPGA is based on the MATLAB

algorithm (RGB to HSV conversion) dedicated to this

purpose. Hence, this section is devoted to presenting this

algorithm and performing some practical experiments using

it. Converting an image from RGB to HSV color space is the

most important way of producing the Chroma-key.

The RGB/HSV conversion is performed using the

MATLAB rgb2hsv function dedicated to this purpose. 𝐻 =
 𝑟𝑔𝑏2ℎ𝑠𝑣 (𝑀) converts an image M of RGB colors to an

image of HSV colors. This function is based on the following

mathematical model:

𝑚𝑥 = max(max(𝑅, 𝐺) , 𝐵) ; (1)

𝛥 = (𝑉 − 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑅, 𝐺), 𝐵)) ; (2)

𝑉 =
𝑚𝑥

255
; (3)

𝑆 = {
0 , 𝑚𝑥 = 0
𝛥

𝑚𝑥
, 𝑚𝑥 ≠ 0

 (4)

For 𝐻, we have three cases:

• If R = mx 𝐻 =
𝐺−𝐵

𝛥
×

1

6

• If G = mx 𝐻 = (2 +
𝐵−𝑅

𝛥
) ×

1

6

• If B = mx 𝐻 = (4 +
𝑅−𝐺

𝛥
) ×

1

6

If a negative value for 𝐻 is obtained, then 𝐻 = 𝐻 + 1.

A. Application Example

For the application example, the RGB image shown in

Fig.1 is used. The following MATLAB code is used to

convert the image from RGB color space to HSV:

 im = imread('image.bmp'); % Import the RGB image

 [H,S,V] = rgb2hsv(im); % Convert the RGB image to HSV space

Table I shows some randomly chosen RGB values and the

corresponding obtained HSV values after conversion. It is

obvious from Table I that, despite the RGB component

values changing, the value of H remains nearly constant (we

limit ourselves to only two numbers after the decimal point).

This shows that the HSV color space is better for background

extraction because the user can easily define the range of

colors to be extracted.

Fig. 1. The RGB image used in the application example.

TABLE I: RANDOMLY CHOSEN RGB VALUES FROM THE FIG.1 AND THE

CORRESPONDING HSV OBTAINED VALUES AFTER CONVERSION

R G B H S V

78 199 113 0.38 0.60 0.78

72 193 107 0.38 0.62 0.75

74 195 109 0.38 0.62 0.76

71 192 106 0.38 0.63 0.75

66 189 103 0.38 0.65 0.74

67 192 105 0.38 0.65 0.75

64 189 102 0.38 0.66 0.74

72 196 109 0.38 0.63 0.76

82 207 119 0.38 0.60 0.81

77 204 115 0.38 0.62 0.80

73 200 111 0.38 0.63 0.78

75 202 113 0.38 0.62 0.79

81 208 119 0.38 0.61 0.81

72 199 110 0.38 0.63 0.78

65 190 102 0.38 0.65 0.74

72 196 108 0.38 0.63 0.76

For instance, the following MATLAB code takes an

image's background and replaces it with a different one:

International Journal of Future Computer and Communication, Vol. 11, No. 4, December 2022

73

I1=imread('testkey2.bmp'); % import the initial RGB image

I2=imread('fond.bmp'); % import background RGB image
R2=I2(:,:,1); R2=R2(:); % convert the Red component to a

Vector

G2=I2(:,:,2); R2=R2(:); % convert the Green component to a

vector

B2=I2(:,:,3); R2=R2(:); % convert the Blue component to a

vector

[H,S,V]=rgb2hsv(I1); % convert the initial RGB image to HSV.

msk = (H>0.25 & H<0.55); % selection of the H interval to be

extracted.

% Replacing the background with second image.

I1(find(msk(:))+numel(msk)*0)= U(find(msk(:))+numel(msk)*0);

I1(find(msk(:))+numel(msk)*1)=U(find(msk(:))+numel(msk)*1);

I1(find(msk(:))+numel(msk)*2)=U(find(msk(:))+numel(msk)*2);

imshow(cat(2,I1)); % Displaying the result.

According to the code above, we can see that the interval

chosen for H is from 0.22 to 0.55, which represents the vast

majority of the green color possibilities. The obtained result

is depicted in Fig. 2, whereas Fig. 3 shows the results of the

effect of changing the interval of the H.

III. DESIGN OF CHROMA-KEY EFFECT SYSTEM USING XSG

In this section we will present the design steps of an

RGB/HSV converter based on XSG. The authors in [8] have

designed an optimized RGB to HSV converter using XSG.

For our design, we follow the optimization done by the

authors in [8] but with some modifications; the RGB to HSV

converter in our case is based on the mathematical equations

(1), (2), (3), and (4) as used exactly by the rgb2hsv function

in Matlab.

A. Design of Maximum and Minimum Calculator

We begin by constructing the first block, which is used to

compute the maximum and minimum of R, G, and B using

XSG. The achieved block is depicted in Fig. 4.

According to Fig.4, the block has 3 inputs which represent

the RGB color components coded in 8 bits for each one, and 3

outputs: the maximum, the minimum, and the index. The

index represents the output of a multiplexer. We have 3 states

for the output of this multiplexer; 0, 1, and 2. The first if Red

is the maximum, the second if Green is the maximum, and the

last if Blue is the maximum. This output will indicate later

what value H should take.

Fig. 2. Example of background extraction using Matlab.

Fig. 3. Results obtained for different values of H, (a) H = [0.29-0.31], (b) H =

[0.29-0.31], (c) H = [0.29-0.31], (d) H = [0.29-0.31], (e) H = [0.29-0.31], (f)

H = [0.29-0.31].

B. The Arithmetic Subsystem

The following figure represents the second part of our

system; it is the arithmetic part where all the necessary

calculations are carried out:

According to Fig.5, the subsystem has 5 inputs (the RGB

color components, the control index signal, the max and the

min) and 3 outputs (H, S, and V). For the calculation of H, the

main block for this operation is the Devider Generator 3.0.

This block allows us to perform complicated division

operations. For more information on this block, see [10].

 For good optimization, only one divider block is used

in our circuit. This is because, according to the H calculation

formula, only one division operation is performed per time

cycle. The index signal controls this operation. Fig. 5 shows

that the output of Subtractor S1 yields the following result:

• G-B if index =0 (condition where R is max),

• B-R if index =1 (condition where G is max),

• R-G if index =2 (condition where R is max).

The divider output (div_res) is the result of dividing the S1

output by 𝛥. According to the formula for calculating H, the

divider block result is added to:

• 0 if index =0,

• 2 if index =1,

• 4 if index =2.

Finally, the obtained result will be multiplied by 1/6 as

shown in Fig. 5. For the calculation of S and V, the operation

is quite easy. We can obtain the value of S by dividing the

max by 255. Similarly, V can be obtained as follows: V =

(max-min)/255.

IV. SIMULATION RESULTS

The obtained results using the XSG-based design in terms

of the HSV results and graphically by extracting the

background of an RGB image are compared with results

obtained using the hsv2rgb Matlab function.

A. Numerical Comparison

It should be noted that the designed XSG-based system

uses 18Q12 fixed-point arithmetic precision (18 bits of length

with 12 bits for the fractional part). We should compare the

results from XSG and Matlab to make sure that our system is

working correctly.

International Journal of Future Computer and Communication, Vol. 11, No. 4, December 2022

74

Fig. 4. Subsystem based on XSG for calculating the maximum and minimum of R, G and B.

Fig. 5. XSG-based arithmetic subsystem.

Table II presents the obtained results (results of RGB to

HSV conversion) for a given image with Matlab and those

obtained with XSG. We notice that even though Matlab uses

a large arithmetic precision (double precision with 64 bits),

the results from XSG (fixed-point precision with 18 bits) are

the same if only two digits after the decimal point are used,

which is good enough for our application.

B. Graphical Comparison

In this part, we will compare the obtained results with the

two implementation methods (Matlab and XSG) by

extracting the background of a color image. Other blocks are

added to the converter based on XSG. The role of these

blocks is to select the interval of H that we must detect and

replace with the chosen background pixels (Fig.6). Fig. 7

presents the obtained results. The results shown in Fig.8

make it very clear that the results from the code written in

Matlab and the results from XSG are the same.

International Journal of Future Computer and Communication, Vol. 11, No. 4, December 2022

75

TABLE II: COMPARISON BETWEEN THE RESULTS OBTAINED WITH MATLAB

AND THOSE WITH XSG

 Results obtained with Matlab Results obtained with XSG

H S V H S V

 0.1372 0.1515 0.4063 0.1363 0.1573 0.4078

 0.8386 0.0972 0.4141 0.8346 0.1065 0.4157

 0.9414 0.1098 0.4453 0.9496 0.1118 0.4471

 0.9390 0.1345 0.4883 0.9396 0.1349 0.4902

 0.8899 0.1032 0.5469 0.8796 0.1027 0.5490

 0.8931 0.1098 0.6563 0.8900 0.1029 0.6588

 0.9092 0.1146 0.5898 0.9119 0.1157 0.5922

 0.8833 0.1190 0.5742 0.8879 0.1106 0.5765

 0.8770 0.1206 0.5430 0.8733 0.1229 0.5451

 0.8862 0.1220 0.5703 0.8781 0.1247 0.5725

 0.8887 0.1140 0.4531 0.8808 0.1127 0.4549

 0.9092 0.1310 0.4141 0.9069 0.1384 0.4157

 0.8896 0.1272 0.4609 0.8876 0.1193 0.4627

 0.8833 0.1420 0.4102 0.8862 0.1476 0.4118

 0.8770 0.1378 0.3633 0.8743 0.1357 0.3647

 0.8862 0.1282 0.4023 0.8791 0.1292 0.4039

 0.8801 0.1417 0.4453 0.8820 0.1465 0.4471

Fig. 6. The whole Chroma-key system based on XSG to extract the background of an image.

V. IMPLEMENTATION ON FPGA

After confirming the proper functioning of the XSG-based

Chroma-Key system, we move on to its FPGA-based hardware

implementation. This section presents the different steps for

completing this point.

Fig. 7. Graphical comparison between the results obtained with Matlab and

those with XSG, (a): original image, (b): background image, (c): result

obtained by Matlab, (d): result obtained by XSG.

Fig. 8. Block diagram of the complete real-time Chroma-key effect system.

We have used the Atlys board for the implementation. The Atlys

board is a complete, ready-to-use digital circuit development

platform based on a Xilinx Spartan-6 LX45 FPGA, speed grade -3.

The large FPGA and on-board collection of high-end peripherals

including Gbit Ethernet, HDMI Video, 128MByte 16-bit DDR2

memory, and USB and audio ports make the Atlys board an ideal

host for a wide range of digital systems, including embedded

processor designs based on Xilinx’s MicroBlaze [11].

It must be taken into consideration that the source of the image as

well as the display of the image obtained in real time from the Atlys

board is ensured by the HDMI interfaces. Controlling these

interfaces with VHDL is a difficult task that is beyond the scope of

this work. We send the VHDL files generated by XSG to a project

already created under ISE and which contains the necessary files to

ensure communication with the HDMI ports. The whole project

scheme is presented in Fig. 8.

International Journal of Future Computer and Communication, Vol. 11, No. 4, December 2022

76

Fig. 9. Resources used by the implemented system.

Fig. 10. FPGA-based real-time evaluation of the designed Chroma-key

effect system.

The last step of our project is to achieve the hardware

implementation of the Chroma-key effect system on the FPGA

platform. The first thing is to generate the equivalent VHDL code

for our system from the XSG. Then send the generated code to the

ISE-created project, which contains additional files to control the

HDMI port.

After compiling the ISE project, a programming file will be

generated for the configuration of the Atlys board. The FPGA-based

system will drive the background image signal and the image with a

green background to the Chroma-key system. After the input images

are processed, the result will be shown on a screen through the

HDMI port. The Fig. 9 presents the report of the resources

consumed by the implemented system, including the other

components, such as the drivers of the HDMI ports.

After configuring the FPGA board, we can check the system

operation in real-time, as shown in Fig.10. It is clear from the

obtained result that the implemented system detects perfectly the

green background of the original image and replaces it with the new

background.

VI. CONCLUSION

In this work, we presented the steps of designing a Chroma-key

system and its real-time FPGA-based implementation, from the first

step (validation by simulation) to the last step (implementation on

FPGA (real-time validation)). We used the XSG tool, which

allowed us to create this system quickly and easily; the design of this

system may be difficult and time-consuming if using a hardware

description language (VHDL, Verilog). XSG allowed us to do the

simulation in Matlab as well as the generation of the equivalent

VHDL code of the designed system automatically. The designed

system consists of an RGB/HSV converter. This converter allows us

to easily detect the colors of the pixels to be extracted. In addition,

another sub-system extracts the background pixel and replaces it

with the pixel of the new background image. The obtained

simulation as well as the FPGA-based real-time results showed the

good functioning of our system with good performance. Indeed,

there is a lot of software to achieve this graphic effect, but little

hardware to do that. This project was done on a low-cost FPGA

board. It will be very useful for people who want to achieve this

effect in real-time. Finally, there are still several things we need to

do to improve this project in the future.

REFERENCES

[1]. V. M. Gelson, "Eduardo AB da Silva," The Electrical Engineering

Handbook, 2004, vol. 891.

[2]. M. Karen and R. S. Ferguson, A Hitchhiker's Guide to Virtual Reality,

CRC Press, 2007.

[3]. N. T. Sang and T. Q. Vinh, “FPGA implementation for real-time

chroma-key effect using coarse and fine filter,” in Proc. Computing,

Management and Telecommunications (ComManTel), 2013.

[4]. T. Sameera. (2022). Chroma Keying MATLAB Implementation 1.0.

[Online]. Available:

https://thilinasameera.wordpress.com/2010/12/03/chroma-keying-matla

b-implementation-1-0/

[5]. S. N. Thanh and T. Q. Vinh, "FPGA implementation for real-time

chroma-key effect using coarse and fine filter," in Proc 2013

International Conference on Computing, Management and

Telecommunications (ComManTel), 2013.

[6]. X. Fan, and M. M. Tanik. "An educational environment for evolutionary

and adaptive circuit DESIGN," 2011.

[7]. M. Alina, S. Aupetit, and M. Slimane, "Improving web accessibility for

dichromat users through contrast preservation,” in Proc. International

Conference on Computers for Handicapped Persons, Springer, Berlin,

Heidelberg, 2012.

[8]. W. Long et al., "Implementation of RGB to HSV color space conversion

with Xilinx system generator," Advanced Materials Research, vol. 816,

Trans Tech Publications Ltd, 2013.

[9]. S. Li and G. Gaizhi, “The application of improved HSV color space

model in image processing," in Proc. 2010 2nd International

Conference on Future Computer and Communication, vol. 2, 2010.

[10]. LogiCORE IP DividerGenerator v3.0, 2011.

[11]. Atlys Board Reference Manual, 2011.

Copyright © 2022 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Merah Hocine obtained his engineering degree in

electronics (communication) from Amar Telidji

University of Laghouat –Algeria in 2009 and the

magister degree also from Ferhet Abbess University

in setif, Algeria in 2012. He got his PhD from Amar

Telidji University of Laghouat –Algeria in 2019.Due

to his efforts, he benefited from an exceptional

national program scholarship from the Algerian

government (2018-2020) to Canada, immediately

after this training he worked as a head of the physics department at the level

of ENS Laghouat , Algeria . Currently , he is an associate professor in the

école normale supérieure of laghouat –Algeria. He is mainly interested in

research fields like: performance analysis of multicarrier modulation,

communication systems, network, multi-carrier waveforms. He is also

concerned with certain aspects such as : channel coding, signal processing,

PAPR reduction, information security and channel estimation.

Merah Lahcene received the engineering degree in

electronics (instrumentation) from University Amar

Telidji of Laghouat - Algeria in 2004. He worked as

an instrumentation engineer within the national

company SONATRACH (2006-2008), where he

acquired good experience in the maintenance of gas

turbines. He received the M.Sc and Ph.D degrees in

telecommunication systems from the University of

science and technology of Oran - Algeria in 2010 and

2016 respectively. He is currently a lecturer at the department of electronics,

University Amar Telidji of Laghouat. His research interests include are

information security, chaos-based secure information, Random number

generators, and signal processing on reconfigurable hardware. He has a

number of published works in these contexts. He joined a number of research

laboratories such as Advanced Microsystems Engineering Laboratory - the

University of Quebec (Ottawa - Canada), Coding and Information Security

Laboratory, Coding and Information Security Laboratory, the university of

science and technology of Oran (Algeria), and Signals and Systems

Laboratory, the University Amar Telidji of Laghouat (Algeria).

International Journal of Future Computer and Communication, Vol. 11, No. 4, December 2022

77

https://thilinasameera.wordpress.com/2010/12/03/chroma-keying-matlab-implementation-1-0/
https://thilinasameera.wordpress.com/2010/12/03/chroma-keying-matlab-implementation-1-0/
https://creativecommons.org/licenses/by/4.0/

Noureddine Chaib received the B.E. degree in

computer science engineering from the University of

Laghouat, in 2007, the M.E. degree in computer

science from the University of Batna, in 2011, and the

Ph.D. degree in computer science from the University

of Laghouat. He serves as a Treasurer of the IEEE

Algeria Section. He is currently an Associate

Professor with the Computer Science Department and

the Chief Information Officer of the University of

Laghouat. His research interests include security, privacy, mobile, and

vehicular networks and other networking topics. He is a member of the

Computer Science and Mathematics Laboratory (LIM) and the IEEE

Vehicular Technology and the Intelligent Transportation Systems Societies.

Ali-Pacha Adda was born in Algeria. He received the

engineering degree in telecommunications from the

Institute of Telecommunication of Oran-Algeria in

1986; also, he got university degrees in mathematics

in 1986 from university of Oran I- Algeria and a

magister in signal processing in November 1993, and

later he obtained his Ph.D. in safety data in 2004 from

the University of Sciences and Technology of Oran.

He worked in the telecommunications administration

(PTT Oran) in the position of head of telephone traffic for two years (1986

-1988), He is currently a professor (teacher/researcher) in the Electronics

department of the University of Sciences and Technology of Oran (U.S.T.O).

His research interests are coding, cryptography and security, and digital

signal processing using reconfigurable hardware. He is currently the head of

LAboratory of COding and Security of Information (LACOSI laboratory).

International Journal of Future Computer and Communication, Vol. 11, No. 4, December 2022

78

