

Abstract—The networking research community and industry

both use the Mininet network simulator to assess new network

architectures and predict how new designs will perform.

Mininet employs an emulation approach that uses concurrent

processes running in a single computer instead of physical

hardware. A user specifies a network consisting of network

switches, routers, and host computers that have network

interface connections and links connecting all the pieces.

Mininet creates software artifacts to represent each of the

network devices and allows application programs to send

packets across the resulting network. Researchers often use the

iPerf application to measure network performance. Many

research papers report results from Mininet and iPerf and use

the results to validate new designs for Software-Defined

Networks (SDNs). However, there has been little investigation

into the scenarios where these emulations can perform different

than intended.

The goal of this paper is to understand the edge cases of these

emulation methods and understand the severity of these

scenarios. This paper reports surprising anomalies in the results

of Mininet and iPerf. We show that the choice of apparently

valid configuration options can make the reported throughput

completely invalid. Our initial discoveries focused on a complex

simulation of a data center network. However, we were able to

show that Mininet produces completely invalid results for a

basic case: network traffic traveling across a single emulated

link between two switches with no other network traffic. The

paper makes recommendations for ways to configure Mininet to

avoid some of the anomalies.

Index Terms—Software-defined network, mininet,

simulation, iPerf, modeling, performance analysis.

I. INTRODUCTION

Researchers and engineers in industry and academia

commonly use the Mininet network simulation tool to

evaluate new network architecture and designs [1–10].

Mininet simulates a computer ethernet network by using a

computer CPU rather than the physical hardware of switches,

routers, links, and network cards. Simulation can be

advantageous because it allows a user to assess both the

feasibility and performance of a design before attempting

large-scale investments in hardware. The networking

research community and industry both use the Mininet

network simulator to assess new network architectures and

predict how new designs will perform. Mininet employs an

Manuscript received October 25, 2022; accepted November 20, 2022.

Benjamin Hardin was with Purdue University, West Lafayette, IN 47907

USA. He is now with the Department of Computer Science, University of

Oxford, Oxford, Oxfordshire OX1 3QG UK

Douglas Comer is with the Department of Computer Science, Purdue

University, West Lafayette, IN 47907 USA.

Adib Rastegarnia is publishing as an independent author.

Correspondence: hardin30@purdue.edu

emulation approach that uses concurrent processes running in

a single computer instead of equipment. In particular,

simulation allows one to evaluate how a design performs as

the size of a network scales.

To use Mininet, one specifies the equipment to be

simulated along with the exact interconnection of equipment

to form a network. Equipment includes network switches,

routers, and host computers that each have network interfaces

used to attach them to the network. Specifically, Mininet can

simulate the Ethernet switches commonly used in corporate

networks and cloud datacenter networks and allows a user to

specify the throughput of the links (commonly called

capacity, speed, or bandwidth).

Mininet uses an emulation approach in which concurrent

processes run on a single computer to emulate all the pieces

of hardware in the network. The Mininet approach has the

advantage of allowing the user to run conventional network

management and measurement applications, such as

controllers used for Software-Defined Networking (SDN) [1]

and the iPerf application used to measure network

performance [2-11]. The combination of Mininet and iPerf

have been used to simulate a variety of network aspects,

including load balancers [8-12], routing [13],

Quality-of-Services (QoS) schemes [14], and firewall

designs [15]. This paper evaluates the measurement results

obtained from a combination of iPerf and Mininet.

However, despite the reliance on Mininet and iPerf for

many research results, little attention has been paid to how

Mininet network results such as latency and throughput can

be affected by a myriad of configuration and operating

system factors. This paper shows that the latency and

throughput of a simulated network can vary greatly

depending on the simulator configuration and the operating

system on which the simulator runs. In particular, we

demonstrate that Mininet and iPerf can report invalid

measurements for even the most basic topology consisting of

two switches connected by a single link. Our most significant

finding is that the sender may report a sustained throughput

higher than the throughput available on the simulated link.

II. RELATED WORK

Several studies have considered the performance of SDN

tools. In terms of robustness, one study has used Mininet and

iPerf to determine whether emulated SDNs are susceptible to

Denial of Service (DoS) attacks [16]. Mininet has been used

to demonstrate that SDNs can have less latency than

traditional networking systems because packets can stay in

the data plane without causing an exception or being sent to

an external network controller [17]. One study used Mininet

and OpenFlow to find a maximal network utilization that

On the Unreliability of Network Simulation Results

FROM Mininet and iPerf

Benjamin Hardin , Douglas Comer, and Adib Rastegarnia

International Journal of Future Computer and Communication, Vol. 12, No. 1, March 2023

5

*

doi: 10.18178/ijfcc.2023.12.1.596

minimized packet drop and understand how CPU load

affected delay [18]. Other studies focused specifically on

evaluating controllers running on top of Mininet [1, 19].

More specifically, the performance of Mininet on a

resource constrained system has been evaluated in prior work

[20]. In particular, the authors recommend that to keep the

simulation results from being compromised, Mininet should

be run on isolated CPU cores that are not simultaneously used

for OS-related tasks. In addition, baseline measurements

should be conducted to adjust for memory bandwidth

variations on the system running the simulation. Ultimately

the paper claims that despite small variations that can be

caused by these factors, Mininet provides a robust platform to

evaluate network performance without the need of physical

hardware.

One study has compared Mininet to the OPNET network

simulator and found that Mininet has difficulty accurately

reporting delay and jitter compared to OPNET [21].

Additionally, Mininet was found to be unsuitable for testing

network controller placement due to a lack of a physical port

between the network controller and a switch.

These prior works conclude that Mininet is a robust

platform to test network architectures. However, we have

experienced throughput anomalies that no prior work reports.

This paper investigates these unexpected scenarios,

documents them, and provides suggestions for their

avoidance.

III. EXPERIMENT SETUP

Our experiment evaluated two simulated network

architectures. The experiments were performed on a Purdue

University server that had the following specifications: 8x32

GiB of RAM, 2 x Intel(R) Xeon(R) Gold 6230 CPU @

2.10GHz 20core (80 threads) running Ubuntu 18.04 LTS OS,

version 2.6.0 of the ONOS SDN controller [22], Mininet

version 2.2.2 [23], and iPerf version 3.1.3 [24]. Each

experiment trial was run 30 times on the two network

architectures, and the means of the experiments were

reported below.

A. Leaf-Spine Data Center Architecture (Folded Clos)

Our work began by assessing a complex topology taken

from cloud datacenters. The network consists of two

datacenters, each with a folded Clos topology. Each

datacenter contains 3 pods, 6 leaf switches, and 27 hosts.

Except where otherwise specified, the datacenters were

connected with a single 1 Gbps link with a delay of 50 ms.

The delay was selected to simulate a real-world scenario

where the datacenters are geographically separated (e.g., on

separate continents). Throughout this paper, this architecture

will be referenced as the “complex” topology. A diagram of

this architecture is presented in Appendix A.

B. Simple Architecture

When results from the complex datacenter topology did not

seem reasonable, we postulated that the large number of

concurrent processes might affect Mininet. However, we

found that anomalous behavior also occurred on the simplest

possible topology: two switches connected by a single

network link, each with one host attached to each switch. The

hosts ran iPerf, and all traffic passed across the simulated link

connecting the switches, which is configured with a 50 ms

delay to simulate geographic separation between the switches.

We speculated that the simplified scenario would allow the

hosts to communicate at almost the full data rate of the

simulated link (1 Gbps) because no other sources of traffic

would exist. Additionally, we speculated that this would

provide simpler routing and avoid any variations that could

arise from a route intermittently changing based on network

utilization. A diagram of this architecture is presented in

Appendix B.

C. iPerf Configuration

To measure throughput between sending and receiving

hosts, we invoked iPerf using the flags specified in Table I.

The argument -M 9216 specifies the use of jumbo TCP

packets, as commonly used on modern, high-capacity

networks. Jumbo packets help reduce unnecessary overhead

on the simulator by reducing the number of packets that must

be processed [25, [26]. A following section discusses the

choice of window size, as specified by the -w flag.

Experiments use the Ubuntu default CUBIC TCP congestion

control algorithm.

TABLE I: SENDER IPERF FLAGS

Flag Description

-M 9216 Use jumbo TCP packets

-V Verbose output

-w Window Size Set TCP receive window size

-t 10 Use 10 second trial

-p 5250 Use port 5250

-c Receiver IP Address Specifies receiver

-logfile Log File Location Where to log output

IV. RESULTS

A. Unexpected Throughput

Our most significant finding is that when measured on the

sending size, the combination of Mininet and iPerf can report

throughput values that lie outside the possible range. In

particular, the sender may report a sustained throughput

higher than the throughput available on the simulated link.

For the first second of the iPerf test, the sender may report a

throughput that is several times higher than the link’s

capacity. The anomalous throughput values also occur when

the capacity of the link is decreased. However, the average

reported value does scale linearly with the link capacity.

Ultimately, we found that these unexpected throughput

values are dependent on the choice of TCP window size.

1) Reported goodput as a function of TCP window size

When the TCP receive window size is low, initial

throughput on a connection will be limited because a sender

must wait for an acknowledgment before sending more data.

To ensure that window size was not a limiting factor in

simulations, we increased the receiver’s window size to 30

MB. Using a window size of 30 MB, which is near the

maximum allowed on our system, revealed a strange

phenomenon. As Fig. 1 shown, the initial reported throughput

on the link exceeds the simulated network capacity. In our

International Journal of Future Computer and Communication, Vol. 12, No. 1, March 2023

6

testing, we were able to exceed the expected throughput by

up to 422%, measuring a peak throughput of 3.98 Gbps. In

short, with a sufficiently large receive window size, reported

initial throughput soars well above the link’s capacity. To

assess the effect of window size, this trial measured

throughput between two hosts connected to the same switch.

Each link is configured with a 1 ms delay for a total delay of 2

ms in a single direction (i.e., a round trip delay of 4 ms).

We also measured sending across a link with a 50 ms delay

between the two datacenters to simulate communication

between two geographically separated hosts. This gives a

roundtrip time (RTT) of 116 ms for the complex architecture

and 108 ms for the simple architecture. With the complex

topology, we experience 3.25 Gbps initial throughput and

940 Mbps average throughput for the remainder of the trial.

The first second of the measured time exhibits a lower spike

than the previous cross-switch test’s spike (3.98 Gbps)

because the higher link delay (50 ms) causes TCP to wait for

acknowledgements, limiting the throughput. Although the

mean throughput of 940 Mbps appears to be less than the link

capacity, the results are misleading. iPerf reports goodput

(actual data transferred) which does not include packet

header overhead. Thus, a valid simulation must report a

goodput of less than 1 Gbps. When packet headers are added

to the goodput values reported by iPerf, the total throughput

exceeds the link capacity of 1 Gbps.

Since the simulated link capacity is unable to reliably limit

throughput, we wondered if TCP receive window size would

be able to constrain the throughput. Our results indicate that

receive window size is accurately able to constrain

throughput. We ran a test with a window size of 2 MB across

a 1 Gbps link with a delay of 50 ms, simulating a link

between datacenters. The goodput reported during the first

tenth of a second is 209 Mbps, and the average goodput for

the remaining seconds is 132 Mbps, much lower than

near-gigabit link capacity. Fig. 1 shows that initial

throughput increases with increasing sizes of the receiver

window. Because window size is able to effectively limit

excessive throughput, we can use it as a method for ensuring

results fall within an acceptable range.

2) Measuring throughput on lower link capacity

 So far, we have learned that window size affects

throughput, but link capacity should have also constrained

throughput. To understand the relationship between window

size, link capacity, and reported throughput, we repeated the

previous tests using a 10 Mbps link. Our results indicate that

lowering link capacity lowers average throughput but still

demonstrates above-capacity throughput both initially and at

points throughout the trial. The initial throughput spike on the

sending side that we experienced previously still exists with

the 10 Mbps link. With a 30 MB window size, the initial

spike is reported at 3.24 Gbps. However, the average goodput

during the test does scale to the link capacity. The goodput

spikes throughout the test are 105 Mbps with one second gaps

between them of 0 Mbps throughput. This leads to average

second-by-second reported statistics of 10.5 Mbps, which is

above the link capacity, especially because this is a

measurement of goodput rather than total throughput.

Meanwhile, the receiver reports a maximum goodput of

9.75 Mbps and minimum goodput of 9.08 Mbps for the trial.

This discrepancy between sender and receiver statistics

shows that the sender does not report an accurate measure of

the data traveling across the network. Packet loss is not

responsible for the discrepancy between sender and receiver

because there is negligible packet loss. Note that the test used

the simplistic architecture with only one link, meaning that

even in the simplest scenario with a low-speed link, the

sender reports unreasonable results.

Fig. 1. Sender report of initial throughput soaring above the link capacity

(complex data center setup).

3) Understanding these results

 Our iPerf setup used a single stream TCP connection to

ensure that these high throughput values were not occurring

because of multiple TCP streams utilizing multiple links of

the datacenter. To explain why iPerf reports excessive

throughput when the receiving window is large, we

hypothesized that the simulation might be splitting the single

TCP stream across multiple links, causing reported

measurements to exceed the capacity of a single link. If the

hypothesis is correct, a switch connected to the destination

host might temporarily act like a buffer, holding packets until

they can all can enter the host across a single connection. To

evaluate the hypothesis, we tested transmission on a

simplistic architecture with two switches connected by a

single 1 Gbps link along the path from sender to receiver.

Using a receive window size of 30 MB and an RTT of 108 ms

resulted in an initial goodput of 3.25 Gbps. After the initial

spike, the simulator reported goodput of 945 Mbps. We

conclude that because we observe excessive throughput with

only a single link in the path, the excess cannot be attributed

to data being split across multiple links.

When the link between the two switches is configured to

have a latency of 1 ms, iPerf reports an even higher initial

goodput spike of 3.56 Gbps and a steady goodput of 997

Mbps, higher than what should be allowed on the link.

Ultimately, even in the simplest case, the combination of

Mininet and iPerf produces unreasonably high throughput of

more than 3.5 times the emulated link capacity.

Why The Sender and Receiver Report Differing

Throughput: As described above, the sender and receiver

report differing throughput, with the receiver reporting more

accurate values especially with large window sizes. The iPerf

International Journal of Future Computer and Communication, Vol. 12, No. 1, March 2023

7

source code [27] explains the discrepancy: the sender does

not have a global view of the system, but instead only reports

data that has been injected into the network. In particular, the

sender does not wait for data to be received and

acknowledged.

Fig. 2. Sender and receiver reports of throughput averaged over one second

intervals; note the exaggerated spikes in sender reports.

Fig. 2 illustrates the difference between sender and

receiver reports during a 10 second trial. The figure shows

measurements on the simplistic topology with all traffic

traversing a single 1 Gbps link between the endpoints and a

round-trip latency of 4 ms. The scaling of the graph omits the

goodput during the first tenth of a second. These values are

3.98 Gbps and 758 Mbps for the sender and receiver

respectively. In addition, the sender reports spikes in

throughput during the test, which do not correlate to spikes on

the receiving end. The spikes result in unrealistically high

average throughput values compared to the values reported

on the receiving side: 997 Mbps vs. 955 Mbps.

4) Recommendations for measurements

Even on the receiving side, early reports of average

throughput do not provide an accurate estimate of the overall

sustained throughput. In particular, throughput may be lower

during the first-time interval of a simulation because it takes

time for the sending side to propagate packets into the

network. Thus, when performing throughput measurements,

it may be best to discard values reported during the first

second (or more depending on latency) of a simulation. In

addition, although the receiving side appears to report fairly

accurate measurements when the window size is high, using a

lower window size is recommended because artificially large

window sizes can cause other issues, as described in later

sections of this paper.

These discrepancies between sender and receiver

demonstrate the need to configure iPerf to report statistics

over short intervals instead of allowing iPerf to average

values over an entire simulation run. Consider the case of a

host sending to another host on the same switch with a TCP

receiving window size of 30 MB. When it computes an

average over the entire trial, iPerf reports an average

throughput of 987 Mbps. However, when the report interval

is set to 5 seconds, iPerf generates two values: averages of

1.02 Gbps and 956 Mbps. Using two reports shows a large

discrepancy that is concealed in a single report. Finer

granularity reveals additional detail. For example, requesting

a report every second demonstrates that the average

throughput on the first second is 1.26 Gbps with successive

seconds averaging around 955 Mbps. Requesting a report

every tenth of a second reveals an initial spike of 3.89 Gbps

and subsequent spikes 1.05 Gbps throughout the test; these

spikes remain hidden with larger granularity. Therefore,

using a single average as a measure of throughput can inflate

throughput inaccurately, hide important details, and lead to

an inaccurate assessment.

5) Why does window affect the simulated THROUGHPUT?

 We have been unable to determine exactly why a large

window size results in iPerf reporting excessive throughput.

This problem occurs with both iPerf2 and iPerf3. One

possibility lies in an equation that relates the TCP receive

window size, the round-trip time, and the underlying link

capacity (i.e., throughput). According to the equation:

TCP Receive Window Size = Bandwidth * RTT

where RTT is round trip time measured in seconds and

bandwidth is the maximum throughput capacity of the link

measured in bits per second. Rearranging terms results in an

equation that specifies the maximum throughput in terms of

the window size:

Throughput = TCP Receive Window Size / RTT (1)

Recall that for our first scenario, iPerf reported up to 3.98

Gbps of initial throughput. Using the values configured for

the simulator, the equation gives the following theoretical

maximum throughput:

Throughput = 30,000,000 bytes / 0.116 seconds

= 258,620,689.655 bytes / second

 = 2,068,965,517.24 bits/second

= 2.069 Gbps

The maximum throughput reported by iPerf is higher than

theoretical maximum specified by the formula, meaning this

formula does not explain the results. However, using

end-to-end delay or 1/2 of RTT gives a throughput of 4.138

Gbps, which is just above our reported goodput. It is possible

that iPerf is using single direction delay in the calculation

rather than RTT. Note that the formula only specifies an

upper-bound on throughput for a given window size and

round-trip time; it does not include a constraint for the

physical link capacity. If the window size is sufficiently large,

the maximum throughput can be greater than the simulated

network capacity.

It is clear that Mininet does not use the link capacity as an

upper limit when calculating the rate at which data can be

sent over a link. The layers of code make it difficult to find

the exact source of the problem. It seems likely that the

Mininet uses the formula above to calculate the maximum

allowed rate and then uses the calculated rate to deposit

outgoing data into an output buffer, leading iPerf to assume

the data has been sent and to calculate the data rate

accordingly. Once the simulation starts delivering packets

and the receive window size shrinks, the available receive

International Journal of Future Computer and Communication, Vol. 12, No. 1, March 2023

8

window limits the flow of data, causing iPerf to report data

rates closer to the link capacity. The rate at which the

receive-side window absorbs data limits the rate at which

packets travel across the link.

As further support for our hypothesis, we observe that link

delay seems to impose a bound-on throughput that cannot be

overcome merely by increasing the receive window size.

Thus, it seems likely that Mininet uses the link delay to

determine how quickly the receiver’s window will fill and

limits traffic transmission accordingly. Consequently, a high

link delay causes the data rate to slow, regardless of the

emulated link capacity.

Congestion control algorithms can limit the flow rate of

packets onto a network, and the question arises whether the

congestion control algorithm might also affect reported

throughput. Recall that our tests use the default TCP

congestion control algorithm in Ubuntu, known as CUBIC.

To check the effect of congestion control, we reran tests with

the TCP Reno congestion control algorithm. The change in

congestion control made no difference in results, leading us

to conclude that the choice of congestion control algorithm

does not contribute to the observed behavior.

B. Unequal Link Sharing

The experiments thus far have considered only a single

sender. In most situations, however, multiple senders share a

given network. Therefore, it is important to understand how

Mininet and iPerf behave when multiple flows share a link.

All flows on a network should be balanced according the

policy being used. Unless a specific policy is configured,

network switches employ statistical multiplexing, which

gives each flow an equal share of the capacity. When n flows

share a link, each flow should receive 1/n of the link capacity.

Fig. 3. Folded Clos Architecture: Unequal link sharing on a 1 Gbps link with

a 30 MB receiving window size.

The question arises: how does the size of the receive-side

TCP window affect throughput when multiple flows share a

link? This section reports experiments that show how a large

TCP receive-side window can cause unequal link sharing

among flows.

The first link-sharing experiments use a folded Clos

architecture with two datacenters. Four senders in one

datacenter send to four receivers in a second datacenter. Fig.

3 illustrates that with a window size of 30 MB, the link

capacity between the datacenters is not shared equally among

the four senders. The largest difference among throughput on

the four flows is 73%. Interestingly, a dominant flow emerges

and remains dominant throughout the simulation.

Furthermore, the pattern of flow dominance is repeatable, but

it is difficult to predict which flows will dominate in a given

run.

We hypothesized that the order in which senders start

would determine how flows dominate. However, tests show

that the order in which senders start does not guarantee which

flows dominate. In particular, the first host to start sending

does not gain an advantage by sending over an empty

network or by using the network the longest. In fact, although

they start sequentially, the iPerf tests all start within a few

milliseconds of each other. Thus, no sender-receiver pair has

significant time to gain an advantage by transmitting at full

link capacity without other traffic.

We hypothesized that a large window size allowed senders

to flood the network with packets. In particular, a window

size of 30 MB is sufficient to allow any of the four flows to

use the entire link capacity. To understand whether the

window size affects sharing, we ran the same throughput

experiments with a window size of 4 MB, a value small

enough to allow each of the four flows to use 1/4 of the link

capacity. As Fig. 4 illustrates, although differences in

throughput persist, the gap between the highest and lowest is

significantly smaller. The differences in throughput are small

enough so that minor variations allow the plots from multiple

flows to overlap. The maximum difference among

throughput for the four flows is now only 15%. Table II

outlines the window sizes used based on the number of flows

sharing a single link. Note that the values depend on the

topology, link speed, and packet round-trip time. The value

of an optimal window size may be calculated using 1 in the

previous section.

TABLE II: TCP WINDOW SIZE BASED ON NUMBER OF FLOWS

One possible explanation of unequal throughput arises

because the leaf-spine architecture provides multiple paths

along which data can travel. If the system does not distribute

traffic from multiple flows across paths equally, congestion

could occur on some paths and not others. To rule out this

possibility, we also ran multi-flow simulations using the

simplistic topology with only one path between two switches.

Four hosts were added to each switch, allowing for a total of

four simultaneous flows. We used a TCP receive window

size of 30 MB, and measured the throughput on each flow.

Fig. 5 illustrates that unequal sharing occurs even when the

network consists of a single path. The maximum difference in

throughput is 94%.

Furthermore, the figure shows that the throughput for each

Number of Hosts Sharing Link Window Size (MB)

1 15

2 7.5

3 5

4 4

5 4

International Journal of Future Computer and Communication, Vol. 12, No. 1, March 2023

9

flow exhibits high variability. Lowering the receive window

size reduces the variability, just as it does for the complex

topology. Thus, it is important to set an appropriate receive

window size even in the simplest of scenarios.

Fig. 4. Folded Clos Architecture: Unequal link sharing on a 1 Gbps link

with a 4 MB receiving window size.

Fig. 5. Simple Architecture with unequal link sharing over a 1 Gbps link with

a 30 MB receive window size.

C. Bidirectional Traffic and Link Sharing

Most networks support two-way traffic, and data flowing in

the reverse direction may delay acknowledgements. With a

full-duplex link, such as an Ethernet, we expect simultaneous

traffic flows in the forward and reverse directions to each

achieve throughput that approaches the link capacity. We

conducted experiments to test the assumption, and found that

when using Mininet and iPerf, simultaneous traffic in two

directions does not approach the link capacity.

We used two methods to assess simultaneous traffic. First,

we used the iPerf option for bidirectional traffic, where the

host at each end acts as both a sender and receiver. As Fig. 6

illustrated, an iPerf bidirectional test does not allow

throughput in either direction to reach the full link capacity.

Moreover, the throughput of the two flows is unequal, with

the two trading off for various window sizes. As the figure

shows, when the window size is 10 MB, throughput in one

direction falls below half of the link capacity. Smaller

window sizes do not result in equal throughput unless the

window size becomes small enough to limit throughput

severely. The test was performed on the complex topology

with a single host pair sending between two data centers

across a link with a delay of 1 ms.

The graph in Fig. 6 shows data for a single trial, which

illustrates how the throughput vary. Fig. 7 shows that

averaging the throughput measurements over 30 trials

produces a smoother, and more consistent pattern. The

smoothing occurs because the two directions randomly

become either the faster or slower direction for a given

window size. In Figure 6, for example, the traffic sent by

Host 1 dominates at each value of window size except for 20

MB. The important point is that even when averaged over 30

trials, Mininet only allows traffic in each direction to reach

approximately 80% of the link capacity.

1) A second approach to bidirectional testing

 The question arose: does the erratic performance and

lower-than-expected average throughput result from the way

iPerf performs bidirectional transfers? To discover whether

iPerf causes the problem, we took a second approach of

running two independent unidirectional iPerf tests

simultaneously, one in each direction. One of the two uses

TCP port 2050, and the other uses port 2051. The results are

similar to the measurements obtained by using the built-in

bidirectional command in iPerf. The throughput exhibits high

variability, and one flow proceeds faster than the other. As

reported for the iPerf bidirectional measurements, the host

pair that has highest throughput varies randomly between

trials, and does not depend on which pair of hosts starts first.

Thus, we conclude that problems with bidirectional tests

appear to arise from Mininet rather than the iPerf application.

2) Possible causes of bidirectional issues

 We wondered whether the CPU of the system running

Mininet and iPerf formed a bottleneck that led to lower

performance. However, CPU utilization does not appear to be

the culprit. Both the iPerf bidirectional tests and our custom

solution use similar amounts of CPU, and both values are low.

The overall processor utilization remains around 0.3% during

the throughput measurements. With iPerf’s bidirectional

command, there are 2 iPerf instances (one for each direction),

each instance incurred only 10% CPU utilization. With our

custom bidirectional test, 4 iPerf instances run (two for each

direction), each incurred 35% CPU utilization. Thus, both

approaches incur similar CPU utilization overall, neither

imposes a heavy load on the CPU.

We also wondered if the emulated switches or hosts that

Mininet uses have small internal buffers that limited total

throughput. In particular, we speculated that a small buffer

might not allow an emulated device to fill a Gigabit link. To

test whether the emulated devices could fill a link, we

lowered the link speed from 1 Gbps to 10 Mbps and reran the

bidirectional tests. Even with a lower link speed, the same

problem arose: when sending bidirectional flows across a 10

Mbps link, each flow exhibited an average throughput of

approximately 7 Mbps. The tests used the same packet sizes

as the 1 Gbps trials, which means the packet processing time

decreases because the number of packets decreases. We

concluded that the limited throughput does not result from a 1

Gbps link overwhelming the emulated devices or filling their

International Journal of Future Computer and Communication, Vol. 12, No. 1, March 2023

10

input buffers. Some other factors must result in a consistent

average link utilization of 80% or less.

As a final question, we asked whether the emulated link or

emulated hosts might be the bottleneck. To test link

performance, we arranged a bidirectional test with four hosts

instead of two hosts. Hosts 1 and 3 were placed on one side of

a link, and hosts 2 and 4 were placed on the other side. Host 1

sent a unidirectional flow to host 2 while host 4 sent a

unidirectional flow to host 3 in the reverse direction. In

essence, the only change from the previous bidirectional tests

was the use of four hosts instead of two. Interestingly, we

find that both flows achieve throughput of the full link

capacity. Furthermore, tests show low variability. Thus, we

can conclude that the issue with bidirectional tests arises from

the emulated hosts and not from the emulated link.

Fig. 6. Throughput using iPerf bidirectional tests of various window sizes

across a link with a 1 ms latency.

Fig. 7. Average throughput for 30 iPerf bidirectional tests of various window

sizes across a link with a 1 ms latency.

V. FUTURE WORK

Several avenues of work can arise from these results. First,

the community should investigate the underlying cause of

anomalous simulation results and modify Mininet to

eliminate the problem. It cannot be expected for every

research to configure their simulation precisely, and

robustness of the platform is the best solution. Second, our

work focused on one version of Mininet and Linux; future

work should investigate whether the same issues arise on

other operating systems, including MacOS, Windows, and

other versions of Linux. Third, it should be investigated

whether our findings can be replicated when iPerf is used

across a network simulation/emulation system other than

Mininet. In limited testing, this is not an issue that occurs

when using iPerf outside of the Mininet application. Finally,

a logical next step is comparing these results to those

obtained on a physical testbed. This comparison would

quantify the errors we experience in this paper compared to

real measurements rather than theoretical values.

VI. CONCLUSIONS

The flexibility and relatively low hardware requirements

of Mininet and iPerf mean that they remain a popular

combination when developing and testing new network

architectures and applications of SDN technology [1–5].

Despite their popularity, we have uncovered evidence that

Mininet and iPerf can report misleading and invalid

measurements. In particular, throughput reported by iPerf

depends on the TCP receive-side window, and a large

window size can result in reported throughput that exceeds

the emulated network capacity. During small time periods

near the beginning of a simulation, the reported throughput

can exceed the link capacity by over 422%.

As a short-term solution, we provided three

recommendations for researchers using Mininet and iPerf:

• Use iPerf window size flags to limit throughput to match

link capacity.

• Measure iPerf results over small intervals to monitor

throughput variation.

• Choose an appropriate window size given the number of

flows sharing the link to avoid unequal link sharing.

• Avoid bidirectional iPerf tests and instead use

independent pairs of hosts to fill the link.

Our findings have significant implications for researchers

and others who use Mininet and iPerf to assess network

architectures and network performance. Minor configuration

changes can result in significantly invalid output. In

particular, we demonstrated that Mininet and iPerf can report

invalid measurements for even our simple topology

consisting of two switches connected by a single link. We

also found that the sender may report a sustained throughput

higher than the simulated link capacity. Therefore, it is

important to follow our configuration guidelines above to

avoid misleading results. Previous work that uses Mininet

and iPerf should be reevaluated in light of our findings to

determine whether the results remain valid when appropriate

configuration parameters are used. Future research utilizing

these tools should pay close attention to the reported values to

ensure results that align with physical hardware. We have

demonstrated that emulations can, in fact, fail and researchers

must carefully evaluate the quality of output to ensure results

are logical.

International Journal of Future Computer and Communication, Vol. 12, No. 1, March 2023

11

VII. APPENDIX

A. Leaf-Spine Datacenter Architecture (Folded Clos)

Complex Scenario: Two datacenters connected with a

high-speed link

B. Simple Architecture

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

BH conducted the experiments and wrote the paper, DC

guided the research and helped significantly with paper edits,

and AR served as a technical consultant.

ACKNOWLEDGMENT

We would like to thank Assistant Professor Pedro Fonseca

of Purdue University for his advice and discussions that

helped guide this research.

REFERENCES

[1] D. Lunagariya and B. Goswami, “A comparative performance analysis

of stellar sdn controllers using emulators,” in Proc. 2021 International

Conference on Advances in Electrical, Computing, Communication

and Sustainable Technologies (ICAECT), 2021, pp. 1–9.

[2] S. Kunal, P. Gandhi, R. Sutariya, and H. Tarpara, “A secure software

defined networking for distributed environment,” Security and Privacy,

vol. 3, no. 6, 2020.

[3] U. Noring, “Investigating the possibility of speeding up mininet by

using netmap, an alternative linux packet i/o framework,” Procedia

Computer Science, vol. 126, pp. 1885–1894, 2018.

[4] T. Abdullah, “Testing of floodlight controller with mininet in sdn

topology,” ScienceRise, vol. 5, no. 2, pp. 68–73, 2014.

[5] S. Shamim, M. Miah, A. Sarker, A. Bahar, and A. Sarker, “Simulation

of minimum path estimation in software defined networking using

mininet emulator,” British Journal of Mathematics and Computer

Science, vol. 21, no. 3, pp. 1–8, 2017.

[6] R. Dos Reis Fontes, C. Campolo, C. E. Rothenberg, and A. Molinaro,

“From theory to experimental evaluation: Resource management in

software-defined vehicular networks,” IEEE Access, vol. 5, 2017.

[7] C. Campolol, R. D. R. Fontes, A. Molinaro, C. E. Rothenberg, and A.

Iera, “Slicing on the road: Enabling the automotive vertical through 5g

network softwarization,” Sensors (Basel, Switzerland), vol. 18, no. 12,

pp. 4435–, 2018.

[8] Y. A. H. Omer, A. B. A. Mustafa, and A. G. Abdalla, “Performance

analysis of round robin load balancing in sdn,” in Proc. 2020

International Conference on Computer, Control, Electrical, and

Electronics Engineering (ICCCEEE), 2021, pp. 1–5.

[9] I. Z. Bholebawa, R. K. Jha, and U. D. Dalal, “Performance analysis of

proposed openflow-based network architecture using mininet,”

Wireless Personal Communications, vol. 86, no. 2, pp. 943–958, 2016.

[10] V. Kumar, S. Jangir, and D. G. Patanvariya, “Traffic load balancing in

sdn using round-robin and dijkstra based methodology,” in Proc. 2022

International Conference for Advancement in Technology (ICONAT),

2022, pp. 1–4.

[11] M. Z. Ibrahim and R. Hassan, “The implementation of internet of

things using test bed in the ukmnet environment,” Asia-Pacific Journal

of Information Technology Multimedia, vol. 8, no. 2, pp. 1–17, 2019.

[12] V. D. Chakravarthy and B. Amutha, “A novel software-defined

networking approach for load balancing in data center networks,”

International Journal of Communication Systems, vol. 35, no. 2, 2022.

[13] O. Fares, A. Dandoush, and N. Aitsaadi, “Sdn-based platform enabling

intelligent routing within transit autonomous system networks,” in

Proc. 2022 IEEE 19th Annual Consumer Communications Networking

Conference (CCNC), 2022, pp. 909–912.

[14] R. Carreras Ramirez, Q. T. Vien, R. Trestian, L. Mostarda, and P. Shah,

“Multi-path routing for mission critical applications in

software-defined networks,” in Proc. Industrial Networks and

Intelligent Systems, ser. Lecture Notes of the Institute for Computer

Sciences, Social Informatics and Telecommunications Engineering,

2019, pp. 38–48.

[15] A. O. Adedayo and B. Twala, “Testing the functionality of firewall in

software-defined networking,” in Proc. Artificial Intelligence and

Evolutionary Computations in Engineering Systems, ser. Advances in

Intelligent Systems and Computing, 2018, pp. 1–14.

[16] A. F. Abdullah, F. M. Salem, A. Tammam, and M. H. A. Azeem,

“Performance analysis and evaluation of software defined networking

controllers against denial-of-service attacks,” Journal of Physics, vol.

1447, no. 1, 2020.

[17] C. N. Shivayogimath and N. V. U. Reddy, “Performance analysis of a

software defined network using mininet,” Artificial Intelligence and

Evolutionary Computations in Engineering Systems, ser. Advances in

Intelligent Systems and Computing, 2016, pp. 391–398.

[18] H. M. Noman and M. N. Jasim, “Pox controller and open flow

performance evaluation in software defined networks (sdn) using

mininet emulator,” in Proc. IOP conference series. Materials Science

and Engineering, vol. 881, no. 1. 2020.

[19] N. M. Kazi, S. R. Suralkar, and U. S. Bhadade, “Evaluating the

performance of pox and ryu sdn controllers using mininet,” Data

Science and Computational Intelligence, ser. Communications in

Computer and Information Science, 2022, pp. 181–191.

[20] D. Muelas, J. Ramos, and J. E. L. D. Vergara, “Assessing the limits of

mininet-based environments for network experimentation,” IEEE

Network, vol. 32, no. 6, pp. 168–176, 2018.

[21] S. Lee, J. Ali, and B. hee Roh, “Performance comparison of software

defined networking simulators for tactical network: Mininet vs. opnet,”

in Proc. the Institute of Electrical and Electronics Engineers, 2019.

[22] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B.

Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar, “Onos:

Towards an open, distributed sdn os,” in Proc. the Third Workshop on

Hot Topics in Software Defined Networking, 2014, p. 1–6.

International Journal of Future Computer and Communication, Vol. 12, No. 1, March 2023

12

[23] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid

prototyping for software-defined networks,” in Proc. the 9th ACM

SIGCOMM Workshop on Hot Topics in Networks, 2010.

[24] Iperf — The ultimate speed test tool for tcp, udp and sctp. [Online].

Available: https://iperf.fr/

[25] Y. Wu, S. Kumar, and S. J. Park, “On transport protocol performance

measurement over 10gbps high speed optical networks,” in Proc. 2009

Proceedings of 18th International Conference on Computer

Communications and Networks, 2009, pp. 1–6.

[26] A. Das and S. Debbarma, “Performance of jumbo sized data on jumbo

frame and ethernet frame using udp over ipv4/ipv6,” in Proc. 2013 2nd

International Conference on Advanced Computing, 2013, pp. 204–207.

[27] ESnet. iperf3: A tcp, udp, and sctp network bandwidth measurement

tool. [Online]. Available: https://github.com/esnet/iperf

Copyright © 2023 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Benjamin Hardin received his bachelor’s in

computer science honors from Purdue University in

2022. During his studies at Purdue, he focused on

systems programming and software engineering,

leading him to research emulations and protocols of

software-defined networking. In October 2022,

Benjamin began his PhD in computer science at the

University of Oxford studying explainable and

trustworthy AI interfaces for autonomous vehicles.

Douglas E. Comer is a distinguished professor of

CS and ECE (courtesy) at Purdue University. He

formerly served as the inaugural VP of Research at

Cisco Systems. He is internationally recognized as

an authority on TCP/IP Internet protocols, and his

3-volume Internetworking series is cited as an

authoritative work on Internet protocols and the

scientific principles that underlie the Internet.

Comer’s books have been translated into 16

languages, and are used in industry and academia in

many countries. A former editor-in-chief of the journal Software –

Practice and Experience, he is a Fellow of the ACM, the recipient of

numerous teaching awards, and a member of the Internet Hall of Fame.

Adib Rastegarnia received his masters and the PhD in

computer science from Purdue University in 2019 under

the supervision of Prof. Douglas Comer. During his

studies at Purdue, he focused on different aspects of

computer networks and systems including control plane

disaggregation in software defined networking (SDN),

internet of things, and operating systems. As the results

of his work at Purdue, he designed and implemented

multiple working prototypes of large and complex

systems and published publications in well known

conferences and journals. In 2020, Adib Joined Open Networking

Foundation (ONF) to pursue his research interests in a broader context. He

joined the micro-onos project team at ONF to design and implement a cloud

native architecture for disaggregating control plane services and functions.

In addition, he has contributed on designing and implementing ONF

SD-RAN project subsystems including a near-real-time RAN Intelligent

Controller (RIC) and xApps for controlling RAN. In 2022, Adib joined Intel

as a Cloud Software Development Engineer. Currently at Intel, Adib is

working on micro-onos and Intel SDN related projects.

International Journal of Future Computer and Communication, Vol. 12, No. 1, March 2023

13

https://iperf.fr/
https://creativecommons.org/licenses/by/4.0/

