
  

  

Abstract—The networking research community and industry 

both use the Mininet network simulator to assess new network 

architectures and predict how new designs will perform. 

Mininet employs an emulation approach that uses concurrent 

processes running in a single computer instead of physical 

hardware. A user specifies a network consisting of network 

switches, routers, and host computers that have network 

interface connections and links connecting all the pieces. 

Mininet creates software artifacts to represent each of the 

network devices and allows application programs to send 

packets across the resulting network. Researchers often use the 

iPerf application to measure network performance. Many 

research papers report results from Mininet and iPerf and use 

the results to validate new designs for Software-Defined 

Networks (SDNs). However, there has been little investigation 

into the scenarios where these emulations can perform different 

than intended. 

The goal of this paper is to understand the edge cases of these 

emulation methods and understand the severity of these 

scenarios. This paper reports surprising anomalies in the results 

of Mininet and iPerf. We show that the choice of apparently 

valid configuration options can make the reported throughput 

completely invalid. Our initial discoveries focused on a complex 

simulation of a data center network. However, we were able to 

show that Mininet produces completely invalid results for a 

basic case: network traffic traveling across a single emulated 

link between two switches with no other network traffic. The 

paper makes recommendations for ways to configure Mininet to 

avoid some of the anomalies. 

 
Index Terms—Software-defined network, mininet, 

simulation, iPerf, modeling, performance analysis. 

 

I. INTRODUCTION 

Researchers and engineers in industry and academia 

commonly use the Mininet network simulation tool to 

evaluate new network architecture and designs [1–10]. 

Mininet simulates a computer ethernet network by using a 

computer CPU rather than the physical hardware of switches, 

routers, links, and network cards. Simulation can be 

advantageous because it allows a user to assess both the 

feasibility and performance of a design before attempting 

large-scale investments in hardware. The networking 

research community and industry both use the Mininet 

network simulator to assess new network architectures and 

predict how new designs will perform. Mininet employs an 
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emulation approach that uses concurrent processes running in 

a single computer instead of equipment. In particular, 

simulation allows one to evaluate how a design performs as 

the size of a network scales. 

To use Mininet, one specifies the equipment to be 

simulated along with the exact interconnection of equipment 

to form a network. Equipment includes network switches, 

routers, and host computers that each have network interfaces 

used to attach them to the network. Specifically, Mininet can 

simulate the Ethernet switches commonly used in corporate 

networks and cloud datacenter networks and allows a user to 

specify the throughput of the links (commonly called 

capacity, speed, or bandwidth). 

Mininet uses an emulation approach in which concurrent 

processes run on a single computer to emulate all the pieces 

of hardware in the network. The Mininet approach has the 

advantage of allowing the user to run conventional network 

management and measurement applications, such as 

controllers used for Software-Defined Networking (SDN) [1] 

and the iPerf application used to measure network 

performance [2-11]. The combination of Mininet and iPerf 

have been used to simulate a variety of network aspects, 

including load balancers [8-12], routing [13], 

Quality-of-Services (QoS) schemes [14], and firewall 

designs [15]. This paper evaluates the measurement results 

obtained from a combination of iPerf and Mininet. 

However, despite the reliance on Mininet and iPerf for 

many research results, little attention has been paid to how 

Mininet network results such as latency and throughput can 

be affected by a myriad of configuration and operating 

system factors. This paper shows that the latency and 

throughput of a simulated network can vary greatly 

depending on the simulator configuration and the operating 

system on which the simulator runs. In particular, we 

demonstrate that Mininet and iPerf can report invalid 

measurements for even the most basic topology consisting of 

two switches connected by a single link. Our most significant 

finding is that the sender may report a sustained throughput 

higher than the throughput available on the simulated link. 

 

II. RELATED WORK 

Several studies have considered the performance of SDN 

tools. In terms of robustness, one study has used Mininet and 

iPerf to determine whether emulated SDNs are susceptible to 

Denial of Service (DoS) attacks [16]. Mininet has been used 

to demonstrate that SDNs can have less latency than 

traditional networking systems because packets can stay in 

the data plane without causing an exception or being sent to 

an external network controller [17]. One study used Mininet 

and OpenFlow to find a maximal network utilization that 
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minimized packet drop and understand how CPU load 

affected delay [18]. Other studies focused specifically on 

evaluating controllers running on top of Mininet [1, 19]. 

More specifically, the performance of Mininet on a 

resource constrained system has been evaluated in prior work 

[20]. In particular, the authors recommend that to keep the 

simulation results from being compromised, Mininet should 

be run on isolated CPU cores that are not simultaneously used 

for OS-related tasks. In addition, baseline measurements 

should be conducted to adjust for memory bandwidth 

variations on the system running the simulation. Ultimately 

the paper claims that despite small variations that can be 

caused by these factors, Mininet provides a robust platform to 

evaluate network performance without the need of physical 

hardware. 

One study has compared Mininet to the OPNET network 

simulator and found that Mininet has difficulty accurately 

reporting delay and jitter compared to OPNET [21]. 

Additionally, Mininet was found to be unsuitable for testing 

network controller placement due to a lack of a physical port 

between the network controller and a switch. 

These prior works conclude that Mininet is a robust 

platform to test network architectures. However, we have 

experienced throughput anomalies that no prior work reports. 

This paper investigates these unexpected scenarios, 

documents them, and provides suggestions for their 

avoidance. 

 

III. EXPERIMENT SETUP 

Our experiment evaluated two simulated network 

architectures. The experiments were performed on a Purdue 

University server that had the following specifications: 8x32 

GiB of RAM, 2 x Intel(R) Xeon(R) Gold 6230 CPU @ 

2.10GHz 20core (80 threads) running Ubuntu 18.04 LTS OS, 

version 2.6.0 of the ONOS SDN controller [22], Mininet 

version 2.2.2 [23], and iPerf version 3.1.3 [24]. Each 

experiment trial was run 30 times on the two network 

architectures, and the means of the experiments were 

reported below. 

A. Leaf-Spine Data Center Architecture (Folded Clos) 

Our work began by assessing a complex topology taken 

from cloud datacenters. The network consists of two 

datacenters, each with a folded Clos topology. Each 

datacenter contains 3 pods, 6 leaf switches, and 27 hosts. 

Except where otherwise specified, the datacenters were 

connected with a single 1 Gbps link with a delay of 50 ms. 

The delay was selected to simulate a real-world scenario 

where the datacenters are geographically separated (e.g., on 

separate continents). Throughout this paper, this architecture 

will be referenced as the “complex” topology. A diagram of 

this architecture is presented in Appendix A. 

B. Simple Architecture 

When results from the complex datacenter topology did not 

seem reasonable, we postulated that the large number of 

concurrent processes might affect Mininet. However, we 

found that anomalous behavior also occurred on the simplest 

possible topology: two switches connected by a single 

network link, each with one host attached to each switch. The 

hosts ran iPerf, and all traffic passed across the simulated link 

connecting the switches, which is configured with a 50 ms 

delay to simulate geographic separation between the switches. 

We speculated that the simplified scenario would allow the 

hosts to communicate at almost the full data rate of the 

simulated link (1 Gbps) because no other sources of traffic 

would exist. Additionally, we speculated that this would 

provide simpler routing and avoid any variations that could 

arise from a route intermittently changing based on network 

utilization. A diagram of this architecture is presented in 

Appendix B. 

C. iPerf Configuration 

To measure throughput between sending and receiving 

hosts, we invoked iPerf using the flags specified in Table I. 

The argument -M 9216 specifies the use of jumbo TCP 

packets, as commonly used on modern, high-capacity 

networks. Jumbo packets help reduce unnecessary overhead 

on the simulator by reducing the number of packets that must 

be processed [25, [26]. A following section discusses the 

choice of window size, as specified by the -w flag. 

Experiments use the Ubuntu default CUBIC TCP congestion 

control algorithm. 

 
TABLE I: SENDER IPERF FLAGS 

Flag Description 

-M 9216 Use jumbo TCP packets 

-V Verbose output 

-w Window Size Set TCP receive window size 

-t 10 Use 10 second trial 

-p 5250 Use port 5250 

-c Receiver IP Address Specifies receiver 

-logfile Log File Location Where to log output 

IV. RESULTS 

A. Unexpected Throughput 

Our most significant finding is that when measured on the 

sending size, the combination of Mininet and iPerf can report 

throughput values that lie outside the possible range. In 

particular, the sender may report a sustained throughput 

higher than the throughput available on the simulated link. 

For the first second of the iPerf test, the sender may report a 

throughput that is several times higher than the link’s 

capacity. The anomalous throughput values also occur when 

the capacity of the link is decreased. However, the average 

reported value does scale linearly with the link capacity. 

Ultimately, we found that these unexpected throughput 

values are dependent on the choice of TCP window size. 

1) Reported goodput as a function of TCP window size 

When the TCP receive window size is low, initial 

throughput on a connection will be limited because a sender 

must wait for an acknowledgment before sending more data. 

To ensure that window size was not a limiting factor in 

simulations, we increased the receiver’s window size to 30 

MB. Using a window size of 30 MB, which is near the 

maximum allowed on our system, revealed a strange 

phenomenon. As Fig. 1 shown, the initial reported throughput 

on the link exceeds the simulated network capacity. In our 
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testing, we were able to exceed the expected throughput by 

up to 422%, measuring a peak throughput of 3.98 Gbps. In 

short, with a sufficiently large receive window size, reported 

initial throughput soars well above the link’s capacity. To 

assess the effect of window size, this trial measured 

throughput between two hosts connected to the same switch. 

Each link is configured with a 1 ms delay for a total delay of 2 

ms in a single direction (i.e., a round trip delay of 4 ms). 

We also measured sending across a link with a 50 ms delay 

between the two datacenters to simulate communication 

between two geographically separated hosts. This gives a 

roundtrip time (RTT) of 116 ms for the complex architecture 

and 108 ms for the simple architecture. With the complex 

topology, we experience 3.25 Gbps initial throughput and 

940 Mbps average throughput for the remainder of the trial. 

The first second of the measured time exhibits a lower spike 

than the previous cross-switch test’s spike (3.98 Gbps) 

because the higher link delay (50 ms) causes TCP to wait for 

acknowledgements, limiting the throughput. Although the 

mean throughput of 940 Mbps appears to be less than the link 

capacity, the results are misleading. iPerf reports goodput 

(actual data transferred) which does not include packet 

header overhead. Thus, a valid simulation must report a 

goodput of less than 1 Gbps. When packet headers are added 

to the goodput values reported by iPerf, the total throughput 

exceeds the link capacity of 1 Gbps. 

Since the simulated link capacity is unable to reliably limit 

throughput, we wondered if TCP receive window size would 

be able to constrain the throughput. Our results indicate that 

receive window size is accurately able to constrain 

throughput. We ran a test with a window size of 2 MB across 

a 1 Gbps link with a delay of 50 ms, simulating a link 

between datacenters. The goodput reported during the first 

tenth of a second is 209 Mbps, and the average goodput for 

the remaining seconds is 132 Mbps, much lower than 

near-gigabit link capacity. Fig. 1 shows that initial 

throughput increases with increasing sizes of the receiver 

window. Because window size is able to effectively limit 

excessive throughput, we can use it as a method for ensuring 

results fall within an acceptable range. 

2) Measuring throughput on lower link capacity 

 So far, we have learned that window size affects 

throughput, but link capacity should have also constrained 

throughput. To understand the relationship between window 

size, link capacity, and reported throughput, we repeated the 

previous tests using a 10 Mbps link. Our results indicate that 

lowering link capacity lowers average throughput but still 

demonstrates above-capacity throughput both initially and at 

points throughout the trial. The initial throughput spike on the 

sending side that we experienced previously still exists with 

the 10 Mbps link. With a 30 MB window size, the initial 

spike is reported at 3.24 Gbps. However, the average goodput 

during the test does scale to the link capacity. The goodput 

spikes throughout the test are 105 Mbps with one second gaps 

between them of 0 Mbps throughput. This leads to average 

second-by-second reported statistics of 10.5 Mbps, which is 

above the link capacity, especially because this is a 

measurement of goodput rather than total throughput. 

Meanwhile, the receiver reports a maximum goodput of 

9.75 Mbps and minimum goodput of 9.08 Mbps for the trial. 

This discrepancy between sender and receiver statistics 

shows that the sender does not report an accurate measure of 

the data traveling across the network. Packet loss is not 

responsible for the discrepancy between sender and receiver 

because there is negligible packet loss. Note that the test used 

the simplistic architecture with only one link, meaning that 

even in the simplest scenario with a low-speed link, the 

sender reports unreasonable results.  

 

 
Fig. 1. Sender report of initial throughput soaring above the link capacity 

(complex data center setup). 

 

3) Understanding these results 

 Our iPerf setup used a single stream TCP connection to 

ensure that these high throughput values were not occurring 

because of multiple TCP streams utilizing multiple links of 

the datacenter. To explain why iPerf reports excessive 

throughput when the receiving window is large, we 

hypothesized that the simulation might be splitting the single 

TCP stream across multiple links, causing reported 

measurements to exceed the capacity of a single link. If the 

hypothesis is correct, a switch connected to the destination 

host might temporarily act like a buffer, holding packets until 

they can all can enter the host across a single connection. To 

evaluate the hypothesis, we tested transmission on a 

simplistic architecture with two switches connected by a 

single 1 Gbps link along the path from sender to receiver. 

Using a receive window size of 30 MB and an RTT of 108 ms 

resulted in an initial goodput of 3.25 Gbps. After the initial 

spike, the simulator reported goodput of 945 Mbps. We 

conclude that because we observe excessive throughput with 

only a single link in the path, the excess cannot be attributed 

to data being split across multiple links. 

When the link between the two switches is configured to 

have a latency of 1 ms, iPerf reports an even higher initial 

goodput spike of 3.56 Gbps and a steady goodput of 997 

Mbps, higher than what should be allowed on the link. 

Ultimately, even in the simplest case, the combination of 

Mininet and iPerf produces unreasonably high throughput of 

more than 3.5 times the emulated link capacity. 

Why The Sender and Receiver Report Differing 

Throughput: As described above, the sender and receiver 

report differing throughput, with the receiver reporting more 

accurate values especially with large window sizes. The iPerf 
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source code [27] explains the discrepancy: the sender does 

not have a global view of the system, but instead only reports 

data that has been injected into the network. In particular, the 

sender does not wait for data to be received and 

acknowledged. 

 

 
Fig. 2. Sender and receiver reports of throughput averaged over one second 

intervals; note the exaggerated spikes in sender reports. 

 

Fig. 2 illustrates the difference between sender and 

receiver reports during a 10 second trial. The figure shows 

measurements on the simplistic topology with all traffic 

traversing a single 1 Gbps link between the endpoints and a 

round-trip latency of 4 ms. The scaling of the graph omits the 

goodput during the first tenth of a second. These values are 

3.98 Gbps and 758 Mbps for the sender and receiver 

respectively. In addition, the sender reports spikes in 

throughput during the test, which do not correlate to spikes on 

the receiving end. The spikes result in unrealistically high 

average throughput values compared to the values reported 

on the receiving side: 997 Mbps vs. 955 Mbps. 

4) Recommendations for measurements 

Even on the receiving side, early reports of average 

throughput do not provide an accurate estimate of the overall 

sustained throughput. In particular, throughput may be lower 

during the first-time interval of a simulation because it takes 

time for the sending side to propagate packets into the 

network. Thus, when performing throughput measurements, 

it may be best to discard values reported during the first 

second (or more depending on latency) of a simulation. In 

addition, although the receiving side appears to report fairly 

accurate measurements when the window size is high, using a 

lower window size is recommended because artificially large 

window sizes can cause other issues, as described in later 

sections of this paper. 

These discrepancies between sender and receiver 

demonstrate the need to configure iPerf to report statistics 

over short intervals instead of allowing iPerf to average 

values over an entire simulation run. Consider the case of a 

host sending to another host on the same switch with a TCP 

receiving window size of 30 MB. When it computes an 

average over the entire trial, iPerf reports an average 

throughput of 987 Mbps. However, when the report interval 

is set to 5 seconds, iPerf generates two values: averages of 

1.02 Gbps and 956 Mbps. Using two reports shows a large 

discrepancy that is concealed in a single report. Finer 

granularity reveals additional detail. For example, requesting 

a report every second demonstrates that the average 

throughput on the first second is 1.26 Gbps with successive 

seconds averaging around 955 Mbps. Requesting a report 

every tenth of a second reveals an initial spike of 3.89 Gbps 

and subsequent spikes 1.05 Gbps throughout the test; these 

spikes remain hidden with larger granularity. Therefore, 

using a single average as a measure of throughput can inflate 

throughput inaccurately, hide important details, and lead to 

an inaccurate assessment. 

5) Why does window affect the simulated THROUGHPUT? 

 We have been unable to determine exactly why a large 

window size results in iPerf reporting excessive throughput. 

This problem occurs with both iPerf2 and iPerf3. One 

possibility lies in an equation that relates the TCP receive 

window size, the round-trip time, and the underlying link 

capacity (i.e., throughput). According to the equation:  

TCP Receive Window Size = Bandwidth * RTT 

where RTT is round trip time measured in seconds and 

bandwidth is the maximum throughput capacity of the link 

measured in bits per second. Rearranging terms results in an 

equation that specifies the maximum throughput in terms of 

the window size: 

Throughput = TCP Receive Window Size / RTT      (1) 

Recall that for our first scenario, iPerf reported up to 3.98 

Gbps of initial throughput. Using the values configured for 

the simulator, the equation gives the following theoretical 

maximum throughput: 

Throughput = 30,000,000 bytes / 0.116 seconds 

= 258,620,689.655 bytes / second 

 = 2,068,965,517.24 bits/second 

= 2.069 Gbps 

The maximum throughput reported by iPerf is higher than 

theoretical maximum specified by the formula, meaning this 

formula does not explain the results. However, using 

end-to-end delay or 1/2 of RTT gives a throughput of 4.138 

Gbps, which is just above our reported goodput. It is possible 

that iPerf is using single direction delay in the calculation 

rather than RTT. Note that the formula only specifies an 

upper-bound on throughput for a given window size and 

round-trip time; it does not include a constraint for the 

physical link capacity. If the window size is sufficiently large, 

the maximum throughput can be greater than the simulated 

network capacity. 

It is clear that Mininet does not use the link capacity as an 

upper limit when calculating the rate at which data can be 

sent over a link. The layers of code make it difficult to find 

the exact source of the problem. It seems likely that the 

Mininet uses the formula above to calculate the maximum 

allowed rate and then uses the calculated rate to deposit 

outgoing data into an output buffer, leading iPerf to assume 

the data has been sent and to calculate the data rate 

accordingly. Once the simulation starts delivering packets 

and the receive window size shrinks, the available receive 
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window limits the flow of data, causing iPerf to report data 

rates closer to the link capacity. The rate at which the 

receive-side window absorbs data limits the rate at which 

packets travel across the link. 

As further support for our hypothesis, we observe that link 

delay seems to impose a bound-on throughput that cannot be 

overcome merely by increasing the receive window size. 

Thus, it seems likely that Mininet uses the link delay to 

determine how quickly the receiver’s window will fill and 

limits traffic transmission accordingly. Consequently, a high 

link delay causes the data rate to slow, regardless of the 

emulated link capacity. 

Congestion control algorithms can limit the flow rate of 

packets onto a network, and the question arises whether the 

congestion control algorithm might also affect reported 

throughput. Recall that our tests use the default TCP 

congestion control algorithm in Ubuntu, known as CUBIC. 

To check the effect of congestion control, we reran tests with 

the TCP Reno congestion control algorithm. The change in 

congestion control made no difference in results, leading us 

to conclude that the choice of congestion control algorithm 

does not contribute to the observed behavior. 

B. Unequal Link Sharing 

The experiments thus far have considered only a single 

sender. In most situations, however, multiple senders share a 

given network. Therefore, it is important to understand how 

Mininet and iPerf behave when multiple flows share a link. 

All flows on a network should be balanced according the 

policy being used. Unless a specific policy is configured, 

network switches employ statistical multiplexing, which 

gives each flow an equal share of the capacity. When n flows 

share a link, each flow should receive 1/n of the link capacity. 

 

 
Fig. 3. Folded Clos Architecture: Unequal link sharing on a 1 Gbps link with 

a 30 MB receiving window size. 

 

The question arises: how does the size of the receive-side 

TCP window affect throughput when multiple flows share a 

link? This section reports experiments that show how a large 

TCP receive-side window can cause unequal link sharing 

among flows. 

The first link-sharing experiments use a folded Clos 

architecture with two datacenters. Four senders in one 

datacenter send to four receivers in a second datacenter. Fig. 

3 illustrates that with a window size of 30 MB, the link 

capacity between the datacenters is not shared equally among 

the four senders. The largest difference among throughput on 

the four flows is 73%. Interestingly, a dominant flow emerges 

and remains dominant throughout the simulation. 

Furthermore, the pattern of flow dominance is repeatable, but 

it is difficult to predict which flows will dominate in a given 

run. 

We hypothesized that the order in which senders start 

would determine how flows dominate. However, tests show 

that the order in which senders start does not guarantee which 

flows dominate. In particular, the first host to start sending 

does not gain an advantage by sending over an empty 

network or by using the network the longest. In fact, although 

they start sequentially, the iPerf tests all start within a few 

milliseconds of each other. Thus, no sender-receiver pair has 

significant time to gain an advantage by transmitting at full 

link capacity without other traffic. 

We hypothesized that a large window size allowed senders 

to flood the network with packets. In particular, a window 

size of 30 MB is sufficient to allow any of the four flows to 

use the entire link capacity. To understand whether the 

window size affects sharing, we ran the same throughput 

experiments with a window size of 4 MB, a value small 

enough to allow each of the four flows to use 1/4 of the link 

capacity. As Fig. 4 illustrates, although differences in 

throughput persist, the gap between the highest and lowest is 

significantly smaller. The differences in throughput are small 

enough so that minor variations allow the plots from multiple 

flows to overlap. The maximum difference among 

throughput for the four flows is now only 15%. Table II 

outlines the window sizes used based on the number of flows 

sharing a single link. Note that the values depend on the 

topology, link speed, and packet round-trip time. The value 

of an optimal window size may be calculated using 1 in the 

previous section. 

 
TABLE II: TCP WINDOW SIZE BASED ON NUMBER OF FLOWS 

 

One possible explanation of unequal throughput arises 

because the leaf-spine architecture provides multiple paths 

along which data can travel. If the system does not distribute 

traffic from multiple flows across paths equally, congestion 

could occur on some paths and not others. To rule out this 

possibility, we also ran multi-flow simulations using the 

simplistic topology with only one path between two switches. 

Four hosts were added to each switch, allowing for a total of 

four simultaneous flows. We used a TCP receive window 

size of 30 MB, and measured the throughput on each flow. 

Fig. 5 illustrates that unequal sharing occurs even when the 

network consists of a single path. The maximum difference in 

throughput is 94%. 

Furthermore, the figure shows that the throughput for each 

Number of Hosts Sharing Link Window Size (MB) 

1 15 

2 7.5 

3 5 

4 4 

5 4 
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flow exhibits high variability. Lowering the receive window 

size reduces the variability, just as it does for the complex 

topology. Thus, it is important to set an appropriate receive 

window size even in the simplest of scenarios. 

 

 
Fig. 4. Folded Clos Architecture: Unequal link sharing on a 1 Gbps link 

with a 4 MB receiving window size. 

 

 
Fig. 5. Simple Architecture with unequal link sharing over a 1 Gbps link with 

a 30 MB receive window size. 

 

C. Bidirectional Traffic and Link Sharing 

Most networks support two-way traffic, and data flowing in 

the reverse direction may delay acknowledgements. With a 

full-duplex link, such as an Ethernet, we expect simultaneous 

traffic flows in the forward and reverse directions to each 

achieve throughput that approaches the link capacity. We 

conducted experiments to test the assumption, and found that 

when using Mininet and iPerf, simultaneous traffic in two 

directions does not approach the link capacity. 

We used two methods to assess simultaneous traffic. First, 

we used the iPerf option for bidirectional traffic, where the 

host at each end acts as both a sender and receiver. As Fig. 6 

illustrated, an iPerf bidirectional test does not allow 

throughput in either direction to reach the full link capacity. 

Moreover, the throughput of the two flows is unequal, with 

the two trading off for various window sizes. As the figure 

shows, when the window size is 10 MB, throughput in one 

direction falls below half of the link capacity. Smaller 

window sizes do not result in equal throughput unless the 

window size becomes small enough to limit throughput 

severely. The test was performed on the complex topology 

with a single host pair sending between two data centers 

across a link with a delay of 1 ms. 

The graph in Fig. 6 shows data for a single trial, which 

illustrates how the throughput vary. Fig. 7 shows that 

averaging the throughput measurements over 30 trials 

produces a smoother, and more consistent pattern. The 

smoothing occurs because the two directions randomly 

become either the faster or slower direction for a given 

window size. In Figure 6, for example, the traffic sent by 

Host 1 dominates at each value of window size except for 20 

MB. The important point is that even when averaged over 30 

trials, Mininet only allows traffic in each direction to reach 

approximately 80% of the link capacity. 

1) A second approach to bidirectional testing 

 The question arose: does the erratic performance and 

lower-than-expected average throughput result from the way 

iPerf performs bidirectional transfers? To discover whether 

iPerf causes the problem, we took a second approach of 

running two independent unidirectional iPerf tests 

simultaneously, one in each direction. One of the two uses 

TCP port 2050, and the other uses port 2051. The results are 

similar to the measurements obtained by using the built-in 

bidirectional command in iPerf. The throughput exhibits high 

variability, and one flow proceeds faster than the other. As 

reported for the iPerf bidirectional measurements, the host 

pair that has highest throughput varies randomly between 

trials, and does not depend on which pair of hosts starts first. 

Thus, we conclude that problems with bidirectional tests 

appear to arise from Mininet rather than the iPerf application. 

2) Possible causes of bidirectional issues 

 We wondered whether the CPU of the system running 

Mininet and iPerf formed a bottleneck that led to lower 

performance. However, CPU utilization does not appear to be 

the culprit. Both the iPerf bidirectional tests and our custom 

solution use similar amounts of CPU, and both values are low. 

The overall processor utilization remains around 0.3% during 

the throughput measurements. With iPerf’s bidirectional 

command, there are 2 iPerf instances (one for each direction), 

each instance incurred only 10% CPU utilization. With our 

custom bidirectional test, 4 iPerf instances run (two for each 

direction), each incurred 35% CPU utilization. Thus, both 

approaches incur similar CPU utilization overall, neither 

imposes a heavy load on the CPU. 

We also wondered if the emulated switches or hosts that 

Mininet uses have small internal buffers that limited total 

throughput. In particular, we speculated that a small buffer 

might not allow an emulated device to fill a Gigabit link. To 

test whether the emulated devices could fill a link, we 

lowered the link speed from 1 Gbps to 10 Mbps and reran the 

bidirectional tests. Even with a lower link speed, the same 

problem arose: when sending bidirectional flows across a 10 

Mbps link, each flow exhibited an average throughput of 

approximately 7 Mbps. The tests used the same packet sizes 

as the 1 Gbps trials, which means the packet processing time 

decreases because the number of packets decreases. We 

concluded that the limited throughput does not result from a 1 

Gbps link overwhelming the emulated devices or filling their 
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input buffers. Some other factors must result in a consistent 

average link utilization of 80% or less. 

As a final question, we asked whether the emulated link or 

emulated hosts might be the bottleneck. To test link 

performance, we arranged a bidirectional test with four hosts 

instead of two hosts. Hosts 1 and 3 were placed on one side of 

a link, and hosts 2 and 4 were placed on the other side. Host 1 

sent a unidirectional flow to host 2 while host 4 sent a 

unidirectional flow to host 3 in the reverse direction. In 

essence, the only change from the previous bidirectional tests 

was the use of four hosts instead of two. Interestingly, we 

find that both flows achieve throughput of the full link 

capacity. Furthermore, tests show low variability. Thus, we 

can conclude that the issue with bidirectional tests arises from 

the emulated hosts and not from the emulated link. 

 

 
Fig. 6. Throughput using iPerf bidirectional tests of various window sizes 

across a link with a 1 ms latency. 

 

 
Fig. 7. Average throughput for 30 iPerf bidirectional tests of various window 

sizes across a link with a 1 ms latency. 

 

V. FUTURE WORK 

Several avenues of work can arise from these results. First, 

the community should investigate the underlying cause of 

anomalous simulation results and modify Mininet to 

eliminate the problem. It cannot be expected for every 

research to configure their simulation precisely, and 

robustness of the platform is the best solution. Second, our 

work focused on one version of Mininet and Linux; future 

work should investigate whether the same issues arise on 

other operating systems, including MacOS, Windows, and 

other versions of Linux. Third, it should be investigated 

whether our findings can be replicated when iPerf is used 

across a network simulation/emulation system other than 

Mininet. In limited testing, this is not an issue that occurs 

when using iPerf outside of the Mininet application. Finally, 

a logical next step is comparing these results to those 

obtained on a physical testbed. This comparison would 

quantify the errors we experience in this paper compared to 

real measurements rather than theoretical values. 

 

VI. CONCLUSIONS 

The flexibility and relatively low hardware requirements 

of Mininet and iPerf mean that they remain a popular 

combination when developing and testing new network 

architectures and applications of SDN technology [1–5]. 

Despite their popularity, we have uncovered evidence that 

Mininet and iPerf can report misleading and invalid 

measurements. In particular, throughput reported by iPerf 

depends on the TCP receive-side window, and a large 

window size can result in reported throughput that exceeds 

the emulated network capacity. During small time periods 

near the beginning of a simulation, the reported throughput 

can exceed the link capacity by over 422%. 

As a short-term solution, we provided three 

recommendations for researchers using Mininet and iPerf: 

• Use iPerf window size flags to limit throughput to match 

link capacity. 

• Measure iPerf results over small intervals to monitor 

throughput variation. 

• Choose an appropriate window size given the number of 

flows sharing the link to avoid unequal link sharing. 

• Avoid bidirectional iPerf tests and instead use 

independent pairs of hosts to fill the link. 

Our findings have significant implications for researchers 

and others who use Mininet and iPerf to assess network 

architectures and network performance. Minor configuration 

changes can result in significantly invalid output. In 

particular, we demonstrated that Mininet and iPerf can report 

invalid measurements for even our simple topology 

consisting of two switches connected by a single link. We 

also found that the sender may report a sustained throughput 

higher than the simulated link capacity. Therefore, it is 

important to follow our configuration guidelines above to 

avoid misleading results. Previous work that uses Mininet 

and iPerf should be reevaluated in light of our findings to 

determine whether the results remain valid when appropriate 

configuration parameters are used. Future research utilizing 

these tools should pay close attention to the reported values to 

ensure results that align with physical hardware. We have 

demonstrated that emulations can, in fact, fail and researchers 

must carefully evaluate the quality of output to ensure results 

are logical. 
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VII. APPENDIX 

A. Leaf-Spine Datacenter Architecture (Folded Clos) 

 
Complex Scenario: Two datacenters connected with a 

high-speed link 

B. Simple Architecture 
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