

Abstract—The utility of an itemset is the product of the profit

and the frequency of the itemset in the database. If it is larger

than the given threshold, it is defined as the high utility pattern.

If there is no superset which has the same frequency as the

frequency of its subset, the itemset can be considered as the

closed itemset. If the itemset satisfies both the high utility and

the closed property, the itemset is defined as the closed high

utility itemset/pattern (CHUI). Among those algorithms based

on the utility-list structure, the HMiner- Closed algorithm is the

most efficient algorithm. However, if the value of the threshold

decreases, the number of candidate CHUIs increases and

decreases the efficiency of the algorithm. Therefore, in this

paper, we propose an efficient algorithm based on a closed-set

lattice structure. Our algorithm first finds the closed itemsets

and then finds CHUIs in those itemsets. By checking the set

relationship between the transactions, we first insert

transactions into the closed-set lattice structure. Our algorithm

also considers data insertion/deletion in the incremental

database. From our performance study, we show that our

proposed approach is more efficient than the HMiner-Closed

algorithm.

Index Terms—Closed high utility patterns, closed-set lattice,

data mining, incremental database, lattice

I. INTRODUCTION

Frequent Itemset mining (FIM) discovers frequent itemsets

based on the frequency of the itemset in the database. The

importance of each item in the database is equal in association

rule mining. However, this approach may have problems,

when mining in the market database or other databases which

concern the profit and weight of each item. Because the

profits of the items are different in the real world. Moreover,

the quantity of an item must be considered. Therefore, High

Utility Itemset Mining (HUIM) is proposed. HUIM is used in

many areas nowadays, such as retail marketing organization,

machine learning, stock market analysis [1], etc. The

approaches in HUIM includes static high utility itemset

mining [2], dynamic high utility itemset mining [5] and

closed itemset mining [9].

If the utility value of an itemset is larger than the threshold,

the itemset is determined as a high utility pattern. Table I

shows an example database 𝐷1. The (𝑎, 1) in transaction 𝑇1

means the quantity of the item 𝑎 is 1. HUIM is based on two

Manuscript received May 23, 2023; revised July 23, 2023; accepted

October 5, 2023.

Y. I. Chang, P. C. Chuang, C. Y. Wang, and Y. H. Liao are with the

Department of Computer Science and Engineering, National Sun Yat-Sen

University, Kaohsiung, Taiwan.

*Correspondence: changyi@mail.cse.nsysu.edu.tw (C.Y.W.)

kinds of consideration, the quantities and the profits. The

profits of items 𝑎, 𝑏, 𝑐, 𝑑 are 5, 1, 2, 3 , respectively. The

itemset in the database must be considered again, when new

transactions are stored. Therefore, the DHUIM approach [6]

has been proposed to process new stored data without

additional database scan and inserts the result into the

previously processed result.

The limitation of HUIM is that it often produces too many

candidates. To decrease the number of candidates and keep

the representation lossless, Closed High Utility Itemset

Mining (CUIM) is proposed [15]. The CUIM extends the

concept of HUIM, if an itemset 𝑋 does not have a superset,

which has the same support count, the itemset 𝑋 is a closed

itemset. If the itemset 𝑋 is a high utility itemset and a closed

itemset. The itemset 𝑋 is defined as a Closed High Utility

Itemset (CHUI).

HUIM is used in many areas nowadays, such as retail mar-

keting organization, machine learning, stock market analysis

[1], etc. High Utility Itemset Mining (HUIM) is one of the

approaches in association rule mining. For the concern of

mining in the static database, Liu et al. propose the Two-

Phased algorithm [3]. To improve the Two-Phased algorithm,

Liu and Qu propose the HUI-Miner algorithm [2]. For those

transactions which have similar items but different quantities,

EFIM [4] is proposed. The local utility is a tighter upper-

bound than Transaction Weight Utility (TWU) [3]. For the

concern of the dynamic database in high utility itemset

mining, there are two types of ways to mine the candidates in

the dynamic database. The first type is the incremental

database. The whole database is considered, when new

transactions are stored. MEFIM and iMEFIM algorithm [8]

have been proposed to achieve this goal. iMEFIM is an

improved version of MEFIM. Lee et al. propose PIHUP (Pre-

large Incremental High Utility pattern) algorithm [5]. Yun et

al. propose IIHUM (List based Incremental High Utility

pattern Mining) to deal with incremental mining [1]. The

second type of dynamic database is under the assumption of

the window model. The algorithm considers the arrival time

of the data. ILDHUP algorithm [7] has been proposed to

handle this problem.

The closed high utility mining combines the requirements

of closed itemset in FIM and the traditional HUIM. The

EFIM-Closed algorithm [10] has been proposed for mining

CHUIs. As a modified version of the EFIM algorithm, the

EFIM-Closed algorithm has several improvements. The

HMiner-Closed algorithm [11] aims for dealing with both

sparse and dense datasets. The HMiner-Closed algorithm

uses Backward checking and Forward checking to reduce the

search space and runtime. The IncCHUI [9] algorithm is

An Efficient Approach for Mining Closed High Utility

Patterns in the Incremental Database

Ye In Chang*, Po Chun Chuang, Chun Yu Wang, and Yu Hao Liao

International Journal of Future Computer and Communication, Vol. 12, No. 4, December 2023

84doi: 10.18178/ijfcc.2023.12.4.608

mailto:changyi@mail.cse.nsysu.edu.tw

proposed to not only CHUI mining, but also the incremental

database. The main problem in incremental closed high utility

mining is the reconstruction process. Since the TWU order

might be changed, when a new transaction is stored.

Therefore, the mining order must be sorted again to maintain

the downward closure property. However, the remaining

utility (rutil) has to be recalculated every time, when a new

transaction is stored. The cost of the reconstruction can be

improved.

The main purpose of mining High Utility Patterns (HUP)

is to consider both the frequency and the profit. However, the

number of high utility patterns might be large, if the threshold

is set too low. Closed high utility mining can decrease the

number of resulting itemsets without information loss. If

pattern 𝑋 satisfies both closed property and high utility

property, the pattern 𝑋 is considered as a closed high utility

pattern.

Among those algorithms based on the utility-list structure

for mining closed high utility patterns [11], which needs only

one scan of the database, the HMiner-Closed algorithm, is the

most efficient algorithm. However, the CHUI mining

algorithm first focuses on mining HUIs and then determines

the closed property among the itemsets. The number of high

utility itemsets is affected by the minimum threshold. If the

threshold is set too low, there are lots of utility lists which

have to be constructed. The efficiency of the algorithm is

affected by the number of high utility patterns. Because the

utility lists have to be reconstructed again, when new

transactions are inserted.

Therefore, to reduce the cost for evaluating a large number

of high utility patterns, in this paper, we propose a new

algorithm to efficiently discover CHUIs with a closed-set

lattice structure. Instead of finding HUI first then finding the

closed frequent itemsets, we first find all closed frequent

itemsets and then find CHUI among the closed frequent

itemsets. By mining closed frequent itemsets first, we can

prune candidate high utility itemsets, which do not satisfy the

closed property. In the algorithm, we use a closed-set lattice

to store transactions from the dataset. Our algorithm first

finds all closed frequent itemsets and then find CHUI among

the closed frequent itemsets. By mining closed frequent

itemsets first, our algorithm can prune candidate high utility

itemsets, which do not satisfy the closed property. In the

algorithm, we use a closed-set lattice to store transactions

from the dataset. Our algorithm first checks the relationship

between sets between the incoming transaction and the old

transactions.

The key to find closed patterns is by comparing support

counts between patterns. The relationship between sets can

help to calculate the support counts of patterns. There are

several advantages to consider in the relationship between

itemsets. First, every node in the closed-set lattice is certainly

a closed itemset. Those high utility itemsets, which our

algorithm has discovered in the lattice structure are CHUIs.

Different from traditional CHUI mining algorithms, our

algorithm first finds all closed itemsets then finds high utility

itemsets among those closed frequent itemsets. The number

of candidate itemsets is fixed and do not affect by the

transaction value. Second, the lattice structure is the only

structure, which we need to find CHUIs. Therefore, no extra

space is needed. Third, when new transactions are stored, our

algorithm does not need to rescan the old transactions. Our

algorithm can mine CHUIs by updating the closed-set lattice.

Our algorithm uses a binary list called bit-represent to speed

up the comparing process between itemsets. Fourth, no CHUI

is lost in the algorithm. From the performance result, we show

that our proposed algorithm has better performance than

HMiner-Closed algorithm in dense databases and sparse

databases.

II. A SURVEY OF THE HMINER-CLOSED ALGORITHM

Nguyen et al. have introduced the HMiner-Closed

algorithm [11] in 2019. They have proposed a modified

version of Compact Utility List (CUL) called Modified

Compact Utility List (MCUL) as shown in Fig. 1. The

information inside each node can help the extended process

of HMiner-Closed algorithm constructs utility lists without

rescanning the database. A MCUL of an itemset with more

than one item is called a k-MCUL, and it is built from (k-1)-

MCULs without rescanning the database. The mining process

of HMiner-Closed algorithm is as follows. First, the

algorithm scans the database once and constructs 1-MCULs.

Items with TWU values smaller than the threshold are pruned,

since the extension of those items can not be closed high

utility itemsets. The algorithm then sorts the 1-MCULs by the

accending TWU order. Next, the algorithm constructs k-

MCUL and finds closed high utility itemsets. If 𝑈(𝑋) of

itemsets 𝑋 is greater than the threshold, the itemset will be

added into CHUI-list. When the algorithm completes, the

itemsets remaining in the CHUI-list are the CHUIs. There are

some downsides in the HMiner-Closed algorithm. If the

threshold value is small, there are many itemsets will be con-

sidered as high utility itemset. The HMiner-Closed algorithm

has to construct many utility lists and consider many itemsets

to find closed high utility itemsets. Also, the algorithm does

not consider mining in dynamic databases. If there are new

transactions inserted into the database, the TWU order of

items may be changed. Because TWU values of items are

changed. Therefore, the whole database needs to be

rescanned, the TWU order of itemset needs to be sorted again,

and the MCULs needs to be reconstructed.

Fig. 1. The data structure MCUL applied in the HMiner-closed algorithm

[11].

Fig. 2. The example node.

TABLE I: AN EXAMPLE DATABASE D3

Tid Items

𝑇1 (𝑎, 1), (𝑏, 4)

𝑇2 (𝑐, 1), (𝑑, 5)

𝑇3 (𝑎, 2), (𝑏, 3)

𝑇4 (𝑐, 3)

𝑇5 (𝑎, 1), (𝑏, 2), (𝑐, 6), (𝑑, 1)

𝑇6 (𝑏, 2), (𝑐, 1)

International Journal of Future Computer and Communication, Vol. 12, No. 4, December 2023

85

III. THE CLOSED-SET LATTICE APPROACH

In this section, we present a closed-set lattice algorithm to

identify the closed high utility patterns efficiently by using

the modified subset-lattice [16] as the foundation of our data

structure.

The subset-lattice proposed by Chen [16] only stores the

frequency of each item in the database. Each node of the

subset lattice can store at most 3 batches and a batch

represents two transactions. The utility of an itemset is

calculated by multiplying the frequency and the profit of the

itemset. The subset-lattice structure is proposed by Peng [17]

for mining frequent itemsets. Each node records the itemsets

by a bit-represent list, and the node also records the

transactions which contain the itemsets.

The difference between our closed-set lattice and their

subset-lattices [16], [17] is that each node in our structure

records the utility value, bit-represent list of itemset, the

frequency of every item of the itemset, and the list of

transactions. Our algorithm does not separate transactions

into batches. On the contrary, the information in each node is

calculated from all transactions in the dataset. The example

node is shown in Fig. 2.

A. Database

In this subsection, we use an example database 𝐷3 shown

in Table I to illustrate our algorithm. In the process of mining

CHUIs in the static and dynamic database, our algorithm

assigns the profit and the quantity to each item. Our algorithm

uses a modified subset-lattice structure, which is called

closed-set lattice, to record the information of each

transaction in the database. Note that our algorithm only

scans the original database once, as compared to two times in

Apriori-based algorithms, such as Two-Phase algorithm [3].

The non-binary database with 𝑛 transactions is represented

as 𝐷 = {𝑇1, 𝑇2, 𝑇3, ⋯ , 𝑇𝑘}, which includes a set of m distinct

items, 𝐼 = {𝑖1, 𝑖2, 𝑖3, ⋯ , 𝑖𝑚} . Each transaction 𝑇𝑘(1 ≤ 𝑘 ≤
𝑛) has a unique identifier, Tid, and contains multiple items

belonging to set 𝐼(𝑇𝑘 ⊆ 𝐼).

In real-world applications, different products have their

own characteristics, such as the profit and the quantity. The

closed high utility itemset mining allows users to give each

item an independent value to satisfy the needs. For example,

the profits of items 𝑎, 𝑏, 𝑐, 𝑑 and e are assigned with 5, 1, 2, 3

and 7, respectively. We define the profit of an item as 𝑃(𝑋).

Take item {𝑐} as example, and we have 𝑃(𝑐) = 2 . The

quantities of itemset 𝑋 in transaction 𝑇𝑖 is represented as

𝑄(𝑋, 𝑇𝑖).

The utility of itemset 𝑋 in transaction 𝑇𝑖 is denoted as

𝑢(𝑋, 𝑇𝑖). For example, for itemset {𝑑} in transaction 𝑇2, its

utility is calculated as 𝑢(𝑑, 𝑇2) = 𝑄(𝑑, 𝑇2) × 𝑃(𝑑) = 5 ×
3 = 15 . Similarly, for itemset {𝑐𝑑} in transaction 𝑇5 , the

𝑢(𝑐𝑑, 𝑇5) is calculated as 𝑢(𝑐𝑑, 𝑇5) = 𝑄(𝑐, 𝑇5) × 𝑃(𝑐) +
𝑄(𝑑, 𝑇5) × 𝑃(𝑑) = 2 × 6 + 3 × 1 = 15.

The Transaction Utility (TU) is the summation of utilities

in a transaction. Take transaction 𝑇1 as an example, we have

𝑇𝑈(𝑇1) = 𝑢(𝑎, 𝑇1) + 𝑢(𝑏, 𝑇1) = 5 × 1 + 1 × 4 = 9 . The

𝑇𝑊𝑈(𝑋) means the amount of the total utility related to the

transactions which contain pattern 𝑋 . The 𝑇𝑊𝑈 value is

calculated by summarizing all of the 𝑇𝑈(𝑇𝑖), which contains

pattern 𝑋. For example, the 𝑇𝑊𝑈 of the itemset 𝑑 in database

𝐷3 is computed as follows. Since itemset 𝑑 exists in

transactions 𝑇2, 𝑇5 , we have 𝑇𝑊𝑈(𝑑) = 𝑇𝑈(𝑇2) +
𝑇𝑈(𝑇5) = 38. The 𝑇𝑊𝑈 values of items 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 are

44, 48, 49, 39 and 0, respectively.

B. The Observations of the Relationships between

Itemsets

In this subsection, we present an observation of the set-

relationships between itemsets. The set-relationships between

itemsets can be utilized to identify closed itemsets. Our

algorithm first finds all closed itemsets and we then find high

utility itemsets between them. The reason for such an

approach is that the number of the closed itemsets in the

dataset is fixed. The number of closed itemsets is not affected

by the threshold value. For the traditional CHUI mining

algorithm, the number of high utility itemsets is affected by

the threshold value. It might generate lots of high utility

itemsets which do not satisfy the closure property. By finding

all closed itemsets, our algorithm sets an upper bound for the

number of CHUIs. The number of the CHUIs generated by

our algorithm is at most equal to the number of closed

itemsets. If our algorithm can not find any superset 𝑌 which

satisfies the condition 𝑠𝑢𝑝(𝑌) = 𝑠𝑢𝑝(𝑋) , the itemset 𝑋 is

considered as a closed high utility itemset. Let’s consider a

dataset with only one transaction [𝑎, 𝑏, 𝑐, 𝑑] with utility

[1, 2, 3, 4]. The minimum threshold is set as 5. The utility of

the itemset {𝑎𝑏𝑐} is 6, which is greater than the threshold.

However, itemset {𝑎𝑏𝑐} has a superset {𝑎𝑏𝑐𝑑} , which has

the same support 1 as the itemset {𝑎𝑏𝑐} . Thus, itemset

{𝑎𝑏𝑐} is not a CHUI. Our algorithm classifies the set-

relationships into five properties, which contains (a)

equivalent, (b) disjoin, (c) belong, (d) contain, and (e) partial

overlap.

C. The Closed-Set Lattice

The lattice structure is a data structure, which records the

relationships between the sets. However, the traditional

lattice lists all possible relationships between supersets and

subsets. The edge between two itemsets represents that there

is an intersection between two itemsets. But, first, the closed-

set lattice structure does not contain all possible combinations

of itemsets. Because the itemsets which our algorithm stores

in the closed-set lattice are all closed itemset. Itemsets {𝑎𝑏𝑐},

{𝑎𝑐𝑑} are the subsets of itemset {𝑎𝑏𝑐𝑑}, which is in transac-

tion 𝑇5. They are not stored in the closed-set lattice because

they are not closed itemsets. Because itemset {𝑎𝑏𝑐𝑑} has the

same frequency as two itemsets, {𝑎𝑏𝑐} and {𝑎𝑐𝑑} , and

itemset {𝑎𝑏𝑐𝑑} is their superset. The second difference is that

the level between superset and subset in the closed-set lattice

can be more than one. In the traditional lattice, the itemset

with size k has the relationship with supersets which have size

(𝑘 + 1) and subsets which have size (𝑘 − 1) . The level

between two itemsets can be more than 1 in the closed-set

lattice structure.

The closed-set lattice structure is consisted of many lattice

nodes and edges between the nodes. An edge represents the

relationships between the superset and the subset. A lattice

node records the related data about the itemset and its 𝑇𝑖𝑑.

Each node in the closed-set lattice contains five variables,

which are itemset, QuantitySeq, bit-present, utility, and the

TransactionId list. The itemset represents the set of items.

International Journal of Future Computer and Communication, Vol. 12, No. 4, December 2023

86

The QuantitySeq is a list which records the quantity of each

item in each transaction. The bit-present is a bit-vector, which

stores the information of each transaction. The size of the bit-

present and QuantitySeq is equal to the number of the items

in the database. Our algorithm can easily find relationships

between two transactions with bit-present. When our

algorithm has the information of the quantity of each item,

our algorithm can calculate the real contribution value to

determine whether it is a closed high utility pattern. For

example, transaction 𝑇5 = {(𝑎, 1), (𝑏, 2), (𝑐, 6), (𝑑, 1)} is

denoted as 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑆𝑒𝑞[1, 2, 6, 1, 0]. Because there are five

distinct items {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} in the example database and item

𝑒 does not appear in the transaction 𝑇5, the Quantity of item

𝑒 in the transaction 𝑇5 is recorded as 0. The Utility of the

itemset is also recorded in the node. Our algorithm records

the transaction id of an itemset in the TransactionId list. If the

TransactionId list of an itemset is empty, it means that the

itemset does not appear in any transaction in the database.

The situation may happen when the old transaction is deleted

from the database. Therefore, the itemset has to be removed

from the lattice structure.

Fig. 3. The closed-set lattice structure.

D. The Pruning Strategy

Here, we introduce a pruning strategy [3]. The first

property is called “overestimation”. The key point is that for

any patten 𝑋, the value of 𝑇𝑊𝑈(𝑋) is greater than the value

of 𝑡𝑜𝑡𝑎𝑙𝑈(𝑋) . The second property is called

“antomototonicity”. Given two itemsets 𝑋 and 𝑌 , and 𝑋 is

the subset of 𝑌 , the value of 𝑇𝑊𝑈(𝑋) is greater than or

equal to the value of 𝑇𝑊𝑈(𝑌). The third property is called

“pruning”. Given an itemset 𝑋, if the value of 𝑇𝑊𝑈(𝑋) is

smaller than the given threshold 𝑚𝑖𝑛𝑢𝑡𝑖𝑙 , then all of its

superstars and itemset 𝑋 itself are low utility itemsets. If an

itemset 𝑋 has 𝑇𝑊𝑈 (𝑋) < 𝑚𝑖𝑛𝑢𝑡𝑖𝑙, then itemset 𝑋 and its

supersets are low-utility itemsets. The 𝑇𝑊𝑈 pruning strategy

can prune items, which has smaller 𝑇𝑊𝑈 value than the

threshold in the database scanning stage. The strategy can

decrease the search space of our algorithm.

E. The Mining Process

Here, we describe the mining process. There are two parts

in the mining process, data insertion and data deletion. The

first part is the data insertion. When a new transaction is

inserted, the process considers its relationship to the nodes in

the closed-set lattice. After the transactions are inserted, the

process traverses the structure to find high utility patterns.

Since the itemsets in the closed-set lattice structure are closed

itemsets, the high utility patterns which we have found in the

structure are closed high utility patterns. The second part of

the process is data deletion. Our algorithm provides the

flexibility to remove some transactions without rescanning

the database. Our algorithm updates the nodes in the closed-

set lattice, which are affected by the removal of the

transactions. After the transactions have been removed, we

update the CHUI list and output the updated result.

1) Data insertion

In the process of data insertion, we introduce the steps to

insert transactions into closed set lattice structure. The

Closed-Set lattice algorithm is described as follows. First, our

algorithm has to decide whether the TWU pruning technique

is used or not. If the database is static, no transaction will be

inserted or removed after this mining process. TWU pruning

technique can be used to decrease the search space. If the

database is dynamic, a new transaction will be inserted or

removed after this mining process. The TWU pruning

technique can not be used in this situation. Because when new

transactions are inserted, the itemsets which have low TWU

value may become larger than the threshold. Also, when

transactions are removed, the itemsets which have high TWU

value may become smaller than the threshold. When the

above situation occurs, the closed-set lattice has to consider

new items or ignore existing items. The database has to be

rescanned to reconstruct the closed-set lattice. The

reconstruction process is time-consuming. Therefore, our

algorithm does not apply the TWU pruning technique, when

mining in the dynamic database.

Next, our algorithm inserts each transaction into the

closed-set lattice structure one by one. When a new

transaction is inserted into the lattice structure, the algorithm

starts finding set-relationships between transactions. In the

checking step, our algorithm uses logical operators, AND, to

make the subsumption checking more efficient. There are 5

different cases. Case 1 is the equivalent relationship. The

itemset NewT has the same itemset with itemset OldT. Case

2 is the disjoin relationship. There are no identical items

between itemset NewT and itemset OldT. Case 3 is the belong

relationship. The itemset NewT belongs to itemset OldT. Case

4 is the contain relationship. The itemset NewT contains the

itemset OldT. Case 5 is the partial overlap relationship. Two

itemsets have some items in common.

The insertion process is performed as follows. First, the

process checks whether the transaction is the first transaction

or not. If it is the first transaction. The process inserts the

itemset as the new transaction, which is defined as itemset

NewT into the closed-set lattice structure. If the transaction is

not the first transaction, the process will judge the

relationship between the itemset NewT with the already

existing itemsets, which is defined as itemset OldT. The

relationship between itemset NewT and itemset OldT can be

classified into 5 cases. The first case is the equivalent

relationship. The process does not generate the new node. The

process updates the information of the OldT and its

descendants. Since the itemset NewT is the same as itemset

OldT, the itemset NewT does not be inserted into the closed-

set lattice. The second case is the disjoin relationship. The

itemset NewT is inserted into the closed-set lattice structure

as a new node. The third case is the belong relationship. The

itemset NewT is the subset of the itemset OldT. Therefore, the

itemset NewT is inserted into the closed-set lattice structure

and becomes OldT′s subset. The fourth case is the contain

relationship. The itemset NewT is the superset of the itemset

OldT. Therefore, the itemset NewT is inserted into the closed-

International Journal of Future Computer and Communication, Vol. 12, No. 4, December 2023

87

set lattice structure and becomes OldT′s superset. The last

case is the partial overlap relationship. The itemset NewT and

itemset OldT have some items in common. That is, they have

an intersection itemset. The overlapping itemset becomes a

new node, childT. If the new node childT has already existed

in the structure, we update the itemset and link it to itemset

NewT. Itemset NewT is then inserted into the structure. On the

contrary, if the new node childT does not exist in the data

structure, itemset childT will be inserted into the closed-set

lattice structure. After checking all paths in the closed-set

lattice and considered all relationships with the itemsets, the

insertion process will terminate.

An example of data insertion is given as follows. Table II

shows the example dataset based on Database 𝐷3 in Table I.

The itemset NewT represents the itemset in the new

transaction. The itemset OldT represents the set of old itemset

in the closed-set lattice structure. Every relationship between

two itemsets can be found in the example dataset. For itemset

{𝑎𝑏} in Transaction 𝑇1 , it is the first transaction in the

database. The itemset {𝑎𝑏} is inserted into closed-set lattice

as itemset NewT. The closed-set lattice is shown in Fig. 4-(a).

When the Transaction 𝑇2 is inserted into the lattice, our

algorithm will check the relationship between the previous

transactions and the transaction 𝑇2. The bit-present of 𝑇1 is

[11000] and the bit-present of 𝑇2 is [00110]. Our algorithm

can easily find the relationship between 𝑇1 and 𝑇2 is disjoint

by having a AND operation between [11000] and [00110].

Because 𝑇1 ∩ 𝑇2 = ∅, transaction 𝑇2 will process Case 2, i.e.,

disjoint. There is no additional node which is generated. Since

all paths are considered, the itemset {𝑐𝑑} is inserted into

closed-set lattice as itemset NewT and the next transaction is

inserted. The closed-set lattice after inserting transaction 𝑇2

is shown in Fig. 4-(b). Transaction 𝑇3 has the same itemset as

one of the itemset OldT, which is {𝑎𝑏}. The relationship is

found by having a AND operation between [11000] and

[11000]. The algorithm will process Case 1, i.e., equivalent.

No new node is generated and the information of itemset {𝑎𝑏}

and its subsets are updated. The QuantitySeq of the itemset

{𝑎𝑏} is changed from [1, 4, 0, 0, 0] to [3, 7, 0, 0, 0]. The total

utility of itemset {𝑎𝑏} is also changed from 9 to 22. Since not

all paths are considered, the algorithm then checks the

relationship between transaction 𝑇3 and the other itemset in

itemset OldT, which is itemset {𝑐𝑑} . The relationship

between two itemsets is Case 2, i.e., disjoint. Since the

itemset {𝑎𝑏} has been inserted before, the algorithm does not

insert the new node. Since all paths are considered, the

algorithm waits for new transactions. The closed-set lattice

after inserting transaction 𝑇3 is shown in Fig. 4(c).

TABLE II: THE EXAMPLE DATA BASED ON DATABASE D3

Tid Itemset Bit-presentation QuantitySeq Case Relationship

𝑇1 𝑎𝑏 [11000] [1,4,0,0,0]

𝑇2 𝑐𝑑 [00110] [0,0,1,5,0] 2 disjoint

𝑇3 𝑎𝑏 [11000] [1,3,0,0,0] 1 equivalent

𝑇4 𝑐 [00100] [0,0,3,0,0] 3 belong

𝑇5 𝑎𝑏𝑐𝑑 [11110] [1,2,6,1,0] 4 contain

𝑇6 𝑏𝑐 [01100] [0,2,1,0,0] 5 Partial overlap

Transaction 𝑇4 has itemset {𝑐}. Itemset {𝑐} is the subset of

itemset {𝑐𝑑} in the lattice. The relationship can be found by

having an AND operation between [00100] and [00110] .

The algorithm will process Case 3, i.e., belong. The process

first makes itemset {𝑐} becomes the child of itemset {𝑐𝑑}.

Then the process updates information of itemset {𝑐𝑑} and its

subsets. Itemset {𝑐} is inserted in to the closed-set lattice

structure. Transaction 𝑇5 has itemset {𝑎𝑏𝑐𝑑} . It is the

superset of itemsets {𝑐𝑑} and {𝑎𝑏} . The algorithm will

process Case 4, i.e., contain. The itemset OldT will become

the child of itemset NewT. Transaction 𝑇6 has itemset {𝑏𝑐}.

The itemset {𝑏𝑐} has partially intersected with itemsets {𝑐𝑑}

and {𝑎𝑏}. The relationship can be found by having an AND

operation to each of [01100] , [11000] and [00110] . The

algorithm will process Case 5, partial overlap. Itemset 𝑋 =
𝑁𝑒𝑤𝑇 ∪ 𝑂𝑙𝑑𝑇 . There are two itemsets, which are itemset

{𝑐}[00100] and {𝑏}[01000]. Since itemset {𝑐} has already

existed, the algorithm link NewT to it. Since itemset {𝑏} is not

in the descendants of Itemset {𝑎𝑏}, the algorithm creates a

new node {𝑏} and links it to the itemset NewT and itemset

OldT. After all of the nodes are updated and all paths are

considered, the intersection process terminates. The result of

the data insertion is shown in Fig. 5.

★: new node

 (a) (b)

(c) (d)

(e)

International Journal of Future Computer and Communication, Vol. 12, No. 4, December 2023

88

(f)

Fig. 4. The closed-set lattice structure after inserting

transactions T1, T2, T3, T4, T5 and T6: (a) insertion of transaction T1 [a, b];

(b) insertion of transaction T2 [c, d]; (c) insertion of transaction T3 [a, b];

(d) insertion of transaction T4 [c]; (e) insertion of transaction T5 [a, b, c, d];

(f) insertion of transaction T6 [b, c].

Fig. 5. The result of insertion.

2) Mining chuis

After all transactions are inserted into the lattice structure,

our algorithm can assure that all lattice nodes are “closed”

itemset [17]. Next, our algorithm executes a lattice structure

traversal to determine whether each lattice node is a high

utility item or not. Note that the utility of a pattern has already

been recorded in the node of the closed-set lattice structure.

Therefore, to decide whether a pattern is a closed high utility

is a simple checking task. However, the pay is to traversal all

of the nodes in the closed-set hierarchy. But such a pay is little

as compared to computing the utility for each candidate

pattern before considering the closed-set property as used in

all other algorithms based on the utility list structure. If the

utility of the itemset is larger than or equal to the threshold,

which is given by user, the itemset is considered as a CHUI

and be recorded into a list, ClosedItemset Table. Every node

in the closed-set lattice is compared to the threshold once.

After all itemsets are considered, the process terminates and

outputs the result.

3) Data deletion

In the deletion step, we show the procedure to delete the

transactions in any order from the lattice structure. When a

transaction is deleted from the dataset, the closed-set lattice

structure will be updated. There are two situations, which will

cause an itemset needs to be removed from the lattice

structure. The first situation is that the itemset has an empty

TransactionId list and the second situation is that the itemset

has the same support count as that of its supersets. If the

TransactionId list of itemset 𝑋 is empty, it means that the

itemset 𝑋 does not appear in any transaction in the database.

Therefore, itemset 𝑋 does not be considered as a closed

itemset and needs to be removed from the lattice.

Our algorithm traverses the lattice structure, which is

corresponding to the deleted transaction, and updates the

nodes. If a node is updated, the subset of the updated node

will be affected, too. The node could be created by more than

two itemsets. For instance, itemset {𝑏} is created by the

intersection itemsets {𝑎𝑏} and {𝑏𝑐𝑑}. Therefore, the support

count of {𝑏} contains that of itemsets {𝑎𝑏} and that of {𝑏𝑐𝑑}.

If we delete a transaction 𝑇𝑖 , which contains itemset {𝑎𝑏}.

The itemset {𝑏} also has to deleted 𝑇𝑖 from its TransactionId

list. After the deletion, if the itemset {𝑏} has the same

support count to that of itemset {𝑏𝑐𝑑}, itemset {𝑏} does not

be considered as a closed itemset anymore and needs to be

removed from the lattice structure.

Here we have an example to illustrate the insertion and

deletion process. Our algorithm first inserts a new transaction

𝑇7 (which contains (𝑏, 2), (𝑐, 4), (𝑒, 1) as shown in TABLE

III) into the closed-set lattice and then remove the oldest

transaction 𝑇1 . After the insertion of transaction 𝑇7 , our

algorithm removes the oldest transaction 𝑇1 . Since we

remove transaction 𝑇1 , the QuantitySeq and the totalU of

itemset {𝑎𝑏}, {𝑏} need to be updated. The QuantitySeq of

itemset {𝑎𝑏} becomes [3, 5, 0, 0, 0] and its totalU becomes

29 − 9 = 20 . The QuantitySeq of itemset {𝑏} becomes

[0, 9, 0, 0, 0] and its totalU becomes 13 − 4 = 9. The totalU

of itemset {𝑎𝑏} is no longer a CHUI, so it is removed from

the ClosedItemset Table. After the Insertion process and the

deletion process, the closed high utility itemsets in the

ClosedItemset Table are output as result. The result after

insertion is shown in Fig. 6. The CHUIs after Insertion of

transaction 𝑇7 and deletion of transaction 𝑇1 are itemset {𝑏𝑐}

and {𝑐}. Note that those two itemset are not CHUI in the

previous mining result.

TABLE III: THE EXAMPLE DATA BASED ON DATABASE D4

Tid Itemset Bit-Present QuantitySeq

𝑇7 bce [01101] [0, 2, 4, 0, 7]

Fig. 6. The result after inserting transaction 𝑇7 and

removing transaction 𝑇1.

International Journal of Future Computer and Communication, Vol. 12, No. 4, December 2023

89

IV. PERFORMANCE

In this section, we present the performance study of our

algorithm and the HMiner-Closed algorithm [11] for mining

closed high utility patterns. Both algorithms were executed in

Java Virtual Machine. In this study, we use synthetic

databases to simulate various conditions. We also use the real

transaction datasets used in the previous studies of HUIM,

including dataset 𝑓𝑜𝑜𝑑𝑚𝑎𝑟𝑡 and dataset 𝑒𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑒,
which were downloaded from the SPMF library [18].

A. The Performance Model

We compare the processing time of the synthetic database

and the real database. The external utilities (profit) of the

items are generated by the Gaussian distribution function, and

the internal utilities (count) are generated randomly between

1 and 10.

For the preparing step, at first, all of the transactions are

scanned to get the TWU value of each item. Only the HMiner-

Closed algorithm needs to sort transactions according to

TWU-ascending order. The HMiner-Closed algorithm inserts

the sorted transactions to generate a single item utility list and

our algorithm generates the lattice structure. The HMiner-

Closed algorithm then generates many utility lists to discover

CHUIs. Conversely, our algorithm does not need to generate

other data structures. After the above processes are finished,

we will compare the processing time with each other.

The parameters, which are shown in Table IV, are the

variables of our simulation. The MinUT represents the

threshold values given by us. We give different threshold

ranges for different databases. The NDI represents the

number of distinct items in a database. The MaxNDI

represents the max number of distinct items in a single

transaction. The synthetic database for simulation is showed

in Table V, where dataset 10000_15000_10 means the value

of 𝑇𝑁𝑢𝑚 = 10000 , 𝑁𝐷𝐼 = 15000 and 𝑀𝑎𝑥𝑁𝐷𝐼 = 10 ,

respectively. Take dataset 10000_15000_10 for example. The

dataset has 10000 transactions, 15000 distinct Items and the

max number of distinct items in the single transaction is 10.

For dataset (a), it is a sparse dataset. Moreover, for datasets

(a), (b), (c) and (d), they are only different in the value of NDI,

i.e., the number of distinct items in a database.

TABLE IV: THE PARAMETERS USED IN THE EXPERIMENTS

Parameters Meaning

MaxNDI The Max Number of Distinct Items in a single transaction

NDI The Number of Distinct Items in a Database

MinUT The Minimum Utility Threshold

TNum The Total Number of transactions

AvgLength The Average Length of transactions

TABLE V: DATASET CHARACTERISTICS

 Dataset TNum NDI MaxNDI

(a) 10000_15000_10 10000 15000 10

(b) 10000_12000_10 10000 12000 10

(c) 10000_10000_10 10000 10000 10

(d) 10000_6000_10 10000 6000 10

B. Experiments Results

In this section, we compare the performance of the

HMiner- Closed algorithm [11] and our closed set lattice

algorithm with synthetic and real databases. The transactions

of each synthetic itemsets are set as 10000. For itemset (a)

10000_15000_10, the range of the MinUT is set from 60 to

10. Since both HMiner-Closed and our algorithm have the

same result of closed high utility itemsets, the number of

CHUIs can judge the correctness of the algorithms.

TABLE VI: REAL TRANSACTION DATASET CHARACTERISTICS

Dataset TNum NDI AvgLength

foodmart 4141 1559 4.42

1) Synthetic dataset

A comparison is shown in Fig. 7(a) by using dataset (a)

10000_15000_10, i.e., the sparse dataset, under different

threshold values. Since the number of items is relatively large,

the dataset is determined as a sparse dataset. For the HMiner-

Closed algorithm, it has to consider many subsets to

determine the CHUI. In the sparse datasets, itemsets have few

partial overlap relationships with other itemsets, which

causes the algorithm to construct more utility lists to consider

all of them. Moreover, if the value of the MinUT is small, then

we will have large number of high utility itemsets. Therefore,

HMiner-Closed has to consider more number of itemsets to

find CHUIs. If the threshold is small, the pruning strategy of

HMiner-Closed can not stop the mining process. Because the

sum of the itemset utility and remaining utility can be easily

greater than the threshold. In Fig. 7(a), the runtime gap

between the HMiner-Closed algorithm and our algorithm

becomes dramatically large. This is due to the fact that our

algorithm first finds all closed itemsets. The amount of

candidate itemsets is fixed. The change of the MinUT has a

smaller effect on our algorithm than the effect on the HMiner-

Closed algorithm.

(a)

(b)

International Journal of Future Computer and Communication, Vol. 12, No. 4, December 2023

90

(c)

(d)

Fig. 7. A comparison by using four datasets under the change of MinUT:

(a) 10000_15000_10; (b) 10000_12000_10; (c) 10000_10000_10; (d)

10000_6000_10.

A comparison is shown in Fig. 7(b) by using dataset (b)

10000_12000_10 under different threshold values. This

figure shows the similar result as Fig. 7(a). A comparison is

shown Fig. 7(c) by using dataset (c) 10000_10000_10 under

different threshold values. This figure shows the similar result

as Fig. 7(a). A comparison is shown in Fig. 7 by using dataset

(d) 10000_6000_10 under different threshold values. This

figure shows the similar result as Fig. 7(a).

2) Real transaction dataset

For real transaction datasets, we experiments two datasets,

𝑓𝑜𝑜𝑑𝑚𝑎𝑟𝑡 (http://www.philippe-fournier-

viger.com/spmf/datasets/foodmart.txt) and 𝑒𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑒

(http://www.philippe-fournier-

viger.com/spmf/datasets/ecommerce_utility_no_timestamps.

txt). The details of two datasets are shown in Table VI. Both

datasets represent the real-life needs. Retailers want to find

useful information from the datasets using CHUI mining.

A comparison is shown in Fig. 8 by using dataset

𝑓𝑜𝑜𝑑𝑚𝑎𝑟𝑡 under different threshold values. For the HMiner-

Closed algorithm, it has to consider many subsets to

determine the CHUI. Moreover, if the value of the 𝑀𝑖𝑛𝑈𝑇 is

small, then we will have large number of high utility itemsets.

Therefore, HMiner-Closed has to consider more number of

itemsets to find CHUIs. If the threshold is small, the pruning

strategy of HMiner-Closed can not stop the mining process.

Because the sum of the itemset utility and remaining utility

can be easily greater than the threshold. In Fig. 8, the runtime

gap between the HMiner-Closed algorithm and our algorithm

becomes dramatically large. This is due to the fact that our

algorithm first finds all closed itemsets. The amount of

candidate itemsets is fixed. The change of the 𝑀𝑖𝑛𝑈𝑇 has a

smaller effect on our algorithm than the effect on the HMiner-

Closed algorithm. Table VII shows the detailed result.

A comparison is shown in Fig. 9 by using dataset

𝑒𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑒 under different threshold values. For the

HMiner-Closed algorithm, it has to consider many subsets to

determine the CHUI. If the value of the 𝑀𝑖𝑛𝑈𝑇 is small, then

we will have large number of high utility itemsets. Therefore,

HMiner-Closed has to consider more number of itemsets to

find CHUIs. If the threshold is small, the pruning strategy of

HMiner-Closed can not stop the mining process. Because the

sum of the itemset utility and the remaining utility can be

easily greater than the threshold. In Fig. 9, the runtime gap

between the HMiner-Closed algorithm and our algorithm

becomes dramatically large. This is due to the fact that our

algorithm first finds all closed itemsets. The closed itemsets

in the 𝑒𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑒 datasets are mostly satisfied the threshold,

which is 1000. So if we set the threshold smaller than 1000,

the performance of two algorithms are remains flat. The

amount of candidate itemsets is fixed. The change of the

𝑀𝑖𝑛𝑈𝑇 has a smaller effect on our algorithm than the effect

on the HMiner-Closed algorithm. Table VIII shows the

detailed result.

TABLE VII: THE DETAILS FOR DATASET FOODMART

UNDER THE CHANGE OF MINUT

MinUT HMiner-Closed ClosedSetLattice MinUT

1000 2.8 2.3 1000

2000 4.9 2.1 2000

3000 8.7 2.7 3000

4000 13.4 2.5 4000

TABLE VIII: THE DETAILS FOR DATASET ECOMMERCE UNDER THE

CHANGE OF MINUT

MinUT HMiner-Closed ClosedSetLattice MinUT

20000 18.0 13.5 20000

30000 34.1 12.7 30000

40000 88.9 12.5 40000

50000 204.5 12.8 50000

Fig. 8. A comparison by using dataset foodmart

under the change of MinUT.

Fig. 9. A comparison by using dataset ecommerce

under the change of MinUT.

International Journal of Future Computer and Communication, Vol. 12, No. 4, December 2023

91

http://www.philippe-fournier-viger.com/spmf/datasets/foodmart.txt
http://www.philippe-fournier-viger.com/spmf/datasets/foodmart.txt
http://www.philippe-fournier-viger.com/spmf/datasets/ecommerce_utility_no_timestamps.txt
http://www.philippe-fournier-viger.com/spmf/datasets/ecommerce_utility_no_timestamps.txt
http://www.philippe-fournier-viger.com/spmf/datasets/ecommerce_utility_no_timestamps.txt

V. CONCLUSION

In this paper, we have proposed the closed-set lattice algo-

rithm, which can mine closed high utility itemsets efficiently.

The closed-set lattice algorithm first finds all of the closed

frequent itemsets and then finds closed high utility itemsets

from those closed frequent itemsets. Since the number of

closed frequent itemsets will not be affected by the threshold

value, our algorithm can mine closed high utility itemsets

more efficient than the traditional algorithms for mining

closed high utility patterns. We have also implemented the

TWU pruning strategy to decrease the search space, when

mining patterns in a static database. Moreover, We have

considered mining CHUIs in the incremental database. From

the performance result, we have shown that our proposed

algorithm has better performance than HMiner-Closed

algorithm in dense databases and sparse databases.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Ye-In Chang: Conceptualization and supervision; Po-Chun

Chuang: Writing the paper for submission; Chun-Yu Wang:

Proposing the idea and doing the performance study; Yu-Hao

Liao: Performing the paper revision for formant requirements;

all authors have approved the final version.

ACKNOWLEDGMENT

This research was supported in part by the National

Science and Technology Council of Taiwan under Grant No.

MOST 111-2221-E-110-054.

REFERENCES

[1] U. Yun, H. Nam, G. Lee, and E. Yoon, “Efficient approach for

incremental high utility pattern mining with indexed List structure,”

Future Generation Computer Systems, vol. 95, pp. 221−239, June 2019.

[2] M. Liu and J. Qu, “Mining high utility itemsets without candidate

generation,” in Proc. 21st ACM International Conference on

Information and Knowledge Management, 2012, pp. 55−64.

[3] Y. Liu, W.-k. Liao, and A. Choudhary, “A two-phase algorithm for Fast

discovery of high utility itemsets,” in Proc. Pacific-Asia Conference on

Knowledge Discovery and Data Mining, 2005, pp. 689−695.

[4] S. Zida, P. F. Viger, J. C. W. Lin, C.-W. Wu, and V. S. Tseng, “EFIM:

a fast and memory efficient algorithm for high-utility itemset mining,”

Knowledge and Information Systems, vol. 51, no. 2, pp. 595−625, Feb.

2017.

[5] J. Lee, U. Yun, G. Lee, and E. Yoon, “Efficient incremental high utility

pattern mining based on pre-large concept,” Engineering Applications

of Artificial Intelligence, vol. 72, pp. 111−123, June 2018.

[6] C. W. Lin, G.-C. Lan, and T. P. Hong, “An incremental mining

algorithm for high utility itemsets,” Expert Systems with Applications,

vol. 39, no. 8, pp. 7173−7180, June 2012.

[7] H. Nam, U. Yun, E. Yoon, and J. C.-W. Lin, “Efficient approach of

recent high utility stream pattern mining with indexed list struc-

ture and pruning strategy considering arrival times of transactions,”

Information Sciences, vol. 529, Aug. 2020.

[8] L. T. Nguyen, P. Nguyen, T. D. Nguyen, B. Vo, P. F. Viger, and V. S.

Tseng, “Mining high-utility itemsets in dynamic profit databases,”

Knowledge-Based Systems, vol. 175, pp. 130−144, July 2019.

[9] T. L. Dam, H. Ramampiaro, K. Nørvåg, and Q. H. Duong, “Towards

efficiently mining closed high utility itemsets from incremental

databases,” Knowledge-Based Systems, vol. 165, pp. 13−29, Nov. 2019.

[10] P. F. Viger, S. Zida, J. C.-W. Lin, C.-W. Wu, and V. S. Tseng, “EFIM-

closed: Fast and memory efficient discovery of closed high-utility

Itemsets,” in Proc. International Conference on Machine Learning and

Data Mining in Pattern Recognition, 2016, pp. 199−213.

[11] L. T. Nguyen, V. V. Vu, M. T. Lam, T. T. Duong, L. T. Manh, T. T.

Nguyen, B. Vo, and H. Fujita, “An efficient method for mining high

utility closed itemsets,” Information Sciences, vol. 495, pp. 78-99, Feb.

2019.

[12] B. Le, H. Nguyen, and B. Vo, “An efficient strategy for mining high

utility itemsets,” International Journal of Intelligent Information and

Database Systems, vol. 5, no. 2, pp. 164−176, March 2011.

[13] B. Goethals, Apriori Property and Breadth-First Search Algorithms,

2009, pp. 124−127.

[14] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate

generation,” ACM Sigmod Records, vol. 29, no. 2, pp. 1−12, Feb. 2000.

[15] V. S. Tseng, C. W. Wu, P. F. Viger, and S. Y. Philip, “Efficient

algorithms for mining the concise and lossless representation of high

utility itemsets,” IEEE Transactions on Knowledge and Data

Engineering, vol. 27, no. 3, pp. 726−739, Aug. 2014.

[16] R.-F. Chen, “A subset-lattice algorithm for mining high utility pat-

terns over the data stream sliding window,” Master’s thesis, National

Sun Yat-sen University, July 2017.

[17] W. H. Peng, “An efficient subset-lattice algorithm for mining closed

frequent itemsets in data streams,” Master’s thesis, National Sun Yat-

sen University, July 2009.

[18] P. F. Viger, J. C.-W. Lin, A. Gomariz, T. Gueniche, A. Soltani, Z. Deng,

and H. T. Lam, “The spmf open-source data mining library ver- sion

2,” Machine Learning and Knowledge Discovery in Databases, 2016,

pp. 36−40.

Copyright © 2023 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

International Journal of Future Computer and Communication, Vol. 12, No. 4, December 2023

92

https://creativecommons.org/licenses/by/4.0/

