
  

  

Abstract—The utility of an itemset is the product of the profit 

and the frequency of the itemset in the database. If it is larger 

than the given threshold, it is defined as the high utility pattern. 

If there is no superset which has the same frequency as the 

frequency of its subset, the itemset can be considered as the 

closed itemset. If the itemset satisfies both the high utility and 

the closed property, the itemset is defined as the closed high 

utility itemset/pattern (CHUI). Among those algorithms based 

on the utility-list structure, the HMiner- Closed algorithm is the 

most efficient algorithm. However, if the value of the threshold 

decreases, the number of candidate CHUIs increases and 

decreases the efficiency of the algorithm. Therefore, in this 

paper, we propose an efficient algorithm based on a closed-set 

lattice structure. Our algorithm first finds the closed itemsets 

and then finds CHUIs in those itemsets. By checking the set 

relationship between the transactions, we first insert 

transactions into the closed-set lattice structure. Our algorithm 

also considers data insertion/deletion in the incremental 

database. From our performance study, we show that our 

proposed approach is more efficient than the HMiner-Closed 

algorithm. 

 
Index Terms—Closed high utility patterns, closed-set lattice, 

data mining, incremental database, lattice 

 

I. INTRODUCTION 

Frequent Itemset mining (FIM) discovers frequent itemsets 

based on the frequency of the itemset in the database. The 

importance of each item in the database is equal in association 

rule mining. However, this approach may have problems, 

when mining in the market database or other databases which 

concern the profit and weight of each item. Because the 

profits of the items are different in the real world. Moreover, 

the quantity of an item must be considered. Therefore, High 

Utility Itemset Mining (HUIM) is proposed. HUIM is used in 

many areas nowadays, such as retail marketing organization, 

machine learning, stock market analysis [1], etc. The 

approaches in HUIM includes static high utility itemset 

mining [2], dynamic high utility itemset mining [5] and 

closed itemset mining [9]. 

If the utility value of an itemset is larger than the threshold, 

the itemset is determined as a high utility pattern. Table I 

shows an example database 𝐷1. The (𝑎, 1) in transaction 𝑇1 

means the quantity of the item 𝑎 is 1. HUIM is based on two 
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kinds of consideration, the quantities and the profits. The 

profits of items 𝑎, 𝑏, 𝑐, 𝑑  are 5, 1, 2, 3 , respectively. The 

itemset in the database must be considered again, when new 

transactions are stored. Therefore, the DHUIM approach [6] 

has been proposed to process new stored data without 

additional database scan and inserts the result into the 

previously processed result. 

The limitation of HUIM is that it often produces too many 

candidates. To decrease the number of candidates and keep 

the representation lossless, Closed High Utility Itemset 

Mining (CUIM) is proposed [15]. The CUIM extends the 

concept of HUIM, if an itemset 𝑋 does not have a superset, 

which has the same support count, the itemset 𝑋  is a closed 

itemset. If the itemset 𝑋 is a high utility itemset and a closed 

itemset. The itemset 𝑋 is defined as a Closed High Utility 

Itemset (CHUI). 

HUIM is used in many areas nowadays, such as retail mar- 

keting organization, machine learning, stock market analysis 

[1], etc. High Utility Itemset Mining (HUIM) is one of the 

approaches in association rule mining. For the concern of 

mining in the static database, Liu et al. propose the Two- 

Phased algorithm [3]. To improve the Two-Phased algorithm, 

Liu and Qu propose the HUI-Miner algorithm [2]. For those 

transactions which have similar items but different quantities, 

EFIM [4] is proposed. The local utility is a tighter upper- 

bound than Transaction Weight Utility (TWU) [3]. For the 

concern of the dynamic database in high utility itemset 

mining, there are two types of ways to mine the candidates in 

the dynamic database. The first type is the incremental 

database. The whole database is considered, when new 

transactions are stored. MEFIM and iMEFIM algorithm [8] 

have been proposed to achieve this goal. iMEFIM is an 

improved version of MEFIM. Lee et al. propose PIHUP (Pre-

large Incremental High Utility pattern) algorithm [5]. Yun et 

al. propose IIHUM (List based Incremental High Utility 

pattern Mining) to deal with incremental mining [1]. The 

second type of dynamic database is under the assumption of 

the window model. The algorithm considers the arrival time 

of the data. ILDHUP algorithm [7] has been proposed to 

handle this problem. 

The closed high utility mining combines the requirements 

of closed itemset in FIM and the traditional HUIM. The 

EFIM-Closed algorithm [10] has been proposed for mining 

CHUIs. As a modified version of the EFIM algorithm, the 

EFIM-Closed algorithm has several improvements. The 

HMiner-Closed algorithm [11] aims for dealing with both 

sparse and dense datasets. The HMiner-Closed algorithm 

uses Backward checking and Forward checking to reduce the 

search space and runtime. The IncCHUI [9] algorithm is 
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proposed to not only CHUI mining, but also the incremental 

database. The main problem in incremental closed high utility 

mining is the reconstruction process. Since the TWU order 

might be changed, when a new transaction is stored. 

Therefore, the mining order must be sorted again to maintain 

the downward closure property. However, the remaining 

utility (rutil) has to be recalculated every time, when a new 

transaction is stored. The cost of the reconstruction can be 

improved. 

The main purpose of mining High Utility Patterns (HUP) 

is to consider both the frequency and the profit. However, the 

number of high utility patterns might be large, if the threshold 

is set too low. Closed high utility mining can decrease the 

number of resulting itemsets without information loss. If 

pattern 𝑋  satisfies both closed property and high utility 

property, the pattern 𝑋 is considered as a closed high utility 

pattern. 

Among those algorithms based on the utility-list structure 

for mining closed high utility patterns [11], which needs only 

one scan of the database, the HMiner-Closed algorithm, is the 

most efficient algorithm. However, the CHUI mining 

algorithm first focuses on mining HUIs and then determines 

the closed property among the itemsets. The number of high 

utility itemsets is affected by the minimum threshold. If the 

threshold is set too low, there are lots of utility lists which 

have to be constructed. The efficiency of the algorithm is 

affected by the number of high utility patterns. Because the 

utility lists have to be reconstructed again, when new 

transactions are inserted. 

Therefore, to reduce the cost for evaluating a large number 

of high utility patterns, in this paper, we propose a new 

algorithm to efficiently discover CHUIs with a closed-set 

lattice structure. Instead of finding HUI first then finding the 

closed frequent itemsets, we first find all closed frequent 

itemsets and then find CHUI among the closed frequent 

itemsets. By mining closed frequent itemsets first, we can 

prune candidate high utility itemsets, which do not satisfy the 

closed property. In the algorithm, we use a closed-set lattice 

to store transactions from the dataset. Our algorithm first 

finds all closed frequent itemsets and then find CHUI among 

the closed frequent itemsets. By mining closed frequent 

itemsets first, our algorithm can prune candidate high utility 

itemsets, which do not satisfy the closed property. In the 

algorithm, we use a closed-set lattice to store transactions 

from the dataset. Our algorithm first checks the relationship 

between sets between the incoming transaction and the old 

transactions.  

The key to find closed patterns is by comparing support 

counts between patterns. The relationship between sets can 

help to calculate the support counts of patterns. There are 

several advantages to consider in the relationship between 

itemsets. First, every node in the closed-set lattice is certainly 

a closed itemset. Those high utility itemsets, which our 

algorithm has discovered in the lattice structure are CHUIs. 

Different from traditional CHUI mining algorithms, our 

algorithm first finds all closed itemsets then finds high utility 

itemsets among those closed frequent itemsets. The number 

of candidate itemsets is fixed and do not affect by the 

transaction value. Second, the lattice structure is the only 

structure, which we need to find CHUIs. Therefore, no extra 

space is needed. Third, when new transactions are stored, our 

algorithm does not need to rescan the old transactions. Our 

algorithm can mine CHUIs by updating the closed-set lattice. 

Our algorithm uses a binary list called bit-represent to speed 

up the comparing process between itemsets. Fourth, no CHUI 

is lost in the algorithm. From the performance result, we show 

that our proposed algorithm has better performance than 

HMiner-Closed algorithm in dense databases and sparse 

databases. 

 

II. A SURVEY OF THE HMINER-CLOSED ALGORITHM 

Nguyen et al. have introduced the HMiner-Closed 

algorithm [11] in 2019. They have proposed a modified 

version of Compact Utility List (CUL) called Modified 

Compact Utility List (MCUL) as shown in Fig. 1. The 

information inside each node can help the extended process 

of HMiner-Closed algorithm constructs utility lists without 

rescanning the database. A MCUL of an itemset with more 

than one item is called a k-MCUL, and it is built from (k-1)-

MCULs without rescanning the database. The mining process 

of HMiner-Closed algorithm is as follows. First, the 

algorithm scans the database once and constructs 1-MCULs. 

Items with TWU values smaller than the threshold are pruned, 

since the extension of those items can not be closed high 

utility itemsets. The algorithm then sorts the 1-MCULs by the 

accending TWU order. Next, the algorithm constructs k-

MCUL and finds closed high utility itemsets. If 𝑈(𝑋)  of 

itemsets 𝑋 is greater than the threshold, the itemset will be 

added into CHUI-list. When the algorithm completes, the 

itemsets remaining in the CHUI-list are the CHUIs. There are 

some downsides in the HMiner-Closed algorithm. If the 

threshold value is small, there are many itemsets will be con- 

sidered as high utility itemset. The HMiner-Closed algorithm 

has to construct many utility lists and consider many itemsets 

to find closed high utility itemsets. Also, the algorithm does 

not consider mining in dynamic databases. If there are new 

transactions inserted into the database, the TWU order of 

items may be changed. Because TWU values of items are 

changed. Therefore, the whole database needs to be 

rescanned, the TWU order of itemset needs to be sorted again, 

and the MCULs needs to be reconstructed. 

 

 
Fig. 1. The data structure MCUL applied in the HMiner-closed algorithm 

[11]. 

 

 
Fig. 2. The example node. 

TABLE  I: AN EXAMPLE DATABASE D3 

Tid Items 

𝑇1 (𝑎, 1), (𝑏, 4)  

𝑇2 (𝑐, 1), (𝑑, 5)  

𝑇3 (𝑎, 2), (𝑏, 3)  

𝑇4 (𝑐, 3)  

𝑇5 (𝑎, 1), (𝑏, 2), (𝑐, 6), (𝑑, 1)  

𝑇6 (𝑏, 2), (𝑐, 1)  
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III. THE CLOSED-SET LATTICE APPROACH 

In this section, we present a closed-set lattice algorithm to 

identify the closed high utility patterns efficiently by using 

the modified subset-lattice [16] as the foundation of our data 

structure. 

The subset-lattice proposed by Chen [16] only stores the 

frequency of each item in the database. Each node of the 

subset lattice can store at most 3 batches and a batch 

represents two transactions. The utility of an itemset is 

calculated by multiplying the frequency and the profit of the 

itemset. The subset-lattice structure is proposed by Peng [17] 

for mining frequent itemsets. Each node records the itemsets 

by a bit-represent list, and the node also records the 

transactions which contain the itemsets. 

The difference between our closed-set lattice and their 

subset-lattices [16], [17] is that each node in our structure 

records the utility value, bit-represent list of itemset, the 

frequency of every item of the itemset, and the list of 

transactions. Our algorithm does not separate transactions 

into batches. On the contrary, the information in each node is 

calculated from all transactions in the dataset. The example 

node is shown in Fig. 2. 

A. Database 

In this subsection, we use an example database 𝐷3 shown 

in Table I to illustrate our algorithm. In the process of mining 

CHUIs in the static and dynamic database, our algorithm 

assigns the profit and the quantity to each item. Our algorithm 

uses a modified subset-lattice structure, which is called 

closed-set lattice, to record the information of each 

transaction in the database. Note that our algorithm only 

scans the original database once, as compared to two times in 

Apriori-based algorithms, such as Two-Phase algorithm [3]. 

The non-binary database with 𝑛 transactions is represented 

as 𝐷 = {𝑇1, 𝑇2, 𝑇3, ⋯ , 𝑇𝑘}, which includes a set of m distinct 

items, 𝐼 = {𝑖1, 𝑖2, 𝑖3, ⋯ , 𝑖𝑚}  . Each transaction 𝑇𝑘(1 ≤ 𝑘 ≤
𝑛) has a unique identifier, Tid, and contains multiple items 

belonging to set 𝐼(𝑇𝑘 ⊆ 𝐼). 

In real-world applications, different products have their 

own characteristics, such as the profit and the quantity. The 

closed high utility itemset mining allows users to give each 

item an independent value to satisfy the needs. For example, 

the profits of items 𝑎, 𝑏, 𝑐, 𝑑 and e are assigned with 5, 1, 2, 3 

and 7, respectively. We define the profit of an item as 𝑃(𝑋). 

Take item {𝑐}  as example, and we have 𝑃(𝑐) = 2 . The 

quantities of itemset 𝑋  in transaction 𝑇𝑖  is represented as 

𝑄(𝑋, 𝑇𝑖). 

The utility of itemset 𝑋  in transaction 𝑇𝑖  is denoted as 

𝑢(𝑋, 𝑇𝑖). For example, for itemset {𝑑} in transaction 𝑇2, its 

utility is calculated as 𝑢(𝑑, 𝑇2) = 𝑄(𝑑, 𝑇2) × 𝑃(𝑑) = 5 ×
3 = 15 . Similarly, for itemset {𝑐𝑑}  in transaction 𝑇5 , the 

𝑢(𝑐𝑑, 𝑇5)  is calculated as 𝑢(𝑐𝑑, 𝑇5) = 𝑄(𝑐, 𝑇5) × 𝑃(𝑐) +
𝑄(𝑑, 𝑇5) × 𝑃(𝑑) = 2 × 6 + 3 × 1 = 15. 

The Transaction Utility (TU) is the summation of utilities 

in a transaction. Take transaction 𝑇1 as an example, we have 

𝑇𝑈(𝑇1) = 𝑢(𝑎, 𝑇1) + 𝑢(𝑏, 𝑇1) = 5 × 1 + 1 × 4 = 9 . The 

𝑇𝑊𝑈(𝑋) means the amount of the total utility related to the 

transactions which contain pattern 𝑋 . The 𝑇𝑊𝑈  value is 

calculated by summarizing all of the 𝑇𝑈(𝑇𝑖), which contains 

pattern 𝑋. For example, the 𝑇𝑊𝑈 of the itemset 𝑑 in database 

𝐷3  is computed as follows. Since itemset 𝑑  exists in 

transactions  𝑇2, 𝑇5 ,  we  have 𝑇𝑊𝑈(𝑑) = 𝑇𝑈(𝑇2) +
𝑇𝑈(𝑇5) = 38. The 𝑇𝑊𝑈 values of items 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 are 

44, 48, 49, 39 and 0, respectively. 

B. The Observations of the Relationships between 

Itemsets 

In this subsection, we present an observation of the set- 

relationships between itemsets. The set-relationships between 

itemsets can be utilized to identify closed itemsets. Our 

algorithm first finds all closed itemsets and we then find high 

utility itemsets between them. The reason for such an 

approach is that the number of the closed itemsets in the 

dataset is fixed. The number of closed itemsets is not affected 

by the threshold value. For the traditional CHUI mining 

algorithm, the number of high utility itemsets is affected by 

the threshold value. It might generate lots of high utility 

itemsets which do not satisfy the closure property. By finding 

all closed itemsets, our algorithm sets an upper bound for the 

number of CHUIs. The number of the CHUIs generated by 

our algorithm is at most equal to the number of closed 

itemsets. If our algorithm can not find any superset 𝑌 which 

satisfies the condition 𝑠𝑢𝑝(𝑌) = 𝑠𝑢𝑝(𝑋) , the itemset 𝑋  is 

considered as a closed high utility itemset. Let’s consider a 

dataset with only one transaction [𝑎, 𝑏, 𝑐, 𝑑]  with utility 

[1, 2, 3, 4]. The minimum threshold is set as 5. The utility of 

the itemset {𝑎𝑏𝑐} is 6, which is greater than the threshold. 

However, itemset  {𝑎𝑏𝑐} has a superset {𝑎𝑏𝑐𝑑} , which has 

the same support 1  as the itemset  {𝑎𝑏𝑐} . Thus, itemset  

{𝑎𝑏𝑐}  is not a CHUI. Our algorithm classifies the set-

relationships into five properties, which contains (a) 

equivalent, (b) disjoin, (c) belong, (d) contain, and (e) partial 

overlap. 

C. The Closed-Set Lattice 

The lattice structure is a data structure, which records the 

relationships between the sets. However, the traditional 

lattice lists all possible relationships between supersets and 

subsets. The edge between two itemsets represents that there 

is an intersection between two itemsets. But, first, the closed-

set lattice structure does not contain all possible combinations 

of itemsets. Because the itemsets which our algorithm stores 

in the closed-set lattice are all closed itemset. Itemsets {𝑎𝑏𝑐}, 

{𝑎𝑐𝑑} are the subsets of itemset {𝑎𝑏𝑐𝑑}, which is in transac- 

tion 𝑇5. They are not stored in the closed-set lattice because 

they are not closed itemsets. Because itemset {𝑎𝑏𝑐𝑑} has the 

same frequency as two itemsets, {𝑎𝑏𝑐}  and {𝑎𝑐𝑑} , and 

itemset {𝑎𝑏𝑐𝑑} is their superset. The second difference is that 

the level between superset and subset in the closed-set lattice 

can be more than one. In the traditional lattice, the itemset 

with size k has the relationship with supersets which have size 

(𝑘 + 1)  and subsets which have size (𝑘 − 1) . The level 

between two itemsets can be more than 1 in the closed-set 

lattice structure.  

The closed-set lattice structure is consisted of many lattice 

nodes and edges between the nodes. An edge represents the 

relationships between the superset and the subset. A lattice 

node records the related data about the itemset and its 𝑇𝑖𝑑. 

Each node in the closed-set lattice contains five variables, 

which are itemset, QuantitySeq, bit-present, utility, and the 

TransactionId list. The itemset represents the set of items. 
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The QuantitySeq is a list which records the quantity of each 

item in each transaction. The bit-present is a bit-vector, which 

stores the information of each transaction. The size of the bit-

present and QuantitySeq is equal to the number of the items 

in the database. Our algorithm can easily find relationships 

between two transactions with bit-present. When our 

algorithm has the information of the quantity of each item, 

our algorithm can calculate the real contribution value to 

determine whether it is a closed high utility pattern. For 

example, transaction 𝑇5 = {(𝑎, 1), (𝑏, 2), (𝑐, 6), (𝑑, 1)}  is 

denoted as 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑆𝑒𝑞[1, 2, 6, 1, 0]. Because there are five 

distinct items {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} in the example database and item 

𝑒 does not appear in the transaction 𝑇5, the Quantity of item 

𝑒 in the transaction 𝑇5  is recorded as 0. The Utility of the 

itemset is also recorded in the node. Our algorithm records 

the transaction id of an itemset in the TransactionId list. If the 

TransactionId list of an itemset is empty, it means that the 

itemset does not appear in any transaction in the database. 

The situation may happen when the old transaction is deleted 

from the database. Therefore, the itemset has to be removed 

from the lattice structure. 

 

 
Fig. 3. The closed-set lattice structure. 

D. The Pruning Strategy 

Here, we introduce a pruning strategy [3]. The first 

property is called “overestimation”. The key point is that for 

any patten 𝑋, the value of 𝑇𝑊𝑈(𝑋) is greater than the value 

of 𝑡𝑜𝑡𝑎𝑙𝑈(𝑋) . The second property is called 

“antomototonicity”. Given two itemsets 𝑋 and 𝑌 , and 𝑋 is 

the subset of 𝑌 , the value of 𝑇𝑊𝑈(𝑋)  is greater than or 

equal to the value of 𝑇𝑊𝑈(𝑌). The third property is called 

“pruning”. Given an itemset 𝑋, if the value of 𝑇𝑊𝑈(𝑋) is 

smaller than the given threshold 𝑚𝑖𝑛𝑢𝑡𝑖𝑙 , then all of its 

superstars and itemset 𝑋 itself are low utility itemsets. If an 

itemset 𝑋 has 𝑇𝑊𝑈 (𝑋)  <  𝑚𝑖𝑛𝑢𝑡𝑖𝑙, then itemset 𝑋  and its 

supersets are low-utility itemsets. The 𝑇𝑊𝑈 pruning strategy 

can prune items, which has smaller 𝑇𝑊𝑈  value than the 

threshold in the database scanning stage. The strategy can 

decrease the search space of our algorithm. 

E. The Mining Process 

Here, we describe the mining process. There are two parts 

in the mining process, data insertion and data deletion. The 

first part is the data insertion. When a new transaction is 

inserted, the process considers its relationship to the nodes in 

the closed-set lattice. After the transactions are inserted, the 

process traverses the structure to find high utility patterns. 

Since the itemsets in the closed-set lattice structure are closed 

itemsets, the high utility patterns which we have found in the 

structure are closed high utility patterns. The second part of 

the process is data deletion. Our algorithm provides the 

flexibility to remove some transactions without rescanning 

the database. Our algorithm updates the nodes in the closed-

set lattice, which are affected by the removal of the 

transactions. After the transactions have been removed, we 

update the CHUI list and output the updated result. 

1) Data insertion 

In the process of data insertion, we introduce the steps to 

insert transactions into closed set lattice structure. The 

Closed-Set lattice algorithm is described as follows. First, our 

algorithm has to decide whether the TWU pruning technique 

is used or not. If the database is static, no transaction will be 

inserted or removed after this mining process. TWU pruning 

technique can be used to decrease the search space. If the 

database is dynamic, a new transaction will be inserted or 

removed after this mining process. The TWU pruning 

technique can not be used in this situation. Because when new 

transactions are inserted, the itemsets which have low TWU 

value may become larger than the threshold. Also, when 

transactions are removed, the itemsets which have high TWU 

value may become smaller than the threshold. When the 

above situation occurs, the closed-set lattice has to consider 

new items or ignore existing items. The database has to be 

rescanned to reconstruct the closed-set lattice. The 

reconstruction process is time-consuming. Therefore, our 

algorithm does not apply the TWU pruning technique, when 

mining in the dynamic database. 

Next, our algorithm inserts each transaction into the 

closed-set lattice structure one by one. When a new 

transaction is inserted into the lattice structure, the algorithm 

starts finding set-relationships between transactions. In the 

checking step, our algorithm uses logical operators, AND, to 

make the subsumption checking more efficient. There are 5 

different cases. Case 1 is the equivalent relationship. The 

itemset NewT has the same itemset with itemset OldT. Case 

2 is the disjoin relationship. There are no identical items 

between itemset NewT and itemset OldT. Case 3 is the belong 

relationship. The itemset NewT belongs to itemset OldT. Case 

4 is the contain relationship. The itemset NewT contains the 

itemset OldT. Case 5 is the partial overlap relationship. Two 

itemsets have some items in common. 

The insertion process is performed as follows. First, the 

process checks whether the transaction is the first transaction 

or not. If it is the first transaction. The process inserts the 

itemset as the new transaction, which is defined as itemset 

NewT into the closed-set lattice structure. If the transaction is 

not the first transaction, the process will judge the 

relationship between the itemset NewT with the already 

existing itemsets, which is defined as itemset OldT. The 

relationship between itemset NewT and itemset OldT can be 

classified into 5 cases. The first case is the equivalent 

relationship. The process does not generate the new node. The 

process updates the information of the OldT and its 

descendants. Since the itemset NewT is the same as itemset 

OldT, the itemset NewT does not be inserted into the closed-

set lattice. The second case is the disjoin relationship. The 

itemset NewT is inserted into the closed-set lattice structure 

as a new node. The third case is the belong relationship. The 

itemset NewT is the subset of the itemset OldT. Therefore, the 

itemset NewT is inserted into the closed-set lattice structure 

and becomes OldT′s subset. The fourth case is the contain 

relationship. The itemset NewT is the superset of the itemset 

OldT. Therefore, the itemset NewT is inserted into the closed-
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set lattice structure and becomes OldT′s superset. The last 

case is the partial overlap relationship. The itemset NewT and 

itemset OldT have some items in common. That is, they have 

an intersection itemset. The overlapping itemset becomes a 

new node, childT. If the new node childT has already existed 

in the structure, we update the itemset and link it to itemset 

NewT. Itemset NewT is then inserted into the structure. On the 

contrary, if the new node childT does not exist in the data 

structure, itemset childT will be inserted into the closed-set 

lattice structure. After checking all paths in the closed-set 

lattice and considered all relationships with the itemsets, the 

insertion process will terminate. 

An example of data insertion is given as follows. Table II 

shows the example dataset based on Database 𝐷3 in Table I. 

The itemset NewT represents the itemset in the new 

transaction. The itemset OldT represents the set of old itemset 

in the closed-set lattice structure. Every relationship between 

two itemsets can be found in the example dataset. For itemset 

{𝑎𝑏}  in Transaction 𝑇1 , it is the first transaction in the 

database. The itemset {𝑎𝑏} is inserted into closed-set lattice 

as itemset NewT. The closed-set lattice is shown in Fig. 4-(a). 

When the Transaction 𝑇2  is inserted into the lattice, our 

algorithm will check the relationship between the previous 

transactions and the transaction 𝑇2. The bit-present of 𝑇1 is 

[11000] and the bit-present of 𝑇2 is [00110]. Our algorithm 

can easily find the relationship between 𝑇1 and 𝑇2 is disjoint 

by having a AND operation between [11000] and [00110]. 

Because 𝑇1 ∩ 𝑇2 = ∅, transaction 𝑇2 will process Case 2, i.e., 

disjoint. There is no additional node which is generated. Since 

all paths are considered, the itemset {𝑐𝑑}  is inserted into 

closed-set lattice as itemset NewT and the next transaction is 

inserted. The closed-set lattice after inserting transaction 𝑇2 

is shown in Fig. 4-(b). Transaction 𝑇3 has the same itemset as 

one of the itemset OldT, which is {𝑎𝑏}. The relationship is 

found by having a AND operation between [11000] and 

[11000]. The algorithm will process Case 1, i.e., equivalent. 

No new node is generated and the information of itemset {𝑎𝑏} 

and its subsets are updated. The QuantitySeq of the itemset 

{𝑎𝑏} is changed from [1, 4, 0, 0, 0] to [3, 7, 0, 0, 0]. The total 

utility of itemset {𝑎𝑏} is also changed from 9 to 22. Since not 

all paths are considered, the algorithm then checks the 

relationship between transaction 𝑇3 and the other itemset in 

itemset OldT, which is itemset {𝑐𝑑} . The relationship 

between two itemsets is Case 2, i.e., disjoint. Since the 

itemset {𝑎𝑏} has been inserted before, the algorithm does not 

insert the new node. Since all paths are considered, the 

algorithm waits for new transactions. The closed-set lattice 

after inserting transaction 𝑇3 is shown in Fig. 4(c). 

 
TABLE II: THE EXAMPLE DATA BASED ON DATABASE D3 

Tid Itemset Bit-presentation QuantitySeq Case Relationship 

𝑇1 𝑎𝑏 [11000] [1,4,0,0,0]   

𝑇2 𝑐𝑑 [00110] [0,0,1,5,0] 2 disjoint 

𝑇3 𝑎𝑏 [11000] [1,3,0,0,0] 1 equivalent 

𝑇4 𝑐 [00100] [0,0,3,0,0] 3 belong 

𝑇5 𝑎𝑏𝑐𝑑 [11110] [1,2,6,1,0] 4 contain 

𝑇6 𝑏𝑐 [01100] [0,2,1,0,0] 5 Partial overlap 

 

Transaction 𝑇4 has itemset {𝑐}. Itemset {𝑐} is the subset of 

itemset {𝑐𝑑} in the lattice. The relationship can be found by 

having an AND operation between [00100]  and [00110] . 

The algorithm will process Case 3, i.e., belong. The process 

first makes itemset {𝑐} becomes the child of itemset {𝑐𝑑}. 

Then the process updates information of itemset {𝑐𝑑} and its 

subsets. Itemset {𝑐}  is inserted in to the closed-set lattice 

structure. Transaction 𝑇5  has itemset {𝑎𝑏𝑐𝑑} . It is the 

superset of itemsets {𝑐𝑑}  and {𝑎𝑏} . The algorithm will 

process Case 4, i.e., contain. The itemset OldT will become 

the child of itemset NewT. Transaction 𝑇6 has itemset {𝑏𝑐}. 

The itemset {𝑏𝑐} has partially intersected with itemsets {𝑐𝑑} 

and {𝑎𝑏}. The relationship can be found by having an AND 

operation to each of [01100] , [11000]  and [00110] . The 

algorithm will process Case 5, partial overlap. Itemset 𝑋 =
𝑁𝑒𝑤𝑇 ∪ 𝑂𝑙𝑑𝑇 . There are two itemsets, which are itemset 

{𝑐}[00100]  and {𝑏}[01000]. Since itemset {𝑐} has already 

existed, the algorithm link NewT to it. Since itemset {𝑏} is not 

in the descendants of Itemset {𝑎𝑏}, the algorithm creates a 

new node {𝑏} and links it to the itemset NewT and itemset 

OldT. After all of the nodes are updated and all paths are 

considered, the intersection process terminates. The result of 

the data insertion is shown in Fig. 5. 

★: new node 

 

 (a)                                         (b) 

 

(c)                                          (d) 

 

(e) 
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(f) 

Fig. 4. The closed-set lattice structure after inserting  

transactions T1, T2, T3, T4, T5 and T6: (a) insertion of transaction T1 [a, b];  

(b) insertion of transaction T2 [c, d]; (c) insertion of transaction T3 [a, b];  

(d) insertion of transaction T4 [c]; (e) insertion of transaction T5 [a, b, c, d];  

(f) insertion of transaction T6 [b, c]. 

 

 
Fig. 5. The result of insertion. 

 

2) Mining chuis 

After all transactions are inserted into the lattice structure, 

our algorithm can assure that all lattice nodes are “closed” 

itemset [17]. Next, our algorithm executes a lattice structure 

traversal to determine whether each lattice node is a high 

utility item or not. Note that the utility of a pattern has already 

been recorded in the node of the closed-set lattice structure. 

Therefore, to decide whether a pattern is a closed high utility 

is a simple checking task. However, the pay is to traversal all 

of the nodes in the closed-set hierarchy. But such a pay is little 

as compared to computing the utility for each candidate 

pattern before considering the closed-set property as used in 

all other algorithms based on the utility list structure. If the 

utility of the itemset is larger than or equal to the threshold, 

which is given by user, the itemset is considered as a CHUI 

and be recorded into a list, ClosedItemset Table. Every node 

in the closed-set lattice is compared to the threshold once. 

After all itemsets are considered, the process terminates and 

outputs the result. 

3) Data deletion 

In the deletion step, we show the procedure to delete the 

transactions in any order from the lattice structure. When a 

transaction is deleted from the dataset, the closed-set lattice 

structure will be updated. There are two situations, which will 

cause an itemset needs to be removed from the lattice 

structure. The first situation is that the itemset has an empty 

TransactionId list and the second situation is that the itemset 

has the same support count as that of its supersets. If the 

TransactionId list of itemset 𝑋 is empty, it means that the 

itemset 𝑋 does not appear in any transaction in the database. 

Therefore, itemset 𝑋  does not be considered as a closed 

itemset and needs to be removed from the lattice. 

Our algorithm traverses the lattice structure, which is 

corresponding to the deleted transaction, and updates the 

nodes. If a node is updated, the subset of the updated node 

will be affected, too. The node could be created by more than 

two itemsets. For instance, itemset {𝑏}  is created by the 

intersection itemsets {𝑎𝑏} and {𝑏𝑐𝑑}. Therefore, the support 

count of {𝑏} contains that of itemsets {𝑎𝑏} and that of {𝑏𝑐𝑑}. 

If we delete a transaction 𝑇𝑖 , which contains itemset {𝑎𝑏}. 

The itemset {𝑏} also has to deleted 𝑇𝑖 from its TransactionId 

list. After the deletion, if the itemset {𝑏} has the same 

support count to that of itemset {𝑏𝑐𝑑}, itemset {𝑏} does not 

be considered as a closed itemset anymore and needs to be 

removed from the lattice structure. 

Here we have an example to illustrate the insertion and 

deletion process. Our algorithm first inserts a new transaction 

𝑇7 (which contains (𝑏, 2), (𝑐, 4), (𝑒, 1) as shown in TABLE 

III) into the closed-set lattice and then remove the oldest 

transaction 𝑇1 . After the insertion of transaction 𝑇7 , our 

algorithm removes the oldest transaction 𝑇1 . Since we 

remove transaction 𝑇1 , the QuantitySeq and the totalU of 

itemset {𝑎𝑏}, {𝑏}  need to be updated. The QuantitySeq of 

itemset {𝑎𝑏} becomes [3, 5, 0, 0, 0]  and its totalU becomes 

29 − 9 = 20 . The QuantitySeq of itemset {𝑏}  becomes 

[0, 9, 0, 0, 0] and its totalU becomes 13 − 4 = 9. The totalU 

of itemset  {𝑎𝑏} is no longer a CHUI, so it is removed from 

the ClosedItemset Table. After the Insertion process and the 

deletion process, the closed high utility itemsets in the 

ClosedItemset Table are output as result. The result after 

insertion is shown in Fig. 6. The CHUIs after Insertion of 

transaction 𝑇7 and deletion of transaction 𝑇1 are itemset {𝑏𝑐} 

and {𝑐}. Note that those two itemset are not CHUI in the 

previous mining result. 

 
TABLE III: THE EXAMPLE DATA BASED ON DATABASE D4 

Tid Itemset Bit-Present QuantitySeq 

𝑇7  bce [01101] [0, 2, 4, 0, 7] 

 

 
Fig. 6. The result after inserting transaction 𝑇7 and  

removing transaction 𝑇1. 
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IV. PERFORMANCE 

In this section, we present the performance study of our 

algorithm and the HMiner-Closed algorithm [11] for mining 

closed high utility patterns. Both algorithms were executed in 

Java Virtual Machine. In this study, we use synthetic 

databases to simulate various conditions. We also use the real 

transaction datasets used in the previous studies of HUIM, 

including dataset 𝑓𝑜𝑜𝑑𝑚𝑎𝑟𝑡  and dataset 𝑒𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑒, 
which were downloaded from the SPMF library [18]. 

A. The Performance Model 

We compare the processing time of the synthetic database 

and the real database. The external utilities (profit) of the 

items are generated by the Gaussian distribution function, and 

the internal utilities (count) are generated randomly between 

1 and 10. 

For the preparing step, at first, all of the transactions are 

scanned to get the TWU value of each item. Only the HMiner-

Closed algorithm needs to sort transactions according to 

TWU-ascending order. The HMiner-Closed algorithm inserts 

the sorted transactions to generate a single item utility list and 

our algorithm generates the lattice structure. The HMiner-

Closed algorithm then generates many utility lists to discover 

CHUIs. Conversely, our algorithm does not need to generate 

other data structures. After the above processes are finished, 

we will compare the processing time with each other. 

The parameters, which are shown in Table IV, are the 

variables of our simulation. The MinUT represents the 

threshold values given by us. We give different threshold 

ranges for different databases. The NDI represents the 

number of distinct items in a database. The MaxNDI 

represents the max number of distinct items in a single 

transaction. The synthetic database for simulation is showed 

in Table V, where dataset 10000_15000_10 means the value 

of 𝑇𝑁𝑢𝑚 = 10000 , 𝑁𝐷𝐼 = 15000  and 𝑀𝑎𝑥𝑁𝐷𝐼 = 10 , 

respectively. Take dataset 10000_15000_10 for example. The 

dataset has 10000 transactions, 15000 distinct Items and the 

max number of distinct items in the single transaction is 10. 

For dataset (a), it is a sparse dataset. Moreover, for datasets 

(a), (b), (c) and (d), they are only different in the value of NDI, 

i.e., the number of distinct items in a database. 

 
TABLE IV: THE PARAMETERS USED IN THE EXPERIMENTS 

Parameters Meaning 

MaxNDI The Max Number of Distinct Items in a single transaction 

NDI The Number of Distinct Items in a Database 

MinUT The Minimum Utility Threshold 

TNum The Total Number of transactions 

AvgLength The Average Length of transactions 

 
TABLE V: DATASET CHARACTERISTICS  

 Dataset TNum NDI MaxNDI 

(a) 10000_15000_10 10000 15000 10 

(b) 10000_12000_10 10000 12000 10 

(c) 10000_10000_10 10000 10000 10 

(d) 10000_6000_10 10000 6000 10 

 

B. Experiments Results 

In this section, we compare the performance of the 

HMiner- Closed algorithm [11] and our closed set lattice 

algorithm with synthetic and real databases. The transactions 

of each synthetic itemsets are set as 10000. For itemset (a) 

10000_15000_10, the range of the MinUT is set from 60 to 

10. Since both HMiner-Closed and our algorithm have the 

same result of closed high utility itemsets, the number of 

CHUIs can judge the correctness of the algorithms. 

 
TABLE VI: REAL TRANSACTION DATASET CHARACTERISTICS  

Dataset TNum NDI AvgLength 

foodmart 4141 1559 4.42 

 

1) Synthetic dataset 

A comparison is shown in Fig. 7(a) by using dataset (a) 

10000_15000_10, i.e., the sparse dataset, under different 

threshold values. Since the number of items is relatively large, 

the dataset is determined as a sparse dataset. For the HMiner-

Closed algorithm, it has to consider many subsets to 

determine the CHUI. In the sparse datasets, itemsets have few 

partial overlap relationships with other itemsets, which 

causes the algorithm to construct more utility lists to consider 

all of them. Moreover, if the value of the MinUT is small, then 

we will have large number of high utility itemsets. Therefore, 

HMiner-Closed has to consider more number of itemsets to 

find CHUIs. If the threshold is small, the pruning strategy of 

HMiner-Closed can not stop the mining process. Because the 

sum of the itemset utility and remaining utility can be easily 

greater than the threshold. In Fig. 7(a), the runtime gap 

between the HMiner-Closed algorithm and our algorithm 

becomes dramatically large. This is due to the fact that our 

algorithm first finds all closed itemsets. The amount of 

candidate itemsets is fixed. The change of the MinUT has a 

smaller effect on our algorithm than the effect on the HMiner-

Closed algorithm. 

 

 

(a) 

 

(b) 
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(c) 

 
(d) 

Fig. 7. A comparison by using four datasets under the change of MinUT:  

(a) 10000_15000_10; (b) 10000_12000_10; (c) 10000_10000_10; (d) 

10000_6000_10. 

 

A comparison is shown in Fig. 7(b) by using dataset (b) 

10000_12000_10 under different threshold values. This 

figure shows the similar result as Fig. 7(a). A comparison is 

shown Fig. 7(c) by using dataset (c) 10000_10000_10 under 

different threshold values. This figure shows the similar result 

as Fig. 7(a). A comparison is shown in Fig. 7 by using dataset 

(d) 10000_6000_10 under different threshold values. This 

figure shows the similar result as Fig. 7(a). 

2) Real transaction dataset 

For real transaction datasets, we experiments two datasets, 

𝑓𝑜𝑜𝑑𝑚𝑎𝑟𝑡  (http://www.philippe-fournier-

viger.com/spmf/datasets/foodmart.txt) and 𝑒𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑒 

(http://www.philippe-fournier-

viger.com/spmf/datasets/ecommerce_utility_no_timestamps.

txt). The details of two datasets are shown in Table VI. Both 

datasets represent the real-life needs. Retailers want to find 

useful information from the datasets using CHUI mining. 

A comparison is shown in Fig. 8 by using dataset 

𝑓𝑜𝑜𝑑𝑚𝑎𝑟𝑡 under different threshold values. For the HMiner-

Closed algorithm, it has to consider many subsets to 

determine the CHUI. Moreover, if the value of the 𝑀𝑖𝑛𝑈𝑇 is 

small, then we will have large number of high utility itemsets. 

Therefore, HMiner-Closed has to consider more number of 

itemsets to find CHUIs. If the threshold is small, the pruning 

strategy of HMiner-Closed can not stop the mining process. 

Because the sum of the itemset utility and remaining utility 

can be easily greater than the threshold. In Fig. 8, the runtime 

gap between the HMiner-Closed algorithm and our algorithm 

becomes dramatically large. This is due to the fact that our 

algorithm first finds all closed itemsets. The amount of 

candidate itemsets is fixed. The change of the 𝑀𝑖𝑛𝑈𝑇 has a 

smaller effect on our algorithm than the effect on the HMiner-

Closed algorithm. Table VII shows the detailed result. 

A comparison is shown in Fig. 9 by using dataset 

𝑒𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑒  under different threshold values. For the 

HMiner-Closed algorithm, it has to consider many subsets to 

determine the CHUI. If the value of the 𝑀𝑖𝑛𝑈𝑇 is small, then 

we will have large number of high utility itemsets. Therefore, 

HMiner-Closed has to consider more number of itemsets to 

find CHUIs. If the threshold is small, the pruning strategy of 

HMiner-Closed can not stop the mining process. Because the 

sum of the itemset utility and the remaining utility can be 

easily greater than the threshold. In Fig. 9, the runtime gap 

between the HMiner-Closed algorithm and our algorithm 

becomes dramatically large. This is due to the fact that our 

algorithm first finds all closed itemsets. The closed itemsets 

in the 𝑒𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑒 datasets are mostly satisfied the threshold, 

which is 1000. So if we set the threshold smaller than 1000, 

the performance of two algorithms are remains flat. The 

amount of candidate itemsets is fixed. The change of the 

𝑀𝑖𝑛𝑈𝑇 has a smaller effect on our algorithm than the effect 

on the HMiner-Closed algorithm. Table VIII shows the 

detailed result. 

 
TABLE VII: THE DETAILS FOR DATASET FOODMART  

UNDER THE CHANGE OF MINUT 

MinUT HMiner-Closed ClosedSetLattice MinUT 

1000 2.8 2.3 1000 

2000 4.9 2.1 2000 

3000 8.7 2.7 3000 

4000 13.4 2.5 4000 

 

TABLE VIII: THE DETAILS FOR DATASET ECOMMERCE  UNDER THE 

CHANGE OF MINUT 

MinUT HMiner-Closed ClosedSetLattice MinUT 

20000 18.0 13.5 20000 

30000 34.1 12.7 30000 

40000 88.9 12.5 40000 

50000 204.5 12.8 50000 

 

 
Fig. 8. A comparison by using dataset foodmart  

under the change of MinUT. 

 

 
Fig. 9. A comparison by using dataset ecommerce  

under the change of MinUT. 
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V. CONCLUSION 

In this paper, we have proposed the closed-set lattice algo- 

rithm, which can mine closed high utility itemsets efficiently. 

The closed-set lattice algorithm first finds all of the closed 

frequent itemsets and then finds closed high utility itemsets 

from those closed frequent itemsets. Since the number of 

closed frequent itemsets will not be affected by the threshold 

value, our algorithm can mine closed high utility itemsets 

more efficient than the traditional algorithms for mining 

closed high utility patterns. We have also implemented the 

TWU pruning strategy to decrease the search space, when 

mining patterns in a static database. Moreover, We have 

considered mining CHUIs in the incremental database. From 

the performance result, we have shown that our proposed 

algorithm has better performance than HMiner-Closed 

algorithm in dense databases and sparse databases. 
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