

A Proposal Operational Mechanisms of the IoT-GW
Incorporating City OS

Issa Yamanaka1, Shin-ichi Yamamoto1,2, Atsuko Yokotani3, Koichi Ishibashi4, and Tetsuya Yokotani5,*

1Graduate School of Electrical Engineering and Electronics, Kanazawa Institute of Technology, Nonoichi Ishikawa, Japan
2Tadano Ltd, Takamatsu Kagawa, Japan

3Center for Electric, Optic and Energy (EOE) Applications, Kanazawa Institute of Technology, Nonoichi Ishikawa, Japan
4Department of Information Science and Engineering, Faculty of Information Science and Engineering, Kanazawa Institute of Technology,

Nonoichi Ishikawa, Japan
5Department of Electronics and Information Systems Engineering, College of Engineering, Kanazawa Institute of Technology, Nonoichi

Ishikawa, Japan
Email: c6401296@st.kanazawa-it.ac.jp (I.S.); shinichi.yamamoto@tadano.com (S.Y.); yokotani@s.ttc.or.jp (A.Y.);

k_ishibashi@neptune.kanazawa-it.ac.jp (K.I.); yokotani@neptune.kanazawa-it.ac.jp (T.Y.)
*Corresponding author

Manuscript received May 8, 2025; accepted June 13, 2025; published June 20, 2025

Abstract—Recently, various Internet of Things (IoT) services
have been considered for implementation for facilitating smart
cities. For instance, a horizontal approach has been explored to
reduce equipment and operational costs. A City Operating
System (OS) is one scheme for achieving this approach. The
advantages of a City OS include the independence between
connected end systems and services, and the ability to share
collected data among multiple services. Currently, some City
OS are generally implemented in a centralized configuration
(e.g., cloud based configuration). However, there are also
services that require data only in closed areas with low latency.
In this study, an architecture that enables the coexistence of
closed base data and wide-area base data, according to the type
of service is proposed. Specifically, authors propose a gateway
that incorporates with a City OS and also an operational
mechanism that includes a function for sorting data from end
systems to both local and global platforms. This proposal
contributes to facilitating the realization of smart cities in which
various services are layered.

Keywords— City OS, Gateway, IoT, Smart city

I. INTRODUCTION

City OSs are currently attracting attention for solving the
challenges of smart city implementation [1, 2]. City OS
provides an abstraction of smart city devices. This allows
services in various fields to handle data from smart city
devices [3].

In a conventional city OS, data integration is primarily
implemented in the cloud to achieve efficiency, cost
reduction, and scalability [4]. However, there are
disadvantages to using the cloud in a city OS. The response
performance is poor for services that require immediate
feedback processing based on received data (e.g., services
with actuation) [5]. To overcome this disadvantage, we
consider that it is better to process data in the IoT-GW if the
service is locally closer from the viewpoint of
communication congestion to the cloud. Therefore, the
authors propose an IoT-GW equipped with a city Operating
System (OS) that debloats and operates within the local
network. This gateway, equipped with the city OS, abstracts
devices and enables feedback in the local area without
passing services that require immediate response to the cloud.

In this paper, Section II provides an overview of the city
OS, and Section III describes the evolution of gateway
requirements. The functional structure of the IoT-GW is

described in Section IV and its operational flow is described
in Section V.

II. OVERVIEW OF CITY OS

Traditionally, service provision has been vertically
integrated, relying on individual devices and data formats in
each field and region. However, in city OS, the first step is to
abstract devices, thereby eliminating the dependency
between services and devices. This enables specific services
to handle data across diverse areas without being tied to
specific devices. Furthermore, by unifying data formats and
interfaces, the mutual use of data between cities becomes
possible, and efficient provision of services can be realized.
Specifically, the following three points can be realized [6].

(1) Service portability: Services deployed in one region
may be readily redeployed in another. In other words, service
providers no longer need to be bound to a region.

(2) Service diversification: This makes it easy to add or
remove services in a given region.

(3) Advancement of services: Through the mutual use of
data, it may be easy to refer to data from other regions, and
the services themselves can be expected to be advanced.

Fig. 1. System configuration with city OS.

The system configuration incorporated in to a city OS is

shown in Fig. 1, where a conventional city OS is incorporated
in the cloud. The data extracted from the smart city devices in
each area are managed by the city OS in the cloud to realize a
variety of smart city services. The internet is widely used to
connect smart city devices to the cloud, however not all end
devices are directly connected to the internet. Therefore,
Gateways (GWs) are installed in each area to aggregate local
communications with end devices and multiplex data as
needed, and perform relay functions to forward data to the
cloud.

International Journal of Future Computer and Communication, Vol. 14, No. 1, 2025

doi: 10.18178/ijfcc.2025.14.1.625 16

FIWARE is often used as one of the city OSs, which is an
infrastructure software developed and implemented under the
next generation internet Public-private Partnership Program
(FI-PPP) of the European Union (EU) to link various types of
data [7, 8]. It is also a collection of software modules called
the Generic Enabler (GE), and Orion Context Broker (OCB)
is a GE which characterize FIWARE [1]. The FIWARE
architecture and its key components are illustrated in Fig. 2.
Other representative components include Cygnus, which
stores historical data registered in OCB in a Data Base (DB),
and Wirecloud, which receives and visualizes data from
OCB [9]. These data exchanges were performed using the
open standard FIWARE Next Generation Service Interface
(NGSI) API [8]. Another IoT Agent automatically converts
data from smart city devices into an NGSI data model [9].

Fig. 2. Key components of FIWARE.

III. TRANSITION OF GATEWAY REQUIREMENTS

This approach was adopted because Home Gateway
(HGW) provide a cost-effective and practical foundation for
large-scale deployment, particularly in environments such as
households and small facilities, where IoT services are
frequently implemented. Although server-based gateways
with more advanced capabilities exist, HGW-based
architectures are considered more suitable in terms of
deployment density and service pricing. Therefore, the
proposed architecture builds upon the HGW technology to
ensure both scalability and affordability. Fig. 3 illustrates the
gateway evolution is illustrated based on HGW technology.

Each phase is described as follows. In Phase 1,
communication was limited to the inside of a building, as the
focus was on home device control and security applications,
and low-speed, pay-as-you-go internet connections via
Integrated Services Digital Network (ISDN) were the norm.
In Phase 2, the spread of Asymmetric Digital Subscriber Line
(ADSL) enabled flat-rate broadband connections, and the
gateway played the role of a broadband router connecting
multiple devices in the home to the internet. In Phase 3, Fiber
to the Home (FTTH) significantly improved the
communication quality, and as Voice over Internet Protocol
(VoIP) became increasingly popular, gateways were required
to support real-time voice communication and advanced
packet processing, such as the priority processing of voice
data. In Phase 4, the advent of Next-Generation Networks
(NGNs) enabled the “triple play” [10] of telephony, video
distribution, and Internet access, and support for all these
services became necessary. In addition, support for home
ICT services [11] such as IPv6 support and energy
management, is required, and a flexible service delivery
platform with Open Services Gateway Initiative (OSGi) was
introduced. In Phase 5, the gateway, as the center of the IoT
services, was equipped with a physical interface that enabled

connection to various IoT devices and the ability to link
application data with servers [12]. In Phase 5, the gateway
converts the data into a FIWARE-compliant data model and
processes the data in the cloud, making data from a variety of
fields available for a variety of services. However, the
gateway in Phase 5 was unable to provide the same level of
service as the urban gateway.

Fig. 3. Transition of gateway requirements based on [12].

Although the Phase 5 gateway supports City OS, it is

implemented in the cloud and is not suitable for high-speed
feedback such as actuator-supported services. The authors
believe that a new phase of 6 GW with high-speed feedback
is required. In Phase 6, the GW must be able to support
actuator-supported services, reuse data used in
actuator-supported services to prevent congestion and cost
increases for devices such as sensors and cameras, and be
customizable to flexibly support various services. Therefore,
the authors propose a feature of the city OS, data abstraction,
that enables the reuse of data across different services.
Furthermore, the authors believe that by incorporating the
open-source software, city OS, into the gateway, these
requirements can be met simultaneously.

In this study, the authors propose a new gateway for Phase
6, in which the gateway is equipped with a “Local City OS
(LCO),” which is a function to equip a city OS in the gateway,
in addition to the functions of the conventional gateways up
to Phase 5.

IV. RESULT AND DISCUSSION

The proposed IoT Gateway (IoT-GW) requires two key
mechanisms: one to enable data from Smart City Devices
(SCDs) to be processed in the cloud, and another to enable
local data processing. The first mechanism is achieved using
the existing Phase 5 functions, including temporary data
aggregation, data model conversion and aggregation, data
model transmission, and the gateway function. The second
mechanism is realized by incorporating a message broker
into gateway, which is a core function of the city OS. To
support both mechanisms within a single gateway, an
Interface (IF) equipped with a data analysis function is
introduced, because data sorting depends on prior analysis.
An overview of these functions is shown in Fig. 4. Six
functions of Local City OS (LCO) (see Figs. 4a-f) and one

International Journal of Future Computer and Communication, Vol. 14, No. 1, 2025

doi: 10.18178/ijfcc.2025.14.1.625 17

function of Interface (IF) (see Fig. 4(g)) (see Fig. 4(B)) of the
IoT-GW are described below: LCO is in addition to
conventional gateway functions until Phase 5, which is a
function for installing the City OS in the gateway.

Fig. 4. Proposed IoT-GW architecture.

The new functions of the gateway in Phase 6 of Section III

are shown in Fig. 4(b), (e), and (g), whereas the other
functions are the same as those in Phase 5 of the HGW.

First, functions (a)–(f) of the LCO are described below:
(a) Temporary data aggregation [conventional]
This function temporarily aggregates data generated in the

local area of the LCO without sending them to the cloud. This
enables the provision of services close to the gateways.

(b) Data Sorting [new function]
Following the data analysis by IF, the data are classified

into those used for local services (services terminated within
the gateway) and those used for global services.

(c) Data model conversion and aggregation [conventional]
The various forms of data sent to the LCO are abstracted

and converted into a data model that is compatible with the
City OS. Furthermore, multiple abstracted datasets can be
aggregated into a single data set model.

(d) Data Model Transfer [conventional]
The data model generated in (c) is transferred to a message

broker or City OS in the cloud based on the sorting results in
(b).

(e) Message broker function [new function]
This is a broker function (City OS function) for data

messages sent to the LCO.
(f) Gateway function [conventional]
Fig. 4(h) shows the relay between the IoT-GW and

different networks such as mobile communications.
The role of IF (see Fig. 4(B)) is as follows: IF is also a new

function in Phase 6.
(g) Data analysis function [new function]
Data from the Smart City Devices (SCD) are analyzed by

the Interface (IF) (see Fig. 4(B)) in the gateway and the
analysis results were added to the data from the SCD. Details
are given in the next section; the connection between the
SCD and the IF (see Fig. 4(i)) is assumed to be IP or non-IP
communication (e.g., I2C communication [13]), and these
processes are performed in the IF (see Fig. 4(B)).

V. PROPOSED OPERATIONAL MECHANISMS

This section describes the functional operation flow of the

IoT-GW proposed in this study. First, the operational flow of
the entire function is described, followed by that of the newly
added data sorting function.

A. Overall Operational Flow of IoT-GW

The overall operational flow of the IoT-GW is shown in
Fig. 5. The overall operational flow of the IoT-GW proposed
by the authors is shown step-by-step, i.e., (i)-(vii) in Fig. 5.

Fig. 5. Overall operation flow of IoT-GW.

(i) At each interface (IF, see Fig. 4(b)), data transmitted

from the SCD (see Fig. 4(d)) were analyzed as useful
information using a pre-built algorithm. Data analysis
methods included comparison with threshold values and
machine learning. Data analysis was also used to determine
urgency and locality (Fig. 4(g)).

(ii) Information such as urgency and locality are assigned
to “topics.” A “topic” refers to the name attached to the data.
Information, other than urgency and locality, may also be
included in the topic. For instance, the sensor location
information is appended to a topic. Fig. 6 shows an example
of attaching information to a topic on an interface (IF) (see
Fig. 4(g)).

Fig. 6. Example on structure of topics.

(iii) The SCD data are temporarily aggregated to a topic in

the LCO (see Fig. 4(a)).
(iv) Based on the topic information, the data to be sent to

the message broker in the LCO or city OS in the cloud are
sorted (see Fig. 4(c) and 4(b)).

(v) Based on the attributes of the sorted data (e.g., urgency
and locality), the data are abstracted and a common data
model is created that is easy to handle for each service.

(vi) The data model is sent to the message broker in the
LCO or the City OS in the cloud (Fig. 4(d)).

(vii) Realize local services (Fig. 4(k) and 5(vii-L)) and
global services (Fig. 4(j) and 5(vii-G)) using data stored in
the message broker in the LCO (Fig. 4(e)) and in the City OS
in the cloud (Fig. 4(c)).

B. Operation Flow of Data Sorting in LCO

Among the new features added in Phase 6, data sorting

International Journal of Future Computer and Communication, Vol. 14, No. 1, 2025

doi: 10.18178/ijfcc.2025.14.1.625 18

(Fig. 4(b)) is described in detail. Fig. 7 shows the data sorting
in the LCO. The operational flow of the data sorting function
shown in Fig. 7(1)–(5) is described as follows.

Fig. 7. Operation flow of data sorting function in LCO.

(1) Sort the data by selecting data from the temporary tally

(Fig. 6(a)) and checking the attributes of the data topic.
(2) Check the urgency; if yes, convert the data to a data

model for emergency information service (2-1) and send it to
the LCO (2-2). If no, go to (3).

(3) Checks for locality; if yes, converts the data to a data
model for localized services (3-1) and sends the data model to
the LCO (3-2); if no, go directly to (4).

(4) Convert the data used for global services into the data
model for global services.

(5) Upload the data model for global services to City OS in
the cloud.

Fig. 8. Example of data model based on JSON format.

The data model is often described in JavaScript Object

Notation (JSON) format using an international standard for
Application Programming Interfaces (APIs) called Next
Generation Service Interface (NGSI) [14]. Multiple data
points are aggregated into a single data model (Fig. 4(c)). An
example data model is shown in Fig. 8.

The authors considered using a Python Program to perform

data sorting for the IoT-GW implementation, as shown in
Fig. 9. Fig. 9 shows an example of such a program. The
program reads the sent topic data and divides them into
hierarchies. The hierarchy determines the keywords, checks
the keywords against the database, and decides whether to
send the data to the LCO or to City OS in the cloud.

This data sorting avoids sending data that is only needed
for local services to the city OS in the cloud, preventing
network congestion.

Fig. 9. Example of a program for a sorting function.

VI. CONCLUSION

In this paper, the authors have proposed operational
mechanisms for an IoT-GW with a City OS that provides fast
feedback, along with its functional configuration. The
proposed method enabled device abstraction and rapid
feedback within a local area. This facilitate the sharing of
devices and implementation of services using actuators. In
addition, by avoiding reliance on the cloud for data processing,
communication path congestion is reduced.

A Proof of Concept (PoC) is planned to verify the technical
feasibility of the proposed approach. In addition, verification
from the user perspective by applying actual services has been
performed to assess its practical effectiveness.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Issa Yamanaka initiated the research and drafted the initial
manuscript. Shin-ichi Yamamoto refined and deepened the
conceptual framework. Atsuko Yokotani reviewed the
manuscript and contributed to the overall enhancement of its
content. Koichi Ishibashi checked and revised the language
and expressions. Tetsuya Yokotani, as the supervising
professor, provided skill-based guidance and conducted a
comprehensive review of the work. All authors had approved
the final version.

REFERENCES
[1] N. Fujita, K. Fujita, and O. Tashiro, “Urban OS supporting the spread

and development of smart city,” Smart Construction Research, vol 1,
no. 1, pp. 11–21, 2023.

[2] E. A. Nuaimi, H. A. Neyadi, N. Mohamed, and J. AI-Jaroodi.,
“Applications of big data to smart cities,” Journal of Internet Services
and Applications, vol. 6, 25, Dec. 2015.

[3] I. A. T. Hashem, V. Chang, N. B. Anuar, K. Adewole, I. Yaqoob, A.
Gani, E. Ahmed, and H. Chiroma, “The role of big data in smart city,”

International Journal of Future Computer and Communication, Vol. 14, No. 1, 2025

doi: 10.18178/ijfcc.2025.14.1.625 19

International Journal of Information Management, vol. 36, no. 5, pp.
748–758, 2016.

[4] A. K. Sandhu, “Big data with cloud computing: Discussions and
challenges,” Big Data Mining and Analytics, vol. 5, no. 1, pp. 32–40,
2022.

[5] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 5031–5044, 2019.

[6] A. Detti, H. Nakazato, J. A. M. Navarro, G. Tropea, L. Petrucci, J. A. S.
Segado, and K. Kanai, “VirIoT: A cloud of things that offers IoT
infrastructures as a service,” Sensors, vol. 21, no. 19, 6546, 2021.

[7] M. Bauer, “FIWARE: Standard-based open source components for
cross-domain IoT platforms,” in Proc. IEEE 8th World Forum on
Internet of Things (WF-IoT 2022), 2022, pp. 1–6.

[8] F. Cirillo, G. Solmaz, E. L. Berz, M. Bauer, B Cheng, and E. Kovacs,
“A standard-based open source IoT platform: FIWARE,” IEEE
Internet of Things Magazine, vol. 2, no. 3, pp.12–18. 2019.

[9] FIWARE catalogue. [Online]. Available:
https://www.fiware.org/catalogue/#componets

[10] S. Karapantazis and F. N. Pavlidou, “VoIP: A comprehensive survey
on a promising technology,” Computer Networks, vol. 53, no. 12, pp.
2050–2090, 2009.

[11] T. Ishihara, K. Sukegawa, and H. Shimada, “Home gateway enabling
evolution of network services,” FUJITSU Sci. Tech. J., vol. 42, no. 4,
pp. 446–453, 2006.

[12] E. Yoshida, T. Yokotani, and K. Ishibashi, “Concept and development
of next phase gateway applied to internet of things,” in Proc. 2021 11th
International Workshop on Computer Science and Engineering (WCSE
2021), 2021, pp. 13–21.

[13] J. Mankar, C. Darode, K. Trivedi, M. Kanoje, and P. Sharare, “Review
of I2C protocol,” International Journal of Research in Advent
Technology, vol. 2, no. 1, pp. 474–479, 2014.

[14] M. Bauer. E. Kovacs, A. Schulke, N. Ito, C. Criminisi, and L.W. Goix,
“The context API in the OMA next generation service interface,” in
Proc. 2010 14th International Conf. on Intelligence in Next Generation
Networks, 2010, pp. 1–5.

Copyright © 2025 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

International Journal of Future Computer and Communication, Vol. 14, No. 1, 2025

doi: 10.18178/ijfcc.2025.14.1.625 20

