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Abstract—Recently, various Internet of Things (IoT) services 
have been considered for implementation for facilitating smart 
cities. For instance, a horizontal approach has been explored to 
reduce equipment and operational costs. A City Operating 
System (OS) is one scheme for achieving this approach. The 
advantages of a City OS include the independence between 
connected end systems and services, and the ability to share 
collected data among multiple services. Currently, some City 
OS are generally implemented in a centralized configuration 
(e.g., cloud based configuration). However, there are also 
services that require data only in closed areas with low latency. 
In this study, an architecture that enables the coexistence of 
closed base data and wide-area base data, according to the type 
of service is proposed. Specifically, authors propose a gateway 
that incorporates with a City OS and also an operational 
mechanism that includes a function for sorting data from end 
systems to both local and global platforms. This proposal 
contributes to facilitating the realization of smart cities in which 
various services are layered. 
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I. INTRODUCTION 

City OSs are currently attracting attention for solving the 
challenges of smart city implementation [1, 2]. City OS 
provides an abstraction of smart city devices. This allows 
services in various fields to handle data from smart city 
devices [3]. 

In a conventional city OS, data integration is primarily 
implemented in the cloud to achieve efficiency, cost 
reduction, and scalability [4]. However, there are 
disadvantages to using the cloud in a city OS. The response 
performance is poor for services that require immediate 
feedback processing based on received data (e.g., services 
with actuation) [5]. To overcome this disadvantage, we 
consider that it is better to process data in the IoT-GW if the 
service is locally closer from the viewpoint of 
communication congestion to the cloud. Therefore, the 
authors propose an IoT-GW equipped with a city Operating 
System (OS) that debloats and operates within the local 
network. This gateway, equipped with the city OS, abstracts 
devices and enables feedback in the local area without 
passing services that require immediate response to the cloud. 

In this paper, Section II provides an overview of the city 
OS, and Section III describes the evolution of gateway 
requirements. The functional structure of the IoT-GW is 

described in Section IV and its operational flow is described 
in Section V. 

II. OVERVIEW OF CITY OS 

Traditionally, service provision has been vertically 
integrated, relying on individual devices and data formats in 
each field and region. However, in city OS, the first step is to 
abstract devices, thereby eliminating the dependency 
between services and devices. This enables specific services 
to handle data across diverse areas without being tied to 
specific devices. Furthermore, by unifying data formats and 
interfaces, the mutual use of data between cities becomes 
possible, and efficient provision of services can be realized. 
Specifically, the following three points can be realized [6]. 

(1) Service portability: Services deployed in one region 
may be readily redeployed in another. In other words, service 
providers no longer need to be bound to a region. 

(2) Service diversification: This makes it easy to add or 
remove services in a given region. 

(3) Advancement of services: Through the mutual use of 
data, it may be easy to refer to data from other regions, and 
the services themselves can be expected to be advanced. 

 

 
Fig. 1. System configuration with city OS. 

 
The system configuration incorporated in to a city OS is 

shown in Fig. 1, where a conventional city OS is incorporated 
in the cloud. The data extracted from the smart city devices in 
each area are managed by the city OS in the cloud to realize a 
variety of smart city services. The internet is widely used to 
connect smart city devices to the cloud, however not all end 
devices are directly connected to the internet. Therefore, 
Gateways (GWs) are installed in each area to aggregate local 
communications with end devices and multiplex data as 
needed, and perform relay functions to forward data to the 
cloud. 
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FIWARE is often used as one of the city OSs, which is an 
infrastructure software developed and implemented under the 
next generation internet Public-private Partnership Program 
(FI-PPP) of the European Union (EU) to link various types of 
data [7, 8]. It is also a collection of software modules called 
the Generic Enabler (GE), and Orion Context Broker (OCB) 
is a GE which characterize FIWARE [1]. The FIWARE 
architecture and its key components are illustrated in Fig. 2. 
Other representative components include Cygnus, which 
stores historical data registered in OCB in a Data Base (DB), 
and Wirecloud, which receives and visualizes data from  
OCB [9]. These data exchanges were performed using the 
open standard FIWARE Next Generation Service Interface 
(NGSI) API [8]. Another IoT Agent automatically converts 
data from smart city devices into an NGSI data model [9]. 

 

 
Fig. 2. Key components of FIWARE. 

III. TRANSITION OF GATEWAY REQUIREMENTS 

This approach was adopted because Home Gateway 
(HGW) provide a cost-effective and practical foundation for 
large-scale deployment, particularly in environments such as 
households and small facilities, where IoT services are 
frequently implemented. Although server-based gateways 
with more advanced capabilities exist, HGW-based 
architectures are considered more suitable in terms of 
deployment density and service pricing. Therefore, the 
proposed architecture builds upon the HGW technology to 
ensure both scalability and affordability. Fig. 3 illustrates the 
gateway evolution is illustrated based on HGW technology. 

Each phase is described as follows. In Phase 1, 
communication was limited to the inside of a building, as the 
focus was on home device control and security applications, 
and low-speed, pay-as-you-go internet connections via 
Integrated Services Digital Network (ISDN) were the norm. 
In Phase 2, the spread of Asymmetric Digital Subscriber Line 
(ADSL) enabled flat-rate broadband connections, and the 
gateway played the role of a broadband router connecting 
multiple devices in the home to the internet. In Phase 3, Fiber 
to the Home (FTTH) significantly improved the 
communication quality, and as Voice over Internet Protocol 
(VoIP) became increasingly popular, gateways were required 
to support real-time voice communication and advanced 
packet processing, such as the priority processing of voice 
data. In Phase 4, the advent of Next-Generation Networks 
(NGNs) enabled the “triple play” [10] of telephony, video 
distribution, and Internet access, and support for all these 
services became necessary. In addition, support for home 
ICT services [11] such as IPv6 support and energy 
management, is required, and a flexible service delivery 
platform with Open Services Gateway Initiative (OSGi) was 
introduced. In Phase 5, the gateway, as the center of the IoT 
services, was equipped with a physical interface that enabled 

connection to various IoT devices and the ability to link 
application data with servers [12]. In Phase 5, the gateway 
converts the data into a FIWARE-compliant data model and 
processes the data in the cloud, making data from a variety of 
fields available for a variety of services. However, the 
gateway in Phase 5 was unable to provide the same level of 
service as the urban gateway. 

 
Fig. 3. Transition of gateway requirements based on [12]. 

 
Although the Phase 5 gateway supports City OS, it is 

implemented in the cloud and is not suitable for high-speed 
feedback such as actuator-supported services. The authors 
believe that a new phase of 6 GW with high-speed feedback 
is required. In Phase 6, the GW must be able to support 
actuator-supported services, reuse data used in 
actuator-supported services to prevent congestion and cost 
increases for devices such as sensors and cameras, and be 
customizable to flexibly support various services. Therefore, 
the authors propose a feature of the city OS, data abstraction, 
that enables the reuse of data across different services. 
Furthermore, the authors believe that by incorporating the 
open-source software, city OS, into the gateway, these 
requirements can be met simultaneously. 

In this study, the authors propose a new gateway for Phase 
6, in which the gateway is equipped with a “Local City OS 
(LCO),” which is a function to equip a city OS in the gateway, 
in addition to the functions of the conventional gateways up 
to Phase 5. 

IV. RESULT AND DISCUSSION 

The proposed IoT Gateway (IoT-GW) requires two key 
mechanisms: one to enable data from Smart City Devices 
(SCDs) to be processed in the cloud, and another to enable 
local data processing. The first mechanism is achieved using 
the existing Phase 5 functions, including temporary data 
aggregation, data model conversion and aggregation, data 
model transmission, and the gateway function. The second 
mechanism is realized by incorporating a message broker 
into gateway, which is a core function of the city OS. To 
support both mechanisms within a single gateway, an 
Interface (IF) equipped with a data analysis function is 
introduced, because data sorting depends on prior analysis. 
An overview of these functions is shown in Fig. 4. Six 
functions of Local City OS (LCO) (see Figs. 4a-f) and one 
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function of Interface (IF) (see Fig. 4(g)) (see Fig. 4(B)) of the 
IoT-GW are described below: LCO is in addition to 
conventional gateway functions until Phase 5, which is a 
function for installing the City OS in the gateway. 

 

 
Fig. 4. Proposed IoT-GW architecture. 

 
The new functions of the gateway in Phase 6 of Section III 

are shown in Fig. 4(b), (e), and (g), whereas the other 
functions are the same as those in Phase 5 of the HGW. 

First, functions (a)–(f) of the LCO are described below:  
(a) Temporary data aggregation [conventional]  
This function temporarily aggregates data generated in the 

local area of the LCO without sending them to the cloud. This 
enables the provision of services close to the gateways. 

(b) Data Sorting [new function]  
Following the data analysis by IF, the data are classified 

into those used for local services (services terminated within 
the gateway) and those used for global services. 

(c) Data model conversion and aggregation [conventional]  
The various forms of data sent to the LCO are abstracted 

and converted into a data model that is compatible with the 
City OS. Furthermore, multiple abstracted datasets can be 
aggregated into a single data set model. 

(d) Data Model Transfer [conventional]  
The data model generated in (c) is transferred to a message 

broker or City OS in the cloud based on the sorting results in 
(b). 

(e) Message broker function [new function]  
This is a broker function (City OS function) for data 

messages sent to the LCO. 
(f) Gateway function [conventional]  
Fig. 4(h) shows the relay between the IoT-GW and 

different networks such as mobile communications. 
The role of IF (see Fig. 4(B)) is as follows: IF is also a new 

function in Phase 6. 
(g) Data analysis function [new function]  
Data from the Smart City Devices (SCD) are analyzed by 

the Interface (IF) (see Fig. 4(B)) in the gateway and the 
analysis results were added to the data from the SCD. Details 
are given in the next section; the connection between the 
SCD and the IF (see Fig. 4(i)) is assumed to be IP or non-IP 
communication (e.g., I2C communication [13]), and these 
processes are performed in the IF (see Fig. 4(B)). 

V. PROPOSED OPERATIONAL MECHANISMS 

This section describes the functional operation flow of the 

IoT-GW proposed in this study. First, the operational flow of 
the entire function is described, followed by that of the newly 
added data sorting function. 

A. Overall Operational Flow of IoT-GW 

The overall operational flow of the IoT-GW is shown in 
Fig. 5. The overall operational flow of the IoT-GW proposed 
by the authors is shown step-by-step, i.e., (i)-(vii) in Fig. 5. 

 

 
Fig. 5. Overall operation flow of IoT-GW. 

 
(i) At each interface (IF, see Fig. 4(b)), data transmitted 

from the SCD (see Fig. 4(d)) were analyzed as useful 
information using a pre-built algorithm. Data analysis 
methods included comparison with threshold values and 
machine learning. Data analysis was also used to determine 
urgency and locality (Fig. 4(g)). 

(ii) Information such as urgency and locality are assigned 
to “topics.” A “topic” refers to the name attached to the data. 
Information, other than urgency and locality, may also be 
included in the topic. For instance, the sensor location 
information is appended to a topic. Fig. 6 shows an example 
of attaching information to a topic on an interface (IF) (see 
Fig. 4(g)). 

 

 
Fig. 6.  Example on structure of topics. 

 
(iii) The SCD data are temporarily aggregated to a topic in 

the LCO (see Fig. 4(a)). 
(iv) Based on the topic information, the data to be sent to 

the message broker in the LCO or city OS in the cloud are 
sorted (see Fig. 4(c) and 4(b)). 

(v) Based on the attributes of the sorted data (e.g., urgency 
and locality), the data are abstracted and a common data 
model is created that is easy to handle for each service.  

(vi) The data model is sent to the message broker in the 
LCO or the City OS in the cloud (Fig. 4(d)). 

(vii) Realize local services (Fig. 4(k) and 5(vii-L)) and 
global services (Fig. 4(j) and 5(vii-G)) using data stored in 
the message broker in the LCO (Fig. 4(e)) and in the City OS 
in the cloud (Fig. 4(c)). 

B. Operation Flow of Data Sorting in LCO 

Among the new features added in Phase 6, data sorting 

International Journal of Future Computer and Communication, Vol. 14, No. 1, 2025

doi: 10.18178/ijfcc.2025.14.1.625 18



  

(Fig. 4(b)) is described in detail. Fig. 7 shows the data sorting 
in the LCO. The operational flow of the data sorting function 
shown in Fig. 7(1)–(5) is described as follows. 

 

 
Fig. 7. Operation flow of data sorting function in LCO. 

 
(1) Sort the data by selecting data from the temporary tally 

(Fig. 6(a)) and checking the attributes of the data topic. 
(2) Check the urgency; if yes, convert the data to a data 

model for emergency information service (2-1) and send it to 
the LCO (2-2). If no, go to (3). 

(3) Checks for locality; if yes, converts the data to a data 
model for localized services (3-1) and sends the data model to 
the LCO (3-2); if no, go directly to (4). 

(4) Convert the data used for global services into the data 
model for global services. 

(5) Upload the data model for global services to City OS in 
the cloud. 

 

 
Fig. 8. Example of data model based on JSON format. 

 
The data model is often described in JavaScript Object 

Notation (JSON) format using an international standard for 
Application Programming Interfaces (APIs) called Next 
Generation Service Interface (NGSI) [14]. Multiple data 
points are aggregated into a single data model (Fig. 4(c)). An 
example data model is shown in Fig. 8. 

The authors considered using a Python Program to perform 

data sorting for the IoT-GW implementation, as shown in  
Fig. 9. Fig. 9 shows an example of such a program. The 
program reads the sent topic data and divides them into 
hierarchies. The hierarchy determines the keywords, checks 
the keywords against the database, and decides whether to 
send the data to the LCO or to City OS in the cloud. 

This data sorting avoids sending data that is only needed 
for local services to the city OS in the cloud, preventing 
network congestion. 

 

 
Fig. 9. Example of a program for a sorting function. 

VI.  CONCLUSION 

In this paper, the authors have proposed operational 
mechanisms for an IoT-GW with a City OS that provides fast 
feedback, along with its functional configuration. The 
proposed method enabled device abstraction and rapid 
feedback within a local area. This facilitate the sharing of 
devices and implementation of services using actuators. In 
addition, by avoiding reliance on the cloud for data processing, 
communication path congestion is reduced. 

A Proof of Concept (PoC) is planned to verify the technical 
feasibility of the proposed approach. In addition, verification 
from the user perspective by applying actual services has been 
performed to assess its practical effectiveness. 
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