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Abstract—Transient testing of the Erbium-Doped Fiber 
Amplifier (EDFA) is crucial for assessing the transient response 
to abrupt channel add/drop occurrences in Dense Wavelength 
Division Multiplexing (DWDM) systems. Nevertheless, 
anomalous transient signals, frequently resulting from 
inadequacies in the testing apparatus or photodetector 
saturation, may result in erroneous computations of critical 
parameters, including overshoot, undershoot, gain offset, and 
settling time. This study presents an artificial intelligence-driven 
method for the automatic classification of normal and 
pathological transient signals in EDFA testing. The methodology 
entails preprocessing transient signals via uniform 
downsampling, implementing feature extraction techniques 
such as Classical Principal Component Analysis (PCA), Linear 
Discriminant Analysis (LDA), and Partial Least Squares–
Discriminant Analysis (PLS-DA), and subsequently training 
and assessing five machine learning models (Naïve Bayes, 
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), 
Logistic Regression, and Multi-Layer Perceptron (MLP)) for 
performance evaluation. Experimental findings demonstrate 
that the number of features and the extraction techniques 
substantially affect classification accuracy, Area Under the 
Curve (AUC), precision, recall, F1-score, and processing 
duration. The optimal performance was attained using 1000 
features produced through uniform downsampling, integrated 
with PLS-DA and categorized using SVM, resulting in an AUC 
of 0.9977. The findings illustrate a dependable and effective AI-
driven method for automated classification of transient signals, 
augmenting the validation of EDFA transient testing and 
potentially enhancing signal data analysis in the assessment of 
optical fiber communication systems. 

Keywords—artificial intelligence, Erbium-Doped Fiber 
Amplifier (EDFA), feature extraction, machine learning, 
transient signal, uniform downsampling  

I. INTRODUCTION

In contemporary times, optical fiber communication has 
emerged as a fundamental technology that underpins the 
ever-growing demand for data transfer. High-speed network 
systems specifically depend on Dense Wavelength Division 
Multiplexing (DWDM) systems, which provide the 
concurrent transmission of many optical channels. Optical 
networks extensively utilize the Erbium-Doped Fiber 
Amplifier (EDFA) as a crucial element to efficiently amplify 
these multi-channel wavelengths. The utilization of the 
EDFA is essential for enabling long-distance, high-speed data 
transmission and offering adaptability in network 
reconfiguration. 

However, a significant concern related to the EDFA is the 
emergence of transients, which generally occur during the 
installation or removal of channels in the DWDM system. 
The resultant variations in optical power can induce 
overshoot and undershoot events, which directly impact 

signal quality by elevating the Bit Error Rate (BER) and 
diminishing overall system performance [1]. Furthermore, if 
the EDFA fails to manage these abrupt fluctuations 
adequately in output optical power, it may result in system 
instability, particularly in network architectures where 
numerous EDFAs are interconnected [2]. 

In the EDFA manufacturing sector, product development 
initiatives have concentrated on reducing transient effects, 
supported by specialized testing tools to assess the transient 
properties of the EDFA. A study presented an automated 
testing system created in Python to simultaneously manage 
many measuring devices and document real-time test findings, 
thereby minimizing human errors and enhancing the 
precision of transient characterization in the EDFA [1]. 
Simultaneously, an alternative method has combined 
Automatic Gain Control (AGC) approaches with artificial 
intelligence and neural networks to alleviate transient 
intensity and reduce system recovery time [2]. 

The transient test of an EDFA is performed to assess its 
reaction to abrupt variations in several input optical channels 
while preserving a consistent output gain for the surviving 
channel. The transient testing procedure often entails 
capturing and documenting the waveform with an 
oscilloscope. The collected data are subsequently analyzed by 
testing software to calculate several transient parameters, 
including overshoot, undershoot, gain offset, and settling 
time. Consequently, acquiring precise transient parameters 
necessitates the utilization of reliable transient signals during 
calculations. Should we obtain an anomalous transient signal, 
the computed parameters might not accurately represent the 
true transient characteristics of the EDFA. Abnormal 
transient signals may originate from various factors, 
including inadequacies in the testing apparatus or high optical 
power that saturates the photodetector in the optical receiver, 
leading to distorted transient waveforms on the oscilloscope. 

This project seeks to create an artificial intelligence-based 
system that can classify normal and abnormal transient 
signals in EDFA testing prior to accurately calculating 
transient parameters for legitimate signals. The methodology 
utilizes machine learning algorithms alongside data reduction 
and feature extraction approaches to categorize transient 
waveforms obtained from the oscilloscope. This approach 
facilitates the automatic identification of anomalous signals 
that may otherwise result in erroneous parameter estimates; 
hence, it enhances the reliability and automation of EDFA 
transient characterization. 

The researcher aims to improve the precision and 
dependability of the EDFA testing procedure through this 
study. The system is designed to autonomously identify and 
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categorize anomalous transient signals before calculating 
essential transient characteristics, including overshoot, 
undershoot, gain offset, and settling time. This minimizes 
transitory measurement discrepancies and decreases the 
manual effort needed by engineers to examine signal 
waveforms. Moreover, the suggested methodology can be 
expanded to create automated systems for inspecting signal 
quality in additional optical fiber-based devices in production 
lines. This improvement enhances quality control efficiency, 
decreases testing duration and expenses, and facilitates the 
creation of more robust and standardized optical 
communication technologies. 

II. LITERATURE REVIEW 

A. Transient Signal 

Fig. 1 illustrates a transient waveform together with its 
corresponding properties, such as overshoot, undershoot, 
settling time, and gain offset. 

 

 
Fig. 1. Transient waveform of the EDFA. 

 
As illustrated in Fig. 1, the overshoot and undershoot 

denote the maximum upward and downward deviations, 
respectively, of the surviving-channel gain in relation to the 
desired steady-state gain during transient conditions [1]. The 
settling time refers to the period necessary for the surviving-
channel gain to undergo a sudden change and thereafter revert 
to a stable condition following the addition or removal of 
channels. The gain offset shows the difference in the steady-
state gain of the surviving channel before and after the add or 
drop events. 

B. Signal Pre-Processing 

The input data comprises transient signal waveforms 
acquired via an oscilloscope, reflecting time-domain voltage 
measurements. The signals are archived as data files and 
thereafter aggregated and structured into a transient signal 
dataset containing 500 entries in total. The dataset comprises 
70% normal transient signals and 30% aberrant transient 
signals. 

The uniform downsampling methodology is a way of 
systematically lowering the number of data points rather than 
selecting them randomly or according to specific signal 
attributes. For instance, if an oscilloscope signal has 30,000 
data points and the objective is to condense it to 1000, only 
one point of every 30 is preserved. The corresponding 
equation delineates the original signal as Eq. (1): 

𝑥[𝑛], 𝑛 = 0, 1, 2, … , 𝑁 − 1                      (1) 

where N denotes the total number of data points.  
If the signal is to be downsampled by a factor of M (for 

example, M = 30), the downsampled signal can be expressed 
as Eq. (2). 

 𝑦[𝑚] = 𝑥[𝑚𝑀], 𝑚 = 0,1,2, … , ቂ
ே

ெ
ቃ − 1        (2) 

where, 
𝑥[𝑛]—Original signal data. 
𝑦[𝑚]—Data after Uniform Downsampling. 
𝑀—Downsampling ratio. 
𝑥[𝑚𝑀]—Data sample of the original signal at index 𝑚𝑀, 

where the index is formed by multiplying the downsampled 
index 𝑚 by the downsampling ratio 𝑀. 

The uniform downsampling approach is utilized to 
diminish the quantity of data points in the transient signal 
while completely maintaining the overall waveform features. 
This procedure reduces computational complexity and aids 
later phases of feature extraction and signal categorization. 
The technique samples data points at uniform intervals along 
the time axis, ensuring that the downsampled signal 
accurately preserves the shape and fundamental dynamics of 
the original waveform. 

To prevent issues arising from an inadequate resampling 
rate beneath the necessary threshold, this method employs the 
principle of “retaining only every M-th sample” while 
discarding the remainder. For instance, sampling a signal at 
40 kHz and subsequently downsampling by a factor of 2 will 
lower the sampling rate to 20 kHz, hence directly diminishing 
the sampling frequency [3]. 

The Nyquist–Shannon sampling theorem stipulates that to 
accurately sample a signal with a maximum frequency of 
𝑓௠௔௫, the sampling rate must be no less than 2𝑓୫ୟ୶ to prevent 
aliasing. In real applications, sampling at merely twice the 
maximum frequency frequently fails to maintain the integrity 
of waveform features. To ensure accurate digital 
representation and maintain signal fidelity [4], a higher 
sampling rate, typically 4 to 10 times the maximum frequency, 
is often employed. 

This study comprises transitory signals, each consisting of 
30,000 data points, with each point representing a time 

interval of 
ଵ

ଷ
 microsecond. Thus, the overall signal duration is 

10 milliseconds. The square pulse signal produced by the 
electronic function generator driving the device exhibits a 
rising and falling transition of approximately 300 points, 
corresponding to 100 microseconds (10 kHz). Consequently, 
to guarantee that the sampling process encompasses this 
frequency range, a sample rate of no less than 40 kHz to  
100 kHz is necessary. This rate yields between 200 and 1000 
data points per downsampled segment, effectively 
maintaining transient characteristics while optimizing 
computational efficiency. 

Pan et al. [5] introduced various downsampling techniques 
for Electroencephalogram (EEG) signals, such as direct, 
average, and maximum decimation, to diminish the 
computing complexity of a deep learning-based epilepsy 
detection system. While their research concentrated on EEG 
data, the core principle of uniform temporal sampling 
reduction aligns with the uniform downsampling method 
utilized in this study. 

International Journal of Future Computer and Communication, Vol. 15, No. 1, 2026

doi: 10.18178/ijfcc.2026.15.1.627 2



  

C. Feature Extraction Method 

Following the signal pre-processing phase, feature 
extraction is a vital step that allows the classifier to group 
datasets into distinct classes based on the values of pertinent 
features obtained from the signals [6]. This study utilizes 3 
feature extraction techniques. 

1)  Principal Component Analysis (PCA) 

The PCA technique is employed for the reduction of data 
dimensionality while maintaining maximal data variability. It 
converts the original variables into a new collection of 
uncorrelated principal components, arranged in descending 
order of their variances. The components are derived using 
eigenvalue-eigenvector decomposition or Singular Value 
Decomposition (SVD), of the mean-centered data matrix. 
When variables exhibit disparate scales, normalization is 
advisable, and the correlation-matrix PCA approach should 
be utilized to achieve more accurate findings. The quantity of 
principal components is generally determined by the ratio of 
explained variance. PCA functions primarily as an 
exploratory and descriptive instrument, necessitating no 
assumptions on data distribution in this setting [7]. The 
computation of the covariance matrix and the extraction of 
eigenvectors in PCA commences with the calculation of the 
mean of all data samples, represented as Eq. (3). 

𝑥̅ =
ଵ

ெ
∑ 𝑥௜

ெ
௜ୀଵ                                   (3) 

where, 𝑥̅  denotes the mean vector computed over all data 
samples, 𝑀  denotes the number of observations, and 
𝑥௜ represents the 𝑖௧௛  data vector. Each data vector is then 
mean-centered by subtracting the mean vector 𝑥̅ from each 
observation to obtain the mean-centered sample 𝑎௜ as Eq. (4). 

𝑎௜ = 𝑥௜ − 𝑥̅                                    (4) 

This step ensures that the dataset has zero mean across all 
dimensions. The covariance matrix C, which characterizes 
the degree of correlation among different variables, is 
computed as Eq. (5). 

𝐶 =
ଵ

ெିଵ
𝐴𝐴் =

ଵ

ெିଵ
∑ 𝑎௡

ெ
௡ୀଵ 𝑎௡

்                    (5) 

where 𝐴 is the matrix of centered data vectors. The superscript 
T denotes the transpose of the corresponding matrix. To 
identify the principal directions of maximum variance, the 
eigenvalue problem is solved as Eq. (6). 

𝐶𝑦௝ = 𝜆௝𝑦௝                                        (6) 

where 𝑦௝ and 𝜆௝ denote eigenvectors and their corresponding 
variance contributions. The number of retained components is 
selected based on cumulative explained variance, ensuring 
compact representation while discarding redundant 
information. 

2)  Linear Discriminant Analysis (LDA) 

LDA, which stands for linear discriminant analysis, is a 
supervised learning methodology that divides the input space 
into several decision regions, delineated by decision 
boundaries. The purpose is to categorize data samples into 

separate classes using linear decision functions [8]. 
Belhumeur et al. [9] state that Fisher’s Linear Discriminant 
(FLD) seeks to identify an ideal linear projection matrix  
𝑊௢௣௧  that maximizes the ratio of between-class scatter to 
within-class scatter. This optimization problem is 
characterized as Eq. (7). 

𝑊௢௣௧ = arg 𝑚𝑎𝑥
௪

หௐ೅ௌಳௐห

หௐ೅ௌೢௐห
= [𝑤ଵ 𝑤ଶ … 𝑤௠ ]       (7) 

where, 𝑊denotes the linear projection matrix composed of 
the discriminant vectors 𝑤௜ . 𝑆஻  is the between-class scatter 
matrix and 𝑆௪  is the within-class scatter matrix, expressed 
respectively as Eq. (8) and Eq. (9). 

𝑆஻ = ∑ 𝑁௜
௖
௜ୀଵ  (𝜇௜ − 𝜇)(𝜇௜ − 𝜇)்                (8) 

𝑆ௐ = ∑ ∑ (𝑥௞ − 𝜇௜)(𝑥௞ − 𝜇௜)
்

௫ೖ∈௑೔

௖
௜ୀଵ            (9) 

where 𝑐  denotes the number of classes, 𝑁௜  the number of 
samples in class 𝑖,  𝜇௜  the mean vector of class 𝑋௜ , 𝜇  the 
global mean vector across all classes, and 𝑥௞ represents the 
kth data vector belonging to 𝑋௜ . The eigenvectors 𝑤௜  are 
obtained by solving the generalized eigenvalue problem as  
Eq. (10). 

𝑆஻𝑤௜ = 𝜆௜𝑆ௐ𝑤௜                          (10) 

The corresponding eigenvalues 𝜆௜  represent the 
discriminative strength of each projection direction. The 
dimensionality of the discriminant subspace is limited to  
𝑐 − 1, so 𝑊௢௣௧ = [𝑤ଵ 𝑤ଶ … 𝑤௠ ] with 𝑚 ≤ 𝑐 − 1 

3)  Partial Least Squares-Discriminant Analysis (PLS-DA) 

The PLS-DA technique has been extensively utilized as 
both a feature selection method and a classifier for high-
dimensional data. Ruiz-Perez et al. [10] indicated that PLS-
DA showed exceptional efficacy when the class structure 
displays clustered distributions inside a signal-bearing 
subspace, even in the presence of several extraneous factors 
obscuring the pertinent characteristics. This strategy remains 
effective when the classes are arranged as N-orthotopes. In 
instances when class separation relies predominantly on 
general linear or nonlinear correlations, PLS-DA may offer 
restricted insights compared to alternative methods like PCA. 
Rosipal et al. [11] proposed PLS-DA is a supervised 
dimensionality reduction method based on Partial Least 
Squares (PLS) regression, intended to model the association 
between the predictor matrix X ∈ 𝑅௡௫ே and the class 
membership matrix 𝑌 ∈ 𝑅௡×ெ . Both matrices are 
decomposed as Eq. (11) and Eq. (12). 

𝑋 = 𝑇𝑃் + 𝐸                            (11) 

  𝑌 = 𝑈𝑄் + 𝐹                            (12) 

where 𝑇 and 𝑈 are matrices of latent score vectors, 𝑃 and 𝑄 
are loading matrices, and 𝐸  and 𝐹  are residuals. The 
superscript T denotes the transpose of the corresponding 
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matrix. By aligning the extracted components with class-
relevant variation, PLS-DA provides improved separability 
between normal and abnormal waveforms, particularly in 
scenarios where the discriminative structure resides in 
correlated multidimensional subspaces. In this work, PLS-
DA demonstrated strong effectiveness in extracting 
discriminative features for abnormal-signal detection. 

D. Classifiers 

This research utilizes 5 machine learning models: Naïve 
Bayes (NB), Support Vector Machine (SVM), K-Nearest 
Neighbors (KNN), Logistic Regression (LR), and Multi-
Layer Perceptron (MLP), a type of artificial neural network. 

The Naïve Bayes method is a probabilistic machine 
learning technique based on Bayes’ theorem that is widely 
used for classification tasks. This algorithm functions under 
the assumption of feature independence, indicating that each 
characteristic is regarded as independent of the others, 
conditional on the class label [12]. Stanescu et al. [13] 
utilized the Naive Bayes classifier as one of three classifiers, 
alongside Support Vector Machine and K-Nearest Neighbors, 
after extracting phase-diagram characteristics from power-
grid transient signals. The NB model was then employed to 
identify 3 categories of transitory phenomena: 
 high-amplitude, long-duration events. 
 periodic pulse trains. 
 partial discharges. 
The Support Vector Machine is a traditional classification 

technique aimed at identifying a hyperplane in a multi-
dimensional space that optimally divides data into various 
groups [14]. Stanescu et al. [13] employed SVM as a 
multiclass classifier by partitioning the problem into several 
binary one-to-one subproblems, determining the best 
separation hyperplane for each class pair. The classification 
delineation is contingent upon the kernel type utilized; in their 
research, a second-order polynomial kernel was employed. 
The SVM model was trained utilizing phase-diagram features, 
such as Phase-Diagram Entropy (PDEn), Angular Mean 
(AM), Length of the First Gap (LFG), and Spatial Entropy 
(SE), to categorize 3 types of transient occurrences seen in an 
actual 3-phase power system: 
 strong/long bursts from external loads. 
 periodic pulses. 
 cable partial discharges. 
The K-Nearest Neighbors algorithm is a straightforward 

instance-based classifier that designates a class to a new 
sample according to the predominant class among its nearest 
neighbors in the feature space. Averyanov et al. [15] 
conducted a study on transient signal classification using the 
KNN model, analyzing characteristics derived from current 
and voltage waveforms. The experimental findings 
demonstrated an accuracy of 0.78 and a precision of 0.794, 
which were roughly 7–8% inferior to those achieved with a 
decision-tree baseline model, albeit with reduced processing 
time. Furthermore, the authors indicated that KNN is 
susceptible to outliers frequently present at the onset of the 
transitory process. 

Logistic Regression is a linear probabilistic classifier that 
determines class membership probability by utilizing the 
logistic function on a linear amalgamation of input features. 
Despite being fundamentally a binary classifier, logistic 
regression can be adapted for multiclass situations using the 

one-vs-rest strategy, wherein an individual logistic regression 
model is developed for each class against all remaining 
classes, and the ultimate prediction is established by 
evaluating the resulting decision boundaries. Averyanov  
et al. [15] identified the features with the greatest connection 
to the target variable prior to training a multiclass logistic 
regression model in their work on transient signal 
categorization. Despite the class structure demonstrating 
partial linearity owing to the inclusion of the binary variable 
Short-Circuit Transient (SCT), the logistic regression model 
attained an accuracy of 0.57 and a precision of 0.57, both 
inferior to those reached by the decision-tree and KNN 
models. 

Artificial Neural Networks (ANN) are utilized as data-
driven classifiers for Transient Stability Assessment (TSA). 
The subsequent applications have been documented. 
1) Multilayer feedforward networks for online TSA 

assessment. 
2) Classifiers for fault-induced transients, including the 

differentiation between stable and loss-of-excitation 
circumstances, as well as for encoding and estimating the 
Critical Clearing Time (CCT). 

3) Deep models employing Phasor Measurement Unit (PMU) 
data, including Convolutional Neural Networks (CNNs), 
Recurrent Neural Networks (RNNs), and Long Short-
Term Memory (LSTM) networks, have been utilized to 
categorize brief post-disturbance intervals into stable, 
aperiodic-unstable, or oscillatory-unstable classification. 

In addition, the survey also mentioned ANN architectures 
capable of directly estimating the Critical Clearing Time 
(CCT) for short-circuit or line-outage scenarios [16]. 

III. METHODOLOGY 

To improve the efficacy of distinguishing normal and 
abnormal transient signals through machine learning models, 
the methodology and procedural framework of this study are 
illustrated in Fig. 2, which seeks to establish a suitable 
solution for consistent downsampling and feature extraction 
of transient signal datasets acquired from an oscilloscope 
during the EDFA testing. The transient signal dataset was 
first processed using uniform downsampling to reduce the 
original 30,000 samples into compact feature sets of 10,000, 
1000, and 100 features, preserving waveform characteristics 
while decreasing computational complexity. 3 feature 
extraction techniques PCA, PLS-DA, and LDA were then 
applied to improve separation between normal and abnormal 
waveforms, and the resulting features were used for model 
training.  

The dataset was divided into 70% training and 30% testing, 
using stratified sampling to maintain class proportions This 
ensured that the class distributions were preserved throughout 
the data partitions and prevented sampling bias. For Naïve 
Bayes, SVM, KNN, and Logistic Regression, hyperparameter 
optimization and performance assessment were conducted 
via 5-fold stratified cross-validation within the training subset, 
enabling performance to be reported as mean ± standard 
deviation across folds.  

The MLP model employed a validation split from the 
training subset and incorporated early stopping and 
regularization to reduce overfitting. The close agreement 
between training and validation metrics indicated stable 
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model behavior and generalization.  
All models were finally evaluated using the unseen 30% 

test set, with performance measured using AUC, precision, 

recall, accuracy, and F1-score. Confusion matrices were also 
generated to visualize prediction distributions and support 
reliability assessment of the classification results.  

 
Fig. 2. The framework of methodology. 

 
The transient signal dataset was obtained from the 

oscilloscope in the transient testing system, as shown in  
Fig. 3. The system comprises a full-comb optical source that 
produces multiple wavelength channels, which are then 
injected into an Acousto-Optic Modulator (AOM) to emulate 
the addition or removal of channels in a DWDM system. An 
electronic function generator controls the AOM. It switches 
between ON and OFF states at set time intervals to create 
transients in the system. 

 

 
Fig. 3. EDFA transient test diagram.  

 

Simultaneously, one channel in the system is identified as 
the primary channel, which remains perpetually active. This 
channel is connected to the signals from the AOM through a 
coupler and thereafter directed into the module under 
examination (EDFA), which functions as the optical 
amplifier being assessed. 

Following amplification, the output signal from the EDFA 
is subjected to filtration via a surviving-channel optical filter 
to isolate the desired wavelength. The filtered signal is 
subsequently transmitted to a photodetector, which 
transforms the optical signal into an electrical signal. The 
electrical waveform is ultimately transmitted to an 
oscilloscope to document the time-domain transient reaction. 
The ephemeral data obtained from the oscilloscope is 
subsequently utilized for processing and analysis through 
machine learning algorithms. The experimental protocol of 

this study has 3 primary phases, detailed as follows. 

A. Data Acquisition and Preprocessing 

The transient waveforms acquired from the oscilloscope 
were saved as time-series data files, each including 30,000 
data points. This investigation collected 500 transient signal 
samples. The dataset was divided into 2 categories: normal 
transient signals, comprising 70% of the total samples, and 
abnormal transient signals, including the remaining 30%. To 
ensure the reliability of the dataset and the accuracy of model 
training, a structured labeling and preprocessing procedure 
was implemented as described below. 

1)  Normal and abnormal transient waveform criteria 

A waveform was classified as normal if it exhibited 
physically consistent transient behavior, including the 
presence of measurable overshoot and undershoot responses 
followed by stabilization at steady-state gain levels, as 
illustrated in Fig. 4 that depicts instances of normal transient 
waveforms demonstrating characteristic responses, including 
fast overshoot and undershoot, which thereafter stabilize at 
steady-state levels. 

 

 

 
Fig. 4. Normal transient waveform. 

  
In contrast, a waveform was classified as abnormal if it 

displayed non-physical or corrupted characteristics, such as 

International Journal of Future Computer and Communication, Vol. 15, No. 1, 2026

doi: 10.18178/ijfcc.2026.15.1.627 5



  

excessive noise, clipped transitions, flat-line behavior, or 
distorted response dynamics beyond expected EDFA 
operational limits, as illustrated in Fig. 5. 

 

 

 
Fig. 5. Abnormal transient waveform. 

 

2)  Labeling procedure and annotation 

The labeling process was conducted manually by a group 
of optical test engineers familiar with EDFA transient 
characterization. Normal waveforms were assigned label 1 
(Negative) and abnormal waveforms were assigned label 0 
(Positive). 

To ensure labelling reliability, cross-checking among 
multiple annotators was performed and quality control was 
maintained by re-checking randomly selected sample to 
ensure label consistency and adherence to the classification 
criteria. 

3)  Uniform downsampling 

To establish a suitable methodology for data preparation 
and enhance the efficiency of transient signal classification in 
terms of performance and processing time, the uniform 
downsampling technique was utilized to systematically 
decrease the data points from 30,000 to 10,000, 1000, and 100 
points per transient signal, while maintaining the fundamental 
waveform characteristics. This procedure was employed to 
assess categorization accuracy and processing duration. 
Uniform downsampling significantly decreases computing 
burden and processing duration. The dataset including 1000 
data points was subsequently chosen and underwent feature 
extraction. 

B. Feature Extraction 

Following the consistent reduction of the transient signal 
data to 1000 points, feature extraction techniques were 
employed to convert the dataset into a format conducive to 
assessing the efficacy of machine learning models. The 
methods utilized comprise PCA, LDA, and PLS-DA. The aim 
of these feature extraction procedures is to minimize data 
redundancy and improve the capacity to differentiate between 
normal and aberrant transient signals. 

C. Classification and Evaluation 

The present research assessed the efficacy of the proposed 
data preparation methods, namely uniform downsampling 
and Feature Extraction, by utilizing five classification 
techniques: NB, SVM, KNN, LR, and MLP. Each classifier 
was trained with its default parameter settings to maintain a 

consistent foundation for comparing results across various 
models. 

The classifiers’ performance was assessed using the Area 
Under the Curve (AUC) metric, which illustrates the 
correlation between the True Positive Rate (TPR) and the 
False Positive Rate (FPR). The AUC value spans from 0 to 1, 
with a value approaching 1 signifying superior classification 
performance of the model [17]. Furthermore, other evaluation 
measures like Recall, Precision, and F1-score were utilized to 
further evaluate the model’s correctness and its proficiency in 
accurately identifying samples inside each class. The 
processing duration was assessed to gauge the computational 
efficiency and feasibility of model implementation within the 
testing system. 

This research technique includes the complete process of 
transient signal data preparation, uniform downsampling, 
feature extraction, machine learning model training, and 
performance evaluation utilizing standard metrics. The aim is 
to formulate a proficient method for diminishing and 
extracting features from transient data acquired during EDFA 
testing, thus optimizing the classification efficacy of transient 
signals. 

D. Implementation Details 

This subsection provides the key implementation details 
required for reproducibility, including the software 
environment, model settings, dimensionality reduction 
parameters, and hardware platform. 

1)  Programming language and main libraries 

Python 3.13.5 with Spyder 6.07, using NumPy, Pandas, 
Scikit-Learn, Matplotlib, and TensorFlow/Kears. 

2)  Model hyperparameters 

The Naïve Bayes classifier was implemented using 
GaussianNB() with default smoothing parameters. The SVM 
model employed an RBF kernel for nonlinear separation in 
the transformed feature space. The KNN classifier used  
K = 5 neighbors for distance-based classification. Logistic 
Regression was trained using the liblinear solver with a 
maximum of 2000 iterations for convergence. Finally, the 
MLP neural network consisted of 2 fully connected hidden 
layers with 128 and 64 neurons, respectively, using ReLU 
activation functions. 

3)  Retained components in PCA/LDA/PLS-DA 

PCA retained components covering 95% variance, LDA 
yielded one discriminant component for the binary 
classification, and PLS-DA retained 10 latent components. 

4)   Hardware environment 

All experiments were executed on a Lenovo ThinkPad 
T480 with an Intel Core i5-8350U CPU (4 cores, 8 threads, 
1.70 GHz) and 32 GB RAM, without GPU acceleration. 

IV. RESULT AND DISCUSSION 

This section elucidates and analyzes the experimental 
outcomes derived by assessing diverse machine learning 
models alongside data reduction and feature extraction 
methodologies. The aim of the investigation is to examine the 
influence of uniform downsampling and feature extraction 
algorithms on the classification efficacy of transient signal 
datasets obtained from EDFA testing.  
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A. Performance Overview 

Each model was evaluated with conventional performance 
indicators as outlined below. 

The NB model achieved optimal performance with the 

uniform downsampling method and PLS-DA feature 
extraction, as detailed in Table 1. The model produced 
exceptional values for all performance parameters, with  
AUC = 0.9913, F1-score = 0.8217, Recall = 0.8400, and 
Precision = 0.8602. 

Table 1. Results for Naïve Bayes on test set 

Model Technique AUC F1-score Recall Precision 
Training 

Time 
Testing 
Time 

Naïve Bayes 

Original dataset (30,000 features) 0.6571 0.7510 0.7867 0.8068 6.689 0.109 

Downsampling (10,000 features) 0.6571 0.7510 0.7867 0.8068 2.019 0.003 

Downsampling (1000 features) 0.6571 0.7510 0.7867 0.8068 0.245 0.004 

Downsampling (100 features) 0.6587 0.7510 0.7867 0.8068 0.092 0.001 

Downsampling (1000 features) + PCA 0.8315 0.7510 0.7867 0.8068 0.149 0.002 

Downsampling (1000 features) + LDA 0.9913 0.8217 0.8400 0.8602 0.116 0.001 

Downsampling (1000 features) + PLS-DA 0.8491 0.7567 0.7867 0.8068 0.130 0.001 

Table 2. Results for SVM on test set 

Model Technique AUC F1-score Recall Precision 
Training 

Time 
Testing 
Time 

SVM 

Original dataset (30,000 features) 0.9748 0.7510 0.7867 0.8068 1006.700 0.676 

Downsampling (10,000 features) 0.9956 0.9525 0.9533 0.9543 302.280 0.134 

Downsampling (1000 features) 0.9853 0.9525 0.9533 0.9543 22.390 0.028 

Downsampling (100 features) 0.9858 0.9569 0.9600 0.9622 6.494 0.005 

Downsampling (1000 features) + PCA 0.3962 0.7625 0.8000 0.8444 6.455 0.012 

Downsampling (1000 features) + LDA 0.9833 0.9540 0.9533 0.9570 5.910 0.002 

Downsampling (1000 features) + PLS-DA 0.9977 0.9668 0.9667 0.9670 6.133 0.003 

 
The SVM model, in conjunction with the uniform 

downsampling method and PLS-DA feature extraction, got 
the highest AUC value of 0.9977 among all machine learning 
models. It yielded the highest results for the F1-score, Recall, 
and Precision, with values of 0.9668, 0.9667, and 0.9670, 
respectively, as shown in Table 2. 

The KNN model, in conjunction with the uniform 

downsampling approach and LDA, attained the highest AUC 
performance. The integration of uniform downsampling and 
PLS-DA produced the greatest metrics across all machine 
learning models for the F1-score, Recall, and Precision, with 
values of 0.9933, 0.9933, and 0.9934, respectively, as 
presented in Table 3. 

Table 3. Results for KNN on test set 

Model Technique AUC F1-score Recall Precision 
Training 

Time 
Testing 
Time 

KNN 

Original dataset (30,000 features) 0.9746 0.9668 0.9667 0.9670 44.256 0.138 
Downsampling (10,000 features) 0.9746 0.9668 0.9667 0.9670 14.632 0.124 
Downsampling (1000 features) 0.9746 0.9668 0.9667 0.9670 2.083 1.535 
Downsampling (100 features) 0.9666 0.9668 0.9667 0.9670 0.493 0.010 

Downsampling (1000 features) + PCA 0.9917 0.9535 0.9533 0.9537 0.638 0.004 
Downsampling (1000 features) + LDA 0.9941 0.9735 0.9733 0.9741 0.680 0.014 

Downsampling (1000 features) + PLS-DA 0.9889 0.9933 0.9933 0.9934 0.845 0.013 

 
The LR model, in conjunction with the uniform 

downsampling method and LDA feature extraction, attained 
the optimal overall performance. The evaluation results, 
presented in Table 4, provide superior values for all important 
performance metrics: AUC, F1-score, Recall, and Precision, 
with respective values of 0.9913, 0.9688, 0.9667, and 0.9670. 

The MLP model, in conjunction with the uniform 

downsampling approach and LDA feature extraction, 
attained the maximum performance regarding AUC. The 
integration of uniform downsampling and PLS-DA feature 
extraction produced the most favorable outcomes. The 
evaluation results, presented in Table 5, indicate enhanced 
values for the F1-score, Recall, and Precision, with respective 
values of 0.9801, 0.9800, and 0.9802. 

Table 4. Results for logistic regression on test set 

Model Technique AUC F1-score Recall Precision 
Training 

Time 
Testing 
Time 

Logistic 
Regression 

Original dataset (30,000 features) 0.9826 0.9542 0.9533 0.9596 160.330 0.036 
Downsampling (10,000 features) 0.9545 0.8967 0.8933 0.9160 37.357 0.011 
Downsampling (1000 features) 0.9331 0.8464 0.8400 0.8886 4.402 0.005 
Downsampling (100 features) 0.3970 0.7625 0.8000 0.8444 1.081 0.004 

Downsampling (1000 features) + PCA 0.3962 0.7625 0.8000 0.8444 0.297 0.002 
Downsampling (1000 features) + LDA 0.9913 0.9688 0.9667 0.9670 5.544 0.002 

Downsampling (1000 features) + PLS-DA 0.9663 0.9607 0.9600 0.9647 5.155 0.004 
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Table 5. Results for MLP on test set 

Model Technique AUC F1-score Recall Precision 
Training 

Time 
Testing 
Time 

MLP 

Original dataset (30,000 features) 0.9344 0.9030 0.9067 0.9098 20.520 0.166 

Downsampling (10,000 features) 0.9113 0.8248 0.8200 0.8363 20.470 0.135 

Downsampling (1000 features) 0.9234 0.8901 0.8933 0.8932 10.490 0.127 

Downsampling (100 features) 0.9323 0.9038 0.9067 0.9075 7.370 0.097 

Downsampling (1000 features) + PCA 0.9211 0.8901 0.8933 0.8932 14.440 0.110 

Downsampling (1000 features) + LDA 0.9913 0.9735 0.9733 0.9741 9.990 0.124 

Downsampling (1000 features) + PLS-DA 0.9812 0.9801 0.9800 0.9802 21.230 0.130 

 
The experimental findings illustrate the performance 

variations among the machine learning models under various 
uniform downsampling and feature extraction configurations. 
The principal conclusions are encapsulated as follows. 

The LDA and PLS-DA approaches significantly enhanced 
both classification performance (F1-score) and 
discriminative capability (AUC) in all models, especially in 
SVM, KNN, and MLP. This discovery demonstrates that 
linear feature extraction techniques prioritizing inter-class 
separability significantly diminish redundancy and improve 
classifier decision bounds. PCA, however, often diminished 
the efficacy of specific models, like SVM and LR, as it 
prioritizes the reduction of data dimensionality by preserving 
only the axes of largest variance, which may not correspond 
with the axes that optimally differentiate the classes. 

The experimental findings indicated that KNN and MLP 
attained the highest overall performance, with AUC values 
surpassing 0.99 and F1-scores over 0.98. These results 
demonstrate the robust ability of both models to proficiently 
manage data characterized by non-linear decision limits. 
Despite being fundamentally a linear model, LR yielded 
results comparable to SVM when integrated with the LDA 
approach, which improves linear separability among classes. 
Simultaneously, SVM attained an exceptional F1-score and 
Recall, especially with PLS-DA features, illustrating its 
capacity to classify signals with accuracy and consistency 
while maintaining a favorable Precision–Recall balance. 

The experimental findings showed that uniformly reducing 
the dataset to 1000 data points efficiently preserved a high 
degree of model performance while substantially saving 
training time compared to the complete 30,000-point dataset. 
This discovery aligns with the notion of dimensionality 
reduction, which reduces computing load and data 
redundancy while maintaining classification efficacy. 
Nevertheless, when the data points were further diminished 
to 100, a decrease in accuracy was noted in certain models, 
such as Naive Bayes and Logistic Regression, suggesting that 
extreme data reduction may result in the loss of critical 
transient signal attributes. 

The temporal study indicated that the integration of 
uniform downsampling and feature extraction methodologies 
substantially decreased the model training duration. The 
training duration of the SVM model significantly reduced 
from 1006 s (about 17 min) to merely 6 s while employing 
PLS-DA. Despite the MLP necessitating a rather extended 
training duration as a deep learning model, it remained 
feasible for real-world implementation in automated testing 
systems, achieving an average processing time per signal of 
under 0.15 s. 

B. Per-Class Metrics 

Although all 5 classification models (NB, LR, SVM, KNN, 
and MLP) were initially evaluated, per-class analysis in this 
section focuses specifically on SVM, KNN, and MLP 
because these models demonstrated the highest overall 
classification performance and achieved ROC-AUC values 
exceeding 0.99. Additionally, these 3 models offer 
complementary behavior: SVM provides maximum class 
separability, KNN exhibits aggressive fault detection with 
high abnormal sensitivity, and MLP delivers balanced 
learning capability via nonlinear representation. Therefore, 
they represent the most relevant candidates for deeper per-
class evaluation and discussion. 

To further examine model behavior for each class (normal 
vs. abnormal), per-class precision, recall, and F1-score were 
computed for SVM, KNN, and MLP using PLS-DA with 
1000 features. As summarized in Table 6, all 3 models deliver 
high discriminative capability; however, the difference 
between performance on abnormal (class 0) and normal (class 
1) reveals important insights regarding model sensitivity to 
fault detection. 

For the abnormal class (class 0), KNN achieved the 
strongest overall performance with a precision of 1.0000 and 
recall of 0.9778, resulting in an F1-score of 0.9888. This 
indicates that KNN produced zero false positives for 
classifying abnormal signals and missed only one actual 
abnormal sample (out of 45), demonstrating highly 
conservative detection behavior. 

Table 6. Per-class metrics for SVM, KNN, and MLP 

Model Technique Class Precision Recall F1-score Support 

SVM Downsampling (1000 features) + PLS-DA 
0 (abnormal) 0.9348 0.9556 0.9451 45 

1 (normal) 0.9808 0.9714 0.9761 105 

KNN Downsampling (1000 features) + PLS-DA 
0 (abnormal) 1.0000 0.9778 0.9888 45 

1 (normal) 0.9906 1.0000 0.9953 105 

MLP Downsampling (1000 features) + PLS-DA 
0 (abnormal) 0.9565 0.9778 0.9670 45 

1 (normal) 0.9904 0.9810 0.9856 105 

 
In contrast, SVM yielded a precision of 0.9348 and recall 

of 0.9556 (F1-score = 0.9451) for the abnormal class, 
showing that although its class-separation capability is high, 
it produced more false positives and false negatives than 
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KNN. Meanwhile, MLP achieved precision of 0.9565 and 
recall of 0.9778 (F1-score = 0.9670), outperforming SVM but 
slightly falling behind KNN in false-negative suppression. 

For the normal class (class 1), all models achieve recall and 
precision greater than 0.97, confirming that normal test 
waveforms are consistently recognized by all classifiers. This 
indicates that the main performance differentiation lies in 
abnormal detection, which is the more safety-critical 
classification objective in real-world testing environments. 

These results demonstrate that KNN offers the best 
reliability for abnormal detection by virtually eliminating 
false positives, while MLP provides balanced performance 
between recall and precision. SVM, although yielding the 
highest ROC-AUC, presents more uncertainty in abnormal 
classification and therefore may be best suited when overall 
boundary separation is prioritized rather than fault-risk 
avoidance. 

C. Confusion Matrix 

To illustrate the classification behavior of the most safety-
critical model, the confusion matrix for KNN using PLS-DA 
features is shown in Fig. 6. The KNN classifier correctly 
detected 44 out of 45 abnormal waveforms (class 0), resulting 
in a single false negative (FN = 1), where one abnormal signal 
was misclassified as normal. Although such misclassification 
represents a potentially critical oversight in safety-sensitive 
environments, the overall detection rate for abnormal signals 
remains high (recall = 0.9778). Importantly, the classifier 
produced no false positives (FP = 0), avoiding unnecessary 
false alarms for normal signals. 

This performance reflects a relatively balanced diagnostic 
behavior, with strong capability for detecting transient faults, 
although not fully eliminating the risk of missed abnormal 
events. In environments such as EDFA transient testing, this 
highlights the trade-off between sensitivity and reliability, 
emphasizing the importance of continued improvement 
toward minimizing false negatives. 
 

 
Fig. 6. Confusion matrix of KNN using PLS-DA features. 

 

D. Analysis of Precision-Recall Trade-offs 

From Table 6 and Fig. 6, a clear pattern emerges with 
respect to the balance between precision and recall for 
abnormal signal detection. The KNN model achieved 
precision = 1.0000 and recall = 0.9778 for class 0 (abnormal), 
demonstrating total elimination of false positives and nearly 
total elimination of false negatives. The perfect precision 
indicates that every predicted abnormal case was truly 

abnormal, while the high recall confirms that the majority of 
abnormal signals were successfully detected, with only a 
single missed case. 

In contrast, SVM and MLP introduce a small number of 
false negatives, reflecting a slightly more conservative 
preference toward minimizing false alarms at the cost of 
occasionally missing abnormal signals. From a risk-
management standpoint, this reflects a trade-off between 
specificity-driven classification (SVM, MLP) and sensitivity-
driven classification (KNN). Given the testing context, where 
undetected abnormal events may propagate uncertainty or 
operational risk, the high-recall profile of KNN provides a 
more reliable detection strategy in production-oriented EDFA 
transient analysis. 

E. ROC and PR Curves 

To further assess the capability of KNN in distinguishing 
abnormal and normal signal patterns, the ROC and PR curves 
were evaluated as shown in Fig. 7 and Fig. 8. The ROC curve 
achieved an AUC of 0.9889, indicating excellent separability 
between class 0 (abnormal) and class 1 (normal). The curve 
rises sharply toward the top-left corner with a minimal false-
positive rate, highlighting efficient discrimination even under 
slight threshold adjustments. 

The PR curve demonstrated an average precision of 0.9906, 
with precision maintained near 1.0 across almost the entire 
range of recall. This behavior confirms that the KNN 
classifier can sustain high precision even as recall increases, 
ensuring reliable abnormal-signal detection in imbalanced 
scenarios where abnormal cases are less frequent. 
 

 
Fig. 7. ROC curve of KNN using PLS-DA features. 

 

 
Fig. 8. Precision-recall curve of KNN using PLS-DA features. 

F. Threshold Selection 

To investigate the adaptability of KNN for real-world 
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operation, the effect of decision-threshold variation was 
examined. Reducing the threshold below the standard value 
of 0.5 increases recall, thereby reducing false negatives and 
preventing abnormal signals from being misclassified as 
normal. This comes with the potential trade-off of introducing 
occasional false positives. 

In the context of EDFA transient analysis, the operational 
impact of false negatives is significantly more critical than 
that of false positives. Accordingly, a lowered threshold 
setting is preferable when the primary objective is to avoid 
missing abnormal waveforms. This highlights the practical 
necessity of threshold tuning based on application-specific 
risk tolerance and operational safety requirements. 

V.  CONCLUSION 

In the evaluation of the EDFA, the transient waveforms 
recorded by the oscilloscope are automatically analyzed to 
extract key transient parameters. However, irregular transient 
signals such as containing noise or waveform distortion, can 
produce inaccurate transient parameter results, requiring 
manual review by the optical test engineer. This paper 
presents an AI-based methodology for automatic transient 
classification, enabling early detection of abnormal transient 
signals and significantly improving test reliability while 
reducing the need for manual transient waveform inspection. 

The experimental findings indicated that the integration of 
the uniform downsampling technique with LDA and PLS-DA 
markedly improved the overall efficacy of the machine 
learning models. The KNN and MLP models attained AUC 
values above 0.99 and F1-scores over 0.98, demonstrating 
their exceptional proficiency in reliably classifying transitory 
signals. Moreover, uniformly lowering the dataset to 1000 
points significantly diminished both training and testing 
durations without sacrificing accuracy, offering a pragmatic 
benefit for real-world implementation in automated testing 
systems that necessitate rapidity and precision.  

The suggested method allows the EDFA testing system to 
autonomously and swiftly identify abnormal transient signals, 
thus minimizing engineers’ manual analysis time and 
enhancing the dependability of test outcomes. 

Although the current results were obtained under a stable 
and consistent laboratory measurement environment, 
industrial deployment may introduce variations such as test 
equipment recalibration, Unit Under Test (UUT) 
manufacturing variance, temperature fluctuations, or aging-
induced optical changes. To ensure long-term reliability of 
the classifier, future work should evaluate robustness under 
such distribution shifts and explore retraining or domain 
adaptation strategies, including incremental learning or 
periodic re-estimation of the feature transformation model, to 
maintain classification integrity when the test setup changes.  

Future research could expand to encompass a broader 
spectrum of EDFA operating conditions and investigate the 
application of sophisticated deep learning models, such as 
Convolutional Neural Networks (CNNs) or Recurrent Neural 
Networks (RNNs), to further improve performance and 
facilitate the advancement of intelligent testing systems. 
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