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Abstract—Transient testing of the Erbium-Doped Fiber
Amplifier (EDFA) is crucial for assessing the transient response
to abrupt channel add/drop occurrences in Dense Wavelength
Division Multiplexing (DWDM) systems. Nevertheless,
anomalous transient signals, frequently resulting from
inadequacies in the testing apparatus or photodetector
saturation, may result in erroneous computations of critical
parameters, including overshoot, undershoot, gain offset, and
settling time. This study presents an artificial intelligence-driven
method for the automatic classification of normal and
pathological transient signals in EDFA testing. The methodology
entails preprocessing transient signals via uniform
downsampling, implementing feature extraction techniques
such as Classical Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), and Partial Least Squares—
Discriminant Analysis (PLS-DA), and subsequently training
and assessing five machine learning models (Naive Bayes,
Support Vector Machine (SVM), K-Nearest Neighbors (KNN),
Logistic Regression, and Multi-Layer Perceptron (MLP)) for
performance evaluation. Experimental findings demonstrate
that the number of features and the extraction techniques
substantially affect classification accuracy, Area Under the
Curve (AUC), precision, recall, Fl-score, and processing
duration. The optimal performance was attained using 1000
features produced through uniform downsampling, integrated
with PLS-DA and categorized using SVM, resulting in an AUC
0f 0.9977. The findings illustrate a dependable and effective AI-
driven method for automated classification of transient signals,
augmenting the validation of EDFA transient testing and
potentially enhancing signal data analysis in the assessment of
optical fiber communication systems.

Keywords—artificial intelligence, Erbium-Doped Fiber
Amplifier (EDFA), feature extraction, machine learning,
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1. INTRODUCTION

In contemporary times, optical fiber communication has
emerged as a fundamental technology that underpins the
ever-growing demand for data transfer. High-speed network
systems specifically depend on Dense Wavelength Division
Multiplexing (DWDM) systems, which provide the
concurrent transmission of many optical channels. Optical
networks extensively utilize the Erbium-Doped Fiber
Amplifier (EDFA) as a crucial element to efficiently amplify
these multi-channel wavelengths. The utilization of the
EDFA is essential for enabling long-distance, high-speed data
transmission and offering adaptability in network
reconfiguration.

However, a significant concern related to the EDFA is the
emergence of transients, which generally occur during the
installation or removal of channels in the DWDM system.
The resultant variations in optical power can induce
overshoot and undershoot events, which directly impact
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signal quality by elevating the Bit Error Rate (BER) and
diminishing overall system performance [1]. Furthermore, if
the EDFA fails to manage these abrupt fluctuations
adequately in output optical power, it may result in system
instability, particularly in network architectures where
numerous EDFAs are interconnected [2].

In the EDFA manufacturing sector, product development
initiatives have concentrated on reducing transient effects,
supported by specialized testing tools to assess the transient
properties of the EDFA. A study presented an automated
testing system created in Python to simultaneously manage
many measuring devices and document real-time test findings,
thereby minimizing human errors and enhancing the
precision of transient characterization in the EDFA [1].
Simultaneously, an alternative method has combined
Automatic Gain Control (AGC) approaches with artificial
intelligence and neural networks to alleviate transient
intensity and reduce system recovery time [2].

The transient test of an EDFA is performed to assess its
reaction to abrupt variations in several input optical channels
while preserving a consistent output gain for the surviving
channel. The transient testing procedure often entails
capturing and documenting the waveform with an
oscilloscope. The collected data are subsequently analyzed by
testing software to calculate several transient parameters,
including overshoot, undershoot, gain offset, and settling
time. Consequently, acquiring precise transient parameters
necessitates the utilization of reliable transient signals during
calculations. Should we obtain an anomalous transient signal,
the computed parameters might not accurately represent the
true transient characteristics of the EDFA. Abnormal
transient signals may originate from various factors,
including inadequacies in the testing apparatus or high optical
power that saturates the photodetector in the optical receiver,
leading to distorted transient waveforms on the oscilloscope.

This project seeks to create an artificial intelligence-based
system that can classify normal and abnormal transient
signals in EDFA testing prior to accurately calculating
transient parameters for legitimate signals. The methodology
utilizes machine learning algorithms alongside data reduction
and feature extraction approaches to categorize transient
waveforms obtained from the oscilloscope. This approach
facilitates the automatic identification of anomalous signals
that may otherwise result in erroneous parameter estimates;
hence, it enhances the reliability and automation of EDFA
transient characterization.

The researcher aims to improve the precision and
dependability of the EDFA testing procedure through this
study. The system is designed to autonomously identify and
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categorize anomalous transient signals before calculating
essential transient characteristics, including overshoot,
undershoot, gain offset, and settling time. This minimizes
transitory measurement discrepancies and decreases the
manual effort needed by engineers to examine signal
waveforms. Moreover, the suggested methodology can be
expanded to create automated systems for inspecting signal
quality in additional optical fiber-based devices in production
lines. This improvement enhances quality control efficiency,
decreases testing duration and expenses, and facilitates the
creation of more robust and standardized optical
communication technologies.

II. LITERATURE REVIEW

A. Transient Signal

Fig. 1 illustrates a transient waveform together with its
corresponding properties, such as overshoot, undershoot,
settling time, and gain offset.
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Fig. 1. Transient waveform of the EDFA.
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As illustrated in Fig. 1, the overshoot and undershoot
denote the maximum upward and downward deviations,
respectively, of the surviving-channel gain in relation to the
desired steady-state gain during transient conditions [1]. The
settling time refers to the period necessary for the surviving-
channel gain to undergo a sudden change and thereafter revert
to a stable condition following the addition or removal of
channels. The gain offset shows the difference in the steady-
state gain of the surviving channel before and after the add or
drop events.

B. Signal Pre-Processing

The input data comprises transient signal waveforms
acquired via an oscilloscope, reflecting time-domain voltage
measurements. The signals are archived as data files and
thereafter aggregated and structured into a transient signal
dataset containing 500 entries in total. The dataset comprises
70% normal transient signals and 30% aberrant transient
signals.

The uniform downsampling methodology is a way of
systematically lowering the number of data points rather than
selecting them randomly or according to specific signal
attributes. For instance, if an oscilloscope signal has 30,000
data points and the objective is to condense it to 1000, only
one point of every 30 is preserved. The corresponding
equation delineates the original signal as Eq. (1):

x[n]l,n=0,1,2,..,N—1 (1)
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where N denotes the total number of data points.

If the signal is to be downsampled by a factor of M (for
example, M = 30), the downsampled signal can be expressed
as Eq. (2).

y[m] = x[mM],m = 0,1,2, ..., [%] -1 @

where,

x[n]—Original signal data.

y[m]—Data after Uniform Downsampling.

M—Downsampling ratio.

x[mM]—Data sample of the original signal at index mM,
where the index is formed by multiplying the downsampled
index m by the downsampling ratio M.

The uniform downsampling approach is utilized to
diminish the quantity of data points in the transient signal
while completely maintaining the overall waveform features.
This procedure reduces computational complexity and aids
later phases of feature extraction and signal categorization.
The technique samples data points at uniform intervals along
the time axis, ensuring that the downsampled signal
accurately preserves the shape and fundamental dynamics of
the original waveform.

To prevent issues arising from an inadequate resampling
rate beneath the necessary threshold, this method employs the
principle of “retaining only every M-th sample” while
discarding the remainder. For instance, sampling a signal at
40 kHz and subsequently downsampling by a factor of 2 will
lower the sampling rate to 20 kHz, hence directly diminishing
the sampling frequency [3].

The Nyquist-Shannon sampling theorem stipulates that to
accurately sample a signal with a maximum frequency of
fmax, the sampling rate must be no less than 2f;,,, to prevent
aliasing. In real applications, sampling at merely twice the
maximum frequency frequently fails to maintain the integrity
of waveform features. To ensure accurate digital
representation and maintain signal fidelity [4], a higher
sampling rate, typically 4 to 10 times the maximum frequency,
is often employed.

This study comprises transitory signals, each consisting of
30,000 data points, with each point representing a time

interval of § microsecond. Thus, the overall signal duration is

10 milliseconds. The square pulse signal produced by the
electronic function generator driving the device exhibits a
rising and falling transition of approximately 300 points,
corresponding to 100 microseconds (10 kHz). Consequently,
to guarantee that the sampling process encompasses this
frequency range, a sample rate of no less than 40 kHz to
100 kHz is necessary. This rate yields between 200 and 1000
data points per downsampled segment, effectively
maintaining transient characteristics while optimizing
computational efficiency.

Pan et al. [5] introduced various downsampling techniques
for Electroencephalogram (EEG) signals, such as direct,
average, and maximum decimation, to diminish the
computing complexity of a deep learning-based epilepsy
detection system. While their research concentrated on EEG
data, the core principle of uniform temporal sampling
reduction aligns with the uniform downsampling method
utilized in this study.
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C. Feature Extraction Method

Following the signal pre-processing phase, feature
extraction is a vital step that allows the classifier to group
datasets into distinct classes based on the values of pertinent
features obtained from the signals [6]. This study utilizes 3
feature extraction techniques.

1) Principal Component Analysis (PCA)

The PCA technique is employed for the reduction of data
dimensionality while maintaining maximal data variability. It
converts the original variables into a new collection of
uncorrelated principal components, arranged in descending
order of their variances. The components are derived using
eigenvalue-eigenvector decomposition or Singular Value
Decomposition (SVD), of the mean-centered data matrix.
When variables exhibit disparate scales, normalization is
advisable, and the correlation-matrix PCA approach should
be utilized to achieve more accurate findings. The quantity of
principal components is generally determined by the ratio of
explained variance. PCA functions primarily as an
exploratory and descriptive instrument, necessitating no
assumptions on data distribution in this setting [7]. The
computation of the covariance matrix and the extraction of
eigenvectors in PCA commences with the calculation of the
mean of all data samples, represented as Eq. (3).

_ 1
£=23M % (3)

where, X denotes the mean vector computed over all data
samples, M denotes the number of observations, and
x; represents the i*" data vector. Each data vector is then
mean-centered by subtracting the mean vector X from each
observation to obtain the mean-centered sample a; as Eq. (4).

ai=xi—f (4)

This step ensures that the dataset has zero mean across all
dimensions. The covariance matrix C, which characterizes
the degree of correlation among different variables, is
computed as Eq. (5).

1 1
C = EAAT = ng[zl a, ag (5)

where A is the matrix of centered data vectors. The superscript
T denotes the transpose of the corresponding matrix. To
identify the principal directions of maximum variance, the
eigenvalue problem is solved as Eq. (6).

Cy; = Ly; (6)

where y; and 4; denote eigenvectors and their corresponding
variance contributions. The number of retained components is
selected based on cumulative explained variance, ensuring
compact representation while discarding redundant
information.
2) Linear Discriminant Analysis (LDA)

LDA, which stands for linear discriminant analysis, is a
supervised learning methodology that divides the input space

into several decision regions, delineated by decision
boundaries. The purpose is to categorize data samples into
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separate classes using linear decision functions [8].
Belhumeur et al. [9] state that Fisher’s Linear Discriminant
(FLD) seeks to identify an ideal linear projection matrix
Wop: that maximizes the ratio of between-class scatter to
within-class  scatter. This optimization problem is
characterized as Eq. (7).
wTsgw|
[wTs,w|

Wopt = arg max (Wi wy oy, | @)

where, Wdenotes the linear projection matrix composed of
the discriminant vectors w;. Sp is the between-class scatter
matrix and S, is the within-class scatter matrix, expressed
respectively as Eq. (8) and Eq. (9).

Sp =i Ny (uy — )y — )" )

Sw = Xi=1 Zxkexi(xk — 1) (e — )" )

where ¢ denotes the number of classes, N; the number of
samples in class i, y; the mean vector of class X;, u the
global mean vector across all classes, and x; represents the
k™ data vector belonging to X;. The eigenvectors w; are
obtained by solving the generalized eigenvalue problem as
Eq. (10).
SBW,: = liSWWi (10)
The corresponding eigenvalues A; represent the
discriminative strength of each projection direction. The
dimensionality of the discriminant subspace is limited to
c— 1,50 Wype = [Wywy cowp Jwithm < c—1

3) Partial Least Squares-Discriminant Analysis (PLS-DA)

The PLS-DA technique has been extensively utilized as
both a feature selection method and a classifier for high-
dimensional data. Ruiz-Perez et al. [10] indicated that PLS-
DA showed exceptional efficacy when the class structure
displays clustered distributions inside a signal-bearing
subspace, even in the presence of several extraneous factors
obscuring the pertinent characteristics. This strategy remains
effective when the classes are arranged as N-orthotopes. In
instances when class separation relies predominantly on
general linear or nonlinear correlations, PLS-DA may offer
restricted insights compared to alternative methods like PCA.
Rosipal et al. [11] proposed PLS-DA is a supervised
dimensionality reduction method based on Partial Least
Squares (PLS) regression, intended to model the association
between the predictor matrix X € R™" and the class
membership matrix Y € R™M Both matrices are
decomposed as Eq. (11) and Eq. (12).

X=TPT +E (11)

Y=UQT+F (12)
where T and U are matrices of latent score vectors, P and Q
are loading matrices, and E and F are residuals. The
superscript 7 denotes the transpose of the corresponding
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matrix. By aligning the extracted components with class-
relevant variation, PLS-DA provides improved separability
between normal and abnormal waveforms, particularly in
scenarios where the discriminative structure resides in
correlated multidimensional subspaces. In this work, PLS-
DA demonstrated strong effectiveness in extracting
discriminative features for abnormal-signal detection.

D. Classifiers

This research utilizes 5 machine learning models: Naive
Bayes (NB), Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), Logistic Regression (LR), and Multi-
Layer Perceptron (MLP), a type of artificial neural network.

The Naive Bayes method is a probabilistic machine
learning technique based on Bayes’ theorem that is widely
used for classification tasks. This algorithm functions under
the assumption of feature independence, indicating that each
characteristic is regarded as independent of the others,
conditional on the class label [12]. Stanescu et al. [13]
utilized the Naive Bayes classifier as one of three classifiers,
alongside Support Vector Machine and K-Nearest Neighbors,
after extracting phase-diagram characteristics from power-
grid transient signals. The NB model was then employed to
identify 3 categories of transitory phenomena:

e high-amplitude, long-duration events.

e periodic pulse trains.

e partial discharges.

The Support Vector Machine is a traditional classification
technique aimed at identifying a hyperplane in a multi-
dimensional space that optimally divides data into various
groups [14]. Stanescu et al. [13] employed SVM as a
multiclass classifier by partitioning the problem into several
binary one-to-one subproblems, determining the best
separation hyperplane for each class pair. The classification
delineation is contingent upon the kernel type utilized; in their
research, a second-order polynomial kernel was employed.
The SVM model was trained utilizing phase-diagram features,
such as Phase-Diagram Entropy (PDEn), Angular Mean
(AM), Length of the First Gap (LFG), and Spatial Entropy
(SE), to categorize 3 types of transient occurrences seen in an
actual 3-phase power system:

e strong/long bursts from external loads.

e periodic pulses.

® cable partial discharges.

The K-Nearest Neighbors algorithm is a straightforward
instance-based classifier that designates a class to a new
sample according to the predominant class among its nearest
neighbors in the feature space. Averyanov et al. [15]
conducted a study on transient signal classification using the
KNN model, analyzing characteristics derived from current
and voltage waveforms. The experimental findings
demonstrated an accuracy of 0.78 and a precision of 0.794,
which were roughly 7-8% inferior to those achieved with a
decision-tree baseline model, albeit with reduced processing
time. Furthermore, the authors indicated that KNN is
susceptible to outliers frequently present at the onset of the
transitory process.

Logistic Regression is a linear probabilistic classifier that
determines class membership probability by utilizing the
logistic function on a linear amalgamation of input features.
Despite being fundamentally a binary classifier, logistic
regression can be adapted for multiclass situations using the
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one-vs-rest strategy, wherein an individual logistic regression
model is developed for each class against all remaining
classes, and the ultimate prediction is established by
evaluating the resulting decision boundaries. Averyanov
et al. [15] identified the features with the greatest connection
to the target variable prior to training a multiclass logistic
regression model in their work on transient signal
categorization. Despite the class structure demonstrating
partial linearity owing to the inclusion of the binary variable

Short-Circuit Transient (SCT), the logistic regression model

attained an accuracy of 0.57 and a precision of 0.57, both

inferior to those reached by the decision-tree and KNN
models.

Artificial Neural Networks (ANN) are utilized as data-
driven classifiers for Transient Stability Assessment (TSA).
The subsequent applications have been documented.

1) Multilayer feedforward networks for online TSA
assessment.

2) Classifiers for fault-induced transients, including the
differentiation between stable and loss-of-excitation
circumstances, as well as for encoding and estimating the
Critical Clearing Time (CCT).

3) Deep models employing Phasor Measurement Unit (PMU)
data, including Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Long Short-
Term Memory (LSTM) networks, have been utilized to
categorize brief post-disturbance intervals into stable,
aperiodic-unstable, or oscillatory-unstable classification.

In addition, the survey also mentioned ANN architectures
capable of directly estimating the Critical Clearing Time
(CCT) for short-circuit or line-outage scenarios [16].

III. METHODOLOGY

To improve the efficacy of distinguishing normal and
abnormal transient signals through machine learning models,
the methodology and procedural framework of this study are
illustrated in Fig. 2, which seeks to establish a suitable
solution for consistent downsampling and feature extraction
of transient signal datasets acquired from an oscilloscope
during the EDFA testing. The transient signal dataset was
first processed using uniform downsampling to reduce the
original 30,000 samples into compact feature sets of 10,000,
1000, and 100 features, preserving waveform characteristics
while decreasing computational complexity. 3 feature
extraction techniques PCA, PLS-DA, and LDA were then
applied to improve separation between normal and abnormal
waveforms, and the resulting features were used for model
training.

The dataset was divided into 70% training and 30% testing,
using stratified sampling to maintain class proportions This
ensured that the class distributions were preserved throughout
the data partitions and prevented sampling bias. For Naive
Bayes, SVM, KNN, and Logistic Regression, hyperparameter
optimization and performance assessment were conducted
via 5-fold stratified cross-validation within the training subset,
enabling performance to be reported as mean + standard
deviation across folds.

The MLP model employed a validation split from the
training subset and incorporated early stopping and
regularization to reduce overfitting. The close agreement
between training and validation metrics indicated stable
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model behavior and generalization.
All models were finally evaluated using the unseen 30%
test set, with performance measured using AUC, precision,

recall, accuracy, and F1-score. Confusion matrices were also
generated to visualize prediction distributions and support
reliability assessment of the classification results.
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Fig. 2. The framework of methodology.

The transient signal dataset was obtained from the
oscilloscope in the transient testing system, as shown in
Fig. 3. The system comprises a full-comb optical source that
produces multiple wavelength channels, which are then
injected into an Acousto-Optic Modulator (AOM) to emulate
the addition or removal of channels in a DWDM system. An
electronic function generator controls the AOM. It switches
between ON and OFF states at set time intervals to create
transients in the system.

Coupler

Module Under Test
(EDFA)

Surviving Channel

Surviving
Channel
Optical Filter

Photo Detector

Electronic
Signal
ON
ofFF Electronic
Acousto-Optic Function Generator ‘
Modulator

Full Comb

(1

Fig. 3. EDFA transient test diagram.

Simultaneously, one channel in the system is identified as
the primary channel, which remains perpetually active. This
channel is connected to the signals from the AOM through a
coupler and thereafter directed into the module under
examination (EDFA), which functions as the optical
amplifier being assessed.

Following amplification, the output signal from the EDFA
is subjected to filtration via a surviving-channel optical filter
to isolate the desired wavelength. The filtered signal is
subsequently transmitted to a photodetector, which
transforms the optical signal into an electrical signal. The
electrical waveform is ultimately transmitted to an
oscilloscope to document the time-domain transient reaction.
The ephemeral data obtained from the oscilloscope is
subsequently utilized for processing and analysis through
machine learning algorithms. The experimental protocol of
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this study has 3 primary phases, detailed as follows.

A. Data Acquisition and Preprocessing

The transient waveforms acquired from the oscilloscope
were saved as time-series data files, each including 30,000
data points. This investigation collected 500 transient signal
samples. The dataset was divided into 2 categories: normal
transient signals, comprising 70% of the total samples, and
abnormal transient signals, including the remaining 30%. To
ensure the reliability of the dataset and the accuracy of model
training, a structured labeling and preprocessing procedure
was implemented as described below.

1) Normal and abnormal transient waveform criteria

A waveform was classified as normal if it exhibited
physically consistent transient behavior, including the
presence of measurable overshoot and undershoot responses
followed by stabilization at steady-state gain levels, as
illustrated in Fig. 4 that depicts instances of normal transient
waveforms demonstrating characteristic responses, including
fast overshoot and undershoot, which thereafter stabilize at
steady-state levels.
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Fig. 4. Normal transient waveform.

In contrast, a waveform was classified as abnormal if it
displayed non-physical or corrupted characteristics, such as
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excessive noise, clipped transitions, flat-line behavior, or
distorted response dynamics beyond expected EDFA
operational limits, as illustrated in Fig. 5.
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Fig. 5. Abnormal transient waveform.

2) Labeling procedure and annotation

The labeling process was conducted manually by a group
of optical test engineers familiar with EDFA transient
characterization. Normal waveforms were assigned label 1
(Negative) and abnormal waveforms were assigned label 0
(Positive).

To ensure labelling reliability, cross-checking among
multiple annotators was performed and quality control was
maintained by re-checking randomly selected sample to
ensure label consistency and adherence to the classification
criteria.

3) Uniform downsampling

To establish a suitable methodology for data preparation
and enhance the efficiency of transient signal classification in
terms of performance and processing time, the uniform
downsampling technique was utilized to systematically
decrease the data points from 30,000 to 10,000, 1000, and 100
points per transient signal, while maintaining the fundamental
waveform characteristics. This procedure was employed to
assess categorization accuracy and processing duration.
Uniform downsampling significantly decreases computing
burden and processing duration. The dataset including 1000
data points was subsequently chosen and underwent feature
extraction.

B. Feature Extraction

Following the consistent reduction of the transient signal
data to 1000 points, feature extraction techniques were
employed to convert the dataset into a format conducive to
assessing the efficacy of machine learning models. The
methods utilized comprise PCA, LDA, and PLS-DA. The aim
of these feature extraction procedures is to minimize data
redundancy and improve the capacity to differentiate between
normal and aberrant transient signals.

C. Classification and Evaluation

The present research assessed the efficacy of the proposed
data preparation methods, namely uniform downsampling
and Feature Extraction, by utilizing five classification
techniques: NB, SVM, KNN, LR, and MLP. Each classifier
was trained with its default parameter settings to maintain a
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consistent foundation for comparing results across various
models.

The classifiers’ performance was assessed using the Area
Under the Curve (AUC) metric, which illustrates the
correlation between the True Positive Rate (TPR) and the
False Positive Rate (FPR). The AUC value spans from O to 1,
with a value approaching 1 signifying superior classification
performance of the model [17]. Furthermore, other evaluation
measures like Recall, Precision, and F1-score were utilized to
further evaluate the model’s correctness and its proficiency in
accurately identifying samples inside each class. The
processing duration was assessed to gauge the computational
efficiency and feasibility of model implementation within the
testing system.

This research technique includes the complete process of
transient signal data preparation, uniform downsampling,
feature extraction, machine learning model training, and
performance evaluation utilizing standard metrics. The aim is
to formulate a proficient method for diminishing and
extracting features from transient data acquired during EDFA
testing, thus optimizing the classification efficacy of transient
signals.

D. Implementation Details

This subsection provides the key implementation details
required for reproducibility, including the software
environment, model settings, dimensionality reduction
parameters, and hardware platform.

1) Programming language and main libraries

Python 3.13.5 with Spyder 6.07, using NumPy, Pandas,
Scikit-Learn, Matplotlib, and TensorFlow/Kears.

2) Model hyperparameters

The Naive Bayes classifier was implemented using
GaussianNB() with default smoothing parameters. The SVM
model employed an RBF kernel for nonlinear separation in
the transformed feature space. The KNN classifier used
K = 5 neighbors for distance-based classification. Logistic
Regression was trained using the liblinear solver with a
maximum of 2000 iterations for convergence. Finally, the
MLP neural network consisted of 2 fully connected hidden
layers with 128 and 64 neurons, respectively, using ReLU
activation functions.

3) Retained components in PCA/LDA/PLS-DA

PCA retained components covering 95% variance, LDA
yielded one discriminant component for the binary
classification, and PLS-DA retained 10 latent components.

4) Hardware environment

All experiments were executed on a Lenovo ThinkPad
T480 with an Intel Core 15-8350U CPU (4 cores, 8 threads,
1.70 GHz) and 32 GB RAM, without GPU acceleration.

IV. RESULT AND DISCUSSION

This section elucidates and analyzes the experimental
outcomes derived by assessing diverse machine learning
models alongside data reduction and feature extraction
methodologies. The aim of the investigation is to examine the
influence of uniform downsampling and feature extraction
algorithms on the classification efficacy of transient signal
datasets obtained from EDFA testing.
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A. Performance Overview
Each model was evaluated with conventional performance

indicators as outlined below.
The NB model achieved optimal performance with the

uniform downsampling method and PLS-DA feature
extraction, as detailed in Table 1. The model produced
exceptional values for all performance parameters, with
AUC = 09913, Fl-score = 0.8217, Recall = 0.8400, and
Precision = 0.8602.

Table 1. Results for Naive Bayes on test set

Model Technique AUC  F1-score Recall Precision Tl:lf‘il;leng T;:It:;g
Original dataset (30,000 features) 0.6571 0.7510 0.7867 0.8068 6.689 0.109
Downsampling (10,000 features) 0.6571 0.7510 0.7867 0.8068 2.019 0.003
Downsampling (1000 features) 0.6571 0.7510 0.7867 0.8068 0.245 0.004
Naive Bayes Downsampling (100 features) 0.6587 0.7510 0.7867 0.8068 0.092 0.001
Downsampling (1000 features) + PCA 0.8315 0.7510 0.7867 0.8068 0.149 0.002
Downsampling (1000 features) + LDA 0.9913 0.8217 0.8400 0.8602 0.116 0.001
Downsampling (1000 features) + PLS-DA  0.8491 0.7567 0.7867 0.8068 0.130 0.001
Table 2. Results for SVM on test set
Model Technique AUC  Fl-score Recall Precision Tl:lf‘il;leng T{:?::lzg
Original dataset (30,000 features) 0.9748 0.7510 0.7867 0.8068 1006.700 0.676
Downsampling (10,000 features) 0.9956 0.9525 0.9533 0.9543 302.280 0.134
Downsampling (1000 features) 0.9853 0.9525 0.9533 0.9543 22.390 0.028
SVM Downsampling (100 features) 0.9858 0.9569 0.9600 0.9622 6.494 0.005
Downsampling (1000 features) + PCA 0.3962 0.7625 0.8000 0.8444 6.455 0.012
Downsampling (1000 features) + LDA 0.9833 0.9540 0.9533 0.9570 5.910 0.002
Downsampling (1000 features) + PLS-DA  0.9977 0.9668 0.9667 0.9670 6.133 0.003

The SVM model, in conjunction with the uniform
downsampling method and PLS-DA feature extraction, got
the highest AUC value of 0.9977 among all machine learning
models. It yielded the highest results for the F1-score, Recall,
and Precision, with values of 0.9668, 0.9667, and 0.9670,
respectively, as shown in Table 2.

The KNN model, in conjunction with the uniform

downsampling approach and LDA, attained the highest AUC
performance. The integration of uniform downsampling and
PLS-DA produced the greatest metrics across all machine
learning models for the F1-score, Recall, and Precision, with
values of 0.9933, 0.9933, and 0.9934, respectively, as
presented in Table 3.

Table 3. Results for KNN on test set

Model Technique AUC  Fl-score Recall Precision Tra‘mmg Te§tmg
Time Time
Original dataset (30,000 features) 09746  0.9668 0.9667 0.9670 44.256 0.138
Downsampling (10,000 features) 0.9746 0.9668 0.9667 0.9670 14.632 0.124
Downsampling (1000 features) 0.9746 0.9668 0.9667 0.9670 2.083 1.535
KNN Downsampling (100 features) 0.9666 0.9668 0.9667 0.9670 0.493 0.010
Downsampling (1000 features) + PCA 0.9917 0.9535 0.9533 0.9537 0.638 0.004
Downsampling (1000 features) + LDA 0.9941 0.9735 0.9733 0.9741 0.680 0.014
Downsampling (1000 features) + PLS-DA  0.9889  0.9933 0.9933 0.9934 0.845 0.013

The LR model, in conjunction with the uniform
downsampling method and LDA feature extraction, attained
the optimal overall performance. The evaluation results,
presented in Table 4, provide superior values for all important
performance metrics: AUC, F1-score, Recall, and Precision,
with respective values 0f 0.9913, 0.9688, 0.9667, and 0.9670.

The MLP model, in conjunction with the uniform

downsampling approach and LDA feature extraction,
attained the maximum performance regarding AUC. The
integration of uniform downsampling and PLS-DA feature
extraction produced the most favorable outcomes. The
evaluation results, presented in Table 5, indicate enhanced
values for the F1-score, Recall, and Precision, with respective
values of 0.9801, 0.9800, and 0.9802.

Table 4. Results for logistic regression on test set

Model Technique AUC  Fl-score Recall Precision Tra.mmg Teftmg
Time Time
Original dataset (30,000 features) 0.9826  0.9542 0.9533 0.9596 160.330 0.036
Downsampling (10,000 features) 0.9545 0.8967 0.8933 0.9160 37.357 0.011
. Downsampling (1000 features) 0.9331 0.8464 0.8400 0.8886 4.402 0.005
ng;’g:;‘izn Downsampling (100 features) 03970  0.7625  0.8000  0.8444 1.081 0.004
Downsampling (1000 features) + PCA 0.3962 0.7625 0.8000 0.8444 0.297 0.002
Downsampling (1000 features) + LDA 09913  0.9688 0.9667 0.9670 5.544 0.002
Downsampling (1000 features) + PLS-DA  0.9663 0.9607 0.9600 0.9647 5.155 0.004
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Table 5. Results for MLP on test set

Model Technique AUC  Fl-score Recall Precision Tl:lf'il;l:g T;::::)g
Original dataset (30,000 features) 0.9344  0.9030 0.9067 0.9098 20.520 0.166
Downsampling (10,000 features) 09113 0.8248 0.8200 0.8363 20.470 0.135
Downsampling (1000 features) 0.9234 0.8901 0.8933 0.8932 10.490 0.127
MLP Downsampling (100 features) 0.9323 0.9038 0.9067 0.9075 7.370 0.097
Downsampling (1000 features) + PCA 0.9211 0.8901 0.8933 0.8932 14.440 0.110
Downsampling (1000 features) + LDA 0.9913 0.9735 0.9733 0.9741 9.990 0.124
Downsampling (1000 features) + PLS-DA  0.9812 0.9801 0.9800 0.9802 21.230 0.130

The experimental findings illustrate the performance
variations among the machine learning models under various
uniform downsampling and feature extraction configurations.
The principal conclusions are encapsulated as follows.

The LDA and PLS-DA approaches significantly enhanced
both  classification  performance  (Fl-score) and
discriminative capability (AUC) in all models, especially in
SVM, KNN, and MLP. This discovery demonstrates that
linear feature extraction techniques prioritizing inter-class
separability significantly diminish redundancy and improve
classifier decision bounds. PCA, however, often diminished
the efficacy of specific models, like SVM and LR, as it
prioritizes the reduction of data dimensionality by preserving
only the axes of largest variance, which may not correspond
with the axes that optimally differentiate the classes.

The experimental findings indicated that KNN and MLP
attained the highest overall performance, with AUC values
surpassing 0.99 and Fl-scores over 0.98. These results
demonstrate the robust ability of both models to proficiently
manage data characterized by non-linear decision limits.
Despite being fundamentally a linear model, LR yielded
results comparable to SVM when integrated with the LDA
approach, which improves linear separability among classes.
Simultaneously, SVM attained an exceptional F1-score and
Recall, especially with PLS-DA features, illustrating its
capacity to classify signals with accuracy and consistency
while maintaining a favorable Precision—Recall balance.

The experimental findings showed that uniformly reducing
the dataset to 1000 data points efficiently preserved a high
degree of model performance while substantially saving
training time compared to the complete 30,000-point dataset.
This discovery aligns with the notion of dimensionality
reduction, which reduces computing load and data
redundancy while maintaining classification efficacy.
Nevertheless, when the data points were further diminished
to 100, a decrease in accuracy was noted in certain models,
such as Naive Bayes and Logistic Regression, suggesting that
extreme data reduction may result in the loss of critical
transient signal attributes.

The temporal study indicated that the integration of
uniform downsampling and feature extraction methodologies
substantially decreased the model training duration. The
training duration of the SVM model significantly reduced
from 1006 s (about 17 min) to merely 6 s while employing
PLS-DA. Despite the MLP necessitating a rather extended
training duration as a deep learning model, it remained
feasible for real-world implementation in automated testing
systems, achieving an average processing time per signal of
under 0.15 s.

B. Per-Class Metrics

Although all 5 classification models (NB, LR, SVM, KNN,
and MLP) were initially evaluated, per-class analysis in this
section focuses specifically on SVM, KNN, and MLP
because these models demonstrated the highest overall
classification performance and achieved ROC-AUC values
exceeding 0.99. Additionally, these 3 models offer
complementary behavior: SVM provides maximum class
separability, KNN exhibits aggressive fault detection with
high abnormal sensitivity, and MLP delivers balanced
learning capability via nonlinear representation. Therefore,
they represent the most relevant candidates for deeper per-
class evaluation and discussion.

To further examine model behavior for each class (normal
vs. abnormal), per-class precision, recall, and F1-score were
computed for SVM, KNN, and MLP using PLS-DA with
1000 features. As summarized in Table 6, all 3 models deliver
high discriminative capability; however, the difference
between performance on abnormal (class 0) and normal (class
1) reveals important insights regarding model sensitivity to
fault detection.

For the abnormal class (class 0), KNN achieved the
strongest overall performance with a precision of 1.0000 and
recall of 0.9778, resulting in an Fl-score of 0.9888. This
indicates that KNN produced zero false positives for
classifying abnormal signals and missed only one actual
abnormal sample (out of 45), demonstrating highly
conservative detection behavior.

Table 6. Per-class metrics for SVM, KNN, and MLP

Model Technique Class Precision Recall F1-score Support
. 0 (abnormal) 0.9348 0.9556 0.9451 45
SVM Downsampling (1000 features) + PLS-DA
1 (normal) 0.9808 09714 0.9761 105
. 0 (abnormal) 1.0000 0.9778 0.9888 45
KNN Downsampling (1000 features) + PLS-DA
1 (normal) 0.9906 1.0000 0.9953 105
. 0 (abnormal) 0.9565 0.9778 0.9670 45
MLP Downsampling (1000 features) + PLS-DA
1 (normal) 0.9904 0.9810 0.9856 105

In contrast, SVM yielded a precision of 0.9348 and recall
of 0.9556 (Fl-score = 0.9451) for the abnormal class,
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it produced more false positives and false negatives than
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KNN. Meanwhile, MLP achieved precision of 0.9565 and
recall of 0.9778 (F1-score = 0.9670), outperforming SVM but
slightly falling behind KNN in false-negative suppression.

For the normal class (class 1), all models achieve recall and
precision greater than 0.97, confirming that normal test
waveforms are consistently recognized by all classifiers. This
indicates that the main performance differentiation lies in
abnormal detection, which is the more safety-critical
classification objective in real-world testing environments.

These results demonstrate that KNN offers the best
reliability for abnormal detection by virtually eliminating
false positives, while MLP provides balanced performance
between recall and precision. SVM, although yielding the
highest ROC-AUC, presents more uncertainty in abnormal
classification and therefore may be best suited when overall
boundary separation is prioritized rather than fault-risk
avoidance.

C. Confusion Matrix

To illustrate the classification behavior of the most safety-
critical model, the confusion matrix for KNN using PLS-DA
features is shown in Fig. 6. The KNN classifier correctly
detected 44 out of 45 abnormal waveforms (class 0), resulting
in a single false negative (FN = 1), where one abnormal signal
was misclassified as normal. Although such misclassification
represents a potentially critical oversight in safety-sensitive
environments, the overall detection rate for abnormal signals
remains high (recall = 0.9778). Importantly, the classifier
produced no false positives (FP = 0), avoiding unnecessary
false alarms for normal signals.

This performance reflects a relatively balanced diagnostic
behavior, with strong capability for detecting transient faults,
although not fully eliminating the risk of missed abnormal
events. In environments such as EDFA transient testing, this
highlights the trade-off between sensitivity and reliability,
emphasizing the importance of continued improvement
toward minimizing false negatives.

Confusion Matrix - KNN (PLS-DA features)
100

Actual Class
Actual Abnormal (0)

Actual Normal (1)

- 40

-20

Predicted Abnormal (0)

Predicted Normal (1)
Predicted Class

Fig. 6. Confusion matrix of KNN using PLS-DA features.

D. Analysis of Precision-Recall Trade-offs

From Table 6 and Fig. 6, a clear pattern emerges with
respect to the balance between precision and recall for
abnormal signal detection. The KNN model achieved
precision = 1.0000 and recall = 0.9778 for class 0 (abnormal),
demonstrating total elimination of false positives and nearly
total elimination of false negatives. The perfect precision
indicates that every predicted abnormal case was truly
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abnormal, while the high recall confirms that the majority of
abnormal signals were successfully detected, with only a
single missed case.

In contrast, SVM and MLP introduce a small number of
false negatives, reflecting a slightly more conservative
preference toward minimizing false alarms at the cost of
occasionally missing abnormal signals. From a risk-
management standpoint, this reflects a trade-off between
specificity-driven classification (SVM, MLP) and sensitivity-
driven classification (KNN). Given the testing context, where
undetected abnormal events may propagate uncertainty or
operational risk, the high-recall profile of KNN provides a
more reliable detection strategy in production-oriented EDFA
transient analysis.

E. ROC and PR Curves

To further assess the capability of KNN in distinguishing
abnormal and normal signal patterns, the ROC and PR curves
were evaluated as shown in Fig. 7 and Fig. 8. The ROC curve
achieved an AUC of 0.9889, indicating excellent separability
between class 0 (abnormal) and class 1 (normal). The curve
rises sharply toward the top-left corner with a minimal false-
positive rate, highlighting efficient discrimination even under
slight threshold adjustments.

The PR curve demonstrated an average precision of 0.9906,
with precision maintained near 1.0 across almost the entire
range of recall. This behavior confirms that the KNN
classifier can sustain high precision even as recall increases,
ensuring reliable abnormal-signal detection in imbalanced
scenarios where abnormal cases are less frequent.

ROC Curve - KNN (PLS-DA features)

1.0

o o
o ©

True Positive Rate (Recall)
4
Sy

0.2 —
7 —— ROC curve (AUC = 0.9889)
004 F -—~ Random
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Fig. 7. ROC curve of KNN using PLS-DA features.
Precision-Recall Curve - KNN (PLS-DA features)
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0.95
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Fig. 8. Precision-recall curve of KNN using PLS-DA features.

F. Threshold Selection
To investigate the adaptability of KNN for real-world
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operation, the effect of decision-threshold variation was
examined. Reducing the threshold below the standard value
of 0.5 increases recall, thereby reducing false negatives and
preventing abnormal signals from being misclassified as
normal. This comes with the potential trade-off of introducing
occasional false positives.

In the context of EDFA transient analysis, the operational
impact of false negatives is significantly more critical than
that of false positives. Accordingly, a lowered threshold
setting is preferable when the primary objective is to avoid
missing abnormal waveforms. This highlights the practical
necessity of threshold tuning based on application-specific
risk tolerance and operational safety requirements.

V. CONCLUSION

In the evaluation of the EDFA, the transient waveforms
recorded by the oscilloscope are automatically analyzed to
extract key transient parameters. However, irregular transient
signals such as containing noise or waveform distortion, can
produce inaccurate transient parameter results, requiring
manual review by the optical test engineer. This paper
presents an Al-based methodology for automatic transient
classification, enabling early detection of abnormal transient
signals and significantly improving test reliability while
reducing the need for manual transient waveform inspection.

The experimental findings indicated that the integration of
the uniform downsampling technique with LDA and PLS-DA
markedly improved the overall efficacy of the machine
learning models. The KNN and MLP models attained AUC
values above 0.99 and Fl-scores over 0.98, demonstrating
their exceptional proficiency in reliably classifying transitory
signals. Moreover, uniformly lowering the dataset to 1000
points significantly diminished both training and testing
durations without sacrificing accuracy, offering a pragmatic
benefit for real-world implementation in automated testing
systems that necessitate rapidity and precision.

The suggested method allows the EDFA testing system to
autonomously and swiftly identify abnormal transient signals,
thus minimizing engineers’ manual analysis time and
enhancing the dependability of test outcomes.

Although the current results were obtained under a stable
and consistent laboratory measurement environment,
industrial deployment may introduce variations such as test
equipment recalibration, Unit Under Test (UUT)
manufacturing variance, temperature fluctuations, or aging-
induced optical changes. To ensure long-term reliability of
the classifier, future work should evaluate robustness under
such distribution shifts and explore retraining or domain
adaptation strategies, including incremental learning or
periodic re-estimation of the feature transformation model, to
maintain classification integrity when the test setup changes.

Future research could expand to encompass a broader
spectrum of EDFA operating conditions and investigate the
application of sophisticated deep learning models, such as
Convolutional Neural Networks (CNNs) or Recurrent Neural
Networks (RNNs), to further improve performance and
facilitate the advancement of intelligent testing systems.
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