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Abstract—This paper presents a microservice-based system
architecture for collecting, processing, and analyzing
agrotelemetry data in real-time to support precision agriculture.
The study aims to evaluate the effectiveness of the ESP32
microcontroller platform (Espressif Systems) and Arduino
Nano with Long Range (LoRa) platforms as edge nodes for
monitoring agro-environmental parameters, including soil
moisture, air temperature, and humidity. The objectives are:
(i) to validate an end-to-end microservice streaming pipeline for
agrotelemetry, (ii) to operationalize a low-latency critical-event
detector in the streaming layer, and (iii) to compare ESP32 and
Arduino Nano + LoRa under unified Key Performance
Indicators (KPIs) (latency, reliability, accuracy, where
applicable, and energy consumption) to provide evidence-based
deployment guidance. The proposed architecture leverages
Kubernetes, Apache Kafka, Apache Flink, and InfluxDB to
ensure horizontal scalability, fault tolerance, and low-latency
processing. For automated critical event detection, we
implemented a novel streaming algorithm combining static
thresholds with dynamic z-score analysis and a confirmation
mechanism to reduce false positives. The experimental
methodology involved laboratory tests and field trials
conducted in a greenhouse. Results indicate a clear trade-off:
the ESP32 platform achieved lower network latency and higher
accuracy, while the Arduino Nano with LoRa was significantly
more energy-efficient and demonstrated superior long-range
link stability. Based on these findings, we recommend using the
ESP32 for time-sensitive applications within Wi-Fi coverage
and the Arduino Nano with LoRa for energy-constrained,
remote deployments. A hybrid strategy is proposed to strike a
balance between responsiveness and energy autonomy. The
unified pipeline provides a reproducible framework for
evaluating trade-offs among latency, accuracy, reliability, and
energy consumption in agrotelemetry systems.

Keywords—distributed computing, microservice architecture,
cloud computing

I. AN INTRODUCTION TO AGROTELEMETRY

Agrotelemetry—the remote measurement and wireless
transmission of data from fields, livestock, and machinery—
has matured into the data backbone of precision agriculture.

Agrotelemetry represents a transformative technology in
modern agriculture, forming the central nervous system of
the smart farm concept. This field involves the application of
telemetric principles for the automated collection, wireless
transmission, and real-time analysis of data related to
agricultural objects.

The architecture of agrotelemetry systems is based on a
4-layer model, integrating sensory, communication,
computational, and application levels. The sensory level
encompasses deployed field sensors for soil, plant, and
livestock parameters, as well as actuating mechanisms. The
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communication layer enables data transmission via
specialized wireless protocols such as LoRa Wide Area
Network (LoRaWAN), Narrowband Internet of Things
(NB-IoT), and cellular networks. The computational tier
handles data cleansing, aggregation, and analysis using edge
computing for local decision-making and cloud technologies
for in-depth analytics. The application level provides
interfaces for data visualization and decision-support tools.

Key applications of these systems include precision
irrigation based on soil moisture data, crop monitoring using
multispectral sensors, tracking microclimate conditions, and
monitoring livestock health. The agrotelemetry technology
stack ensures optimized resource use, increased productivity,
and reduced environmental impact of agricultural activities.

The industry’s development is characterized by the
integration of artificial intelligence for predictive analytics,
the adoption of standardized Application Programming
Interfaces (APIs) (such as the Open Geospatial Consortium
(OGC) SensorThings API) to ensure system interoperability,
and the emergence of autonomous robotic platforms.
Implementing agrotelemetry solutions presents challenges,
including high initial costs, technical complexity, and power
supply requirements for peripheral devices.

Between 2019-2025, deployments consolidated around
Low-Power Wide-Area Networking (LPWAN) and 4G/5G
backhauls [1]; standardized data models (OGC SensorThings

API for observations [2]; ISO 11783/ISOBUS for machinery
telematics [3]); and edge-cloud patterns that close the loop
for  irrigation, greenhouse climate, and  asset
maintenance [4—6].

Agrotelemetry spans:

e In situ sensing (soil moisture/salinity, microclimate,

leaf water stress, trunk diameter, etc.);

e Mobile platforms (Unmanned Aerial

/Unmanned Ground Vehicles (UAVs/UGVs));

e On board machinery telemetry (CAN/ISOBUS,

engine/fuel, task controller).

Observations should be exposed via a uniform, geospatial
API to enable cross-farm analytics and decision support.

The OGC SensorThings API (STA) is the recommended
interface, with its Sensing component (Part 1) handling
observations and its Tasking component (Part 2) managing
device actuation.

This study addresses the lack of reproducible, KPI-driven
comparisons between common low-cost edge platforms in
real agrotelemetry pipelines. The objective of this work is to
design and validate a microservice-based, stream-first
architecture for real-time agrotelemetry, and to quantify the
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trade-offs between ESP32 (Wi-Fi/MQTT) and Arduino
Nano + LoRa as edge nodes within a unified data ingestion
and analytics workflow.

Specifically, we pursue 3 measurable objectives:

e Architecture objective (O1): implement an end-to-end
microservice pipeline (ingestion— broker— stream
processing— time-series storage— dashboards/alerts)
suitable for real-time agrotelemetry.

e Analytics objective (O2): implement and operationalize
a streaming critical-event detector that combines static
thresholds with dynamic z-score deviation and
confirmation logic (k-of-m voting) to reduce false
positives.

e Comparative objective (03): evaluate ESP32 wvs.
Arduino Nano + LoRa using a common experimental
protocol and standardized KPIs, including latency
(P50/P95), message loss, measurement error (e.g.,
Mean Absolute Error (MAE) where applicable), and
energy consumption, and derive evidence-based
platform selection guidance.

Accordingly, the expected outcome is a set of
experimentally supported recommendations (including a
hybrid deployment strategy) that closes the loop between
architecture design choices and measured operational KPIs.

II. RELATED WORK

This section is structured as a scoping review to position
the proposed architecture within the field—edge—cloud stack
for agrotelemetry. We surveyed peer-reviewed publications
(2020-2025) indexed in major scholarly databases (e.g.,
IEEE Xplore, ACM DL, Scopus/Google Scholar) using
keyword combinations covering (i) smart/precision
agriculture telemetry, (i) Low-Power Wide-Area Networks
(LPWAN), including LoRa/LoRaWAN and cellular IoT
(NB-IoT/LTE-M/5G), (iii) MQTT/CoAP security, and
(iv) edge—cloud streaming and microservice architectures. In
addition, we included a limited number of recent preprints
when they provide up-to-date comparative analyses not yet
available in journal form (e.g., the SCI 2025 Springer chapter
in Ref. [7]). We prioritized sources that report operational
KPIs (e.g., latency, delivery ratio/loss, energy/device
lifetime) or describe end-to-end pipelines; purely conceptual
works are used only to define baseline terms.

Conceptual framing. We analyze prior work through a
field—edge—cloud stack: (i) field sensing and edge nodes, (ii)
last-mile connectivity and gateways, (1ii)
transport/messaging and security controls, and (iv)
cloud/edge analytics and storage. Across these layers, the
dominant evaluation dimensions are timeliness (tail latency),
reliability (delivery ratio/loss under rural backhaul outages),
and energy autonomy (device lifetime), which jointly
determine the feasibility of continuous agrotelemetry and
real-time actuation.

Agrotelemetry deployments today are best understood
through the lens of a field-to-edge-to-cloud stack in which
communication choices and data handling coevolve. Recent
surveys frame agri-loT as the backbone of precision and
climate-smart agriculture, with connectivity, energy
efficiency, and interoperability as first-order constraints.
Within that frame, LoRa/LoRaWAN is favored for low-rate,
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long-range telemetry that can sustain multi-year battery life;
empirical and survey studies report robust coverage, the
practical benefits of Adaptive Data Rate (ADR), and
successful irrigation and environmental monitoring projects,
while also noting latency and downlink limitations [8].
NB-IoT and Long Term Evolution for Machines (LTE-M),
delivered by mobile network operators, extend coverage with
stronger Quality of Service (QoS)—well-suited to sparse
sensors and mobile assets, such as pumps and tanks—though
power budgets and subscription costs must be carefully
weighed [9]. Where throughput and low latency are critical,
as with bursty machine telemetry or UAV video, 4G/5G
becomes the natural complement, and many deployments
now combine LPWAN for slow telemetry with 5G for
heavier payloads in hybrid architectures [7].

At the transport layer, Message Queuing Telemetry
Transport (MQTT) remains the default choice, but it requires
deliberate security hardening—such as authorization,
Transport Layer Security (TLS), and careful broker
exposure—while the Constrained Application Protocol
(CoAP) persists on constrained nodes and introduces its own
bootstrapping risks. Both stacks have known attack surfaces
that must be mitigated systematically [10]. Since 2020,
architectures have converged on edge gateways—typically
LoRaWAN or NB-IoT concentrators—that pre-process,
cache, and forward to cloud data lakes. On top, digital twins
and decision-support systems consume standardized streams
(e.g., OGC SensorThings, ISOBUS, AEMP/ISO 15143-3) to
close control loops for irrigation, fertigation, and greenhouse
Heating, Ventilation, and Air Conditioning (HVAC); case
studies in greenhouses and orchards show improved water-
use efficiency and reliability under ADR/just-in-time
scheduling [4]. Alongside these patterns, reports emphasize
practical edge—cloud stacks and the growing role of AI/ML
at the edge for agriculture telemetry, paired with security
hardening throughout the pipeline [11].

Security and reliability remain cross-cutting concerns:
beyond device hardening, the literature repeatedly flags
MQTT broker exposure and CoAP bootstrapping issues, and
recommends end-to-end TLS with credential rotation.
Robustness techniques—such as ADR on LoRaWAN,
adaptive duty cycling, and local buffering—help farms
mitigate rural backhaul outages [10]. Economically and
environmentally, reviews link telemetry-driven irrigation and
input optimization to measurable resource savings and
sustainability gains, reinforcing broader Digital Agricultural
Technology (DAT) adoption [12].

To make the review systematic, Table 1 synthesizes
representative studies by strand, the KPIs they report, the
main limitations, and how the present work addresses the
identified gaps.

Microservices and API-driven edge—cloud architectures.
Beyond agriculture-specific surveys, recent reviews of
IoT/IloT architectures emphasize microservice
decomposition and explicit API contracts as a dominant
pattern for scalable edge—cloud systems, typically deployed
via containers and orchestrators. Surveys of IoT application
architectures and edge—cloud continuum systems report that
microservices and API gateways simplify the integration of
heterogeneous devices/protocols, while enabling
independent scaling and fault isolation at the service level.
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Systematic reviews further note that the practical
performance (including latency) depends not only on the
network link but also on platform choices such as
orchestration, scheduling, and the middleware stack;
therefore, reproducible studies should disclose the software
stack and baseline configurations used for latency
measurements. Microservice- and API-centric edge—cloud

IoT architectures are reviewed in Refs. [15-20], highlighting
orchestration and interface standardization as key factors
affecting practical latency and reproducibility (see Table 1).

As summarized in Table 1, prior studies rarely report
standardized end-to-end KPIs under a unified experimental
protocol, which motivates our KPI-driven evaluation and
architecture validation in Section III.

Table 1. Synthesis of related work and gaps (Scoping)

Strand Sources Coverage (Keywords) KPIs (typ.) Gap (short) This Paper (01-03)
LoRa/LoRaWAN long-range, low-rate; ADR; range, energy, no P9.5/P99; no end-to- unlﬁeq KPI framing +
(LPWAN) [4, 8] AleWays delivery; lat (avg) end; heterogeneous comparison context (O1,
& Y v & setups 03)
L . lat (mean), success,  non-standard trade-offs; .
NB-loT/cellular IoT [1,9,13] irrigation/remote asscts; availability; weak cross-tech standardized I.(PI protocol
operator QoS . for selection (O3)
power/cost comparability
5G & hybrid [1,7, 14] mixed payloads; hybrid t?rotl;rgeli};;;hliat; mostly conceptual; few KPI-grounded guidance in
LPWAN+5G * models oS ty farm-level KPIs one architecture (O1, O3)
(concept)
Comms overview & [1, 14] taxonomy of agri comms; selective KPI high-level; inconsistent motivates unified KPI
challenges ’ issues mentions KPI set set/protocol (O3)
MQTT/CoAP [10, 13, broker exposure; oo . securlt}./ 7 op: _erat_lonal sec_urlt_y—by—demgn Wl.thm
security 14] bootstrapping; mitigations qualitative security KPIs,.no pipeline pipeline decomposition
? linkage (01)
delivery, outage . . architecture enabling
Rural robustness [4, 8, 10] ADR, duty cycling, buffering tolerance (often limited quant.lﬁe?q end- reproducible KPI reporting
patterns o to-end reliability
descriptive) (01, 03)
. functional I . .
Edge gateways & [4, 11, 13, preprocess/cache/forward; S descriptive; no joint stream-first microservice
bl . . validation; few .
pipelines 14] edge integration KPIs lat/loss/energy pipeline (O1)
Edge—cloud microservices; REST/API qual.; few latency no reproducible explicit data-plane +
microservices & [15-20] gateway; edge orchestration; p95/p99; limited baselines; weak KPI reproducibility; KPI
APIs (IoT/I1oT) continuum workloads standardization protocol (O1, O3)
Cloud irrigation embedded telemetry cloud; ﬁmctlonal} ty; non-standard KPIs; . Kl.)I-orlented .
ipelines (5,13, 14] irrigation mgmt response time little tail-lat/loss vahdatl.on/comparlson
pIp ) (loose) framing (O1, O3)
- . Lo S conceptual/use- limited runtime KPIs; motivates robust telemetry
Digital Twins (DT) [6] DT orchestration; applications case varied assumptions backbone (O1)
Smart sensors / 8,21] sensing trends; fidelity vs energy, fidelity; no unified protocol KPI set supports fair
smart data i autonomy qualitative across platforms platform comparison (O3)
UAYV + ML analytics [14,22] UAV/satellite refinement map /estlrpatlon mostl}{ posF—hoc; weak 1dent1ﬁ§s as future
quality real-time integration extension (gap)
Interoperabili SensorThings adaptation; agri semantics/profiles motivates
peral ty [2] &5 adap ’ data mgmt focus g P schema/interoperability
(SensorThings) sharing unresolved
needs (O1)
. . i i ion +
AI/RL actuation [23] RL microclimate control control outcomes alert/event semantics streaming ever}t detection
under-specified confirmation (02)
DAT impact s . o weak link to telemetry operational KPI basis for
(econ/env) [12] sustainability/ROI evidence econ/env indicators KPls impact linkage (context)
no standardized end-to-
Cross-cutting 2aps [1,2, synthesis o end KPIs; few O1 pipeline + O2 detector +
ggap —22] Y reproducible O3 unified KPI comparison
comparisons

Despite progress, several gaps persist. Interoperability at
scale across heterogeneous sensors, machinery, and satellites
remains challenging; sensor adoptions, such as SensorThings,
help but require agriculture-specific profiles to standardize
semantics [2]. Security-by-design for MQTT/CoAP and
over-the-air update pipelines is essential in rural
deployments [10]. Energy autonomy must be balanced
against sampling fidelity, pushing research into energy
harvesting and ultra-low-power sensing [21]. Fusing UAV
outputs with ground telemetry for real-time operational
control—rather than post-hoc mapping—remains an active
frontier [22]. Finally, standardized KPIs such as latency,
delivery ratio, and device lifetime should be reported
consistently across real farms to enable fair comparisons
between LPWAN and 5G solutions [7].

Representative works map this terrain: broad surveys of
emerging technologies—spanning networking, UAVs,
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Software-Defined Networking (SDN), Network Function
Virtualization (NFV), and fog computing—outline the
ecosystem [14]; a comprehensive IEEE Access survey
synthesizes ToT/WSN protocols and applications for
agriculture [13]; LoRa-focused reviews detail energy and

coverage trade-offs and agricultural use cases [8];
communication-technology  overviews in agricultural
systems situate link-layer choices within end-to-end

stacks [1]; and sensor-centric trend papers track the
maturation of “smart data” for precision farming [21].
Platform studies document LoRaWAN gateways and case
deployments in greenhouses and irrigation telemetry [4] and
describe  IoT/embedded/cloud pipelines for smart
irrigation [5]. In contrast, UAV + ML case studies
demonstrate how aerial analytics refine vegetation indices
into operational vigor maps that can inform ground-based
interventions [22]. Security-oriented discussions catalog
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edge—cloud issues and MQTT/CoAP vulnerabilities with
concrete mitigations [10].

For 2025-ready designs, the literature converges on 3
actionable themes: adopt hybrid connectivity—LPWAN for
low-rate agronomic telemetry, augmented with 4G/5G where
video or autonomy demands higher throughput [7]; harden
messaging with TLS everywhere, broker isolation, per-
device credentials, and disciplined Over-The-Air (OTA)
update hygiene [10]; and push intelligence to the edge so that
local rules or ML can actuate swiftly (e.g., irrigation), while
cloud-hosted digital twins support scenario analysis and
optimization [6].

In addition, Axak et al. [23] presents a Q-learning—based
microclimate controller for city-farm environments that
ingests IoT sensor streams and optimizes temperature,
humidity, and lighting over an edge—cloud pipeline,

demonstrating reinforcement-learning-driven actuation.

III. METHODOLOGY

A. Microservice System Architecture for Telemetry Data
Analysis

A microservice architecture was designed for real-time
telemetry analytics, dividing functionality into loosely
coupled services to maximize scalability, fault tolerance, and
parallel processing under high data ingress. Devices are first
enrolled and authenticated by a registration service; once
registered, they stream measurements to an ingestion service
over MQTT or HTTP.

This architecture (Fig. 1) is designed to achieve robustness
and fault tolerance through concrete mechanisms at each
layer.

Platform Infrastructure

Kubernetes API Config Service
: . Prometheus s Grafana
Orchestration Gateway Server Discovery

/ b R scrape i /metrics

J/ Devices pe 1/

‘/ v
mcroservices \

Ingestion produce | Message Broker | consume | Streaming Analytics
Service to Apache Kafka from Apache Flink
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alert event
Notification Service

/

Anomaly Detection
ML Models
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Influx DB

log event
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| Telemetry Dashboard |

/

Solid arrows: telemetry data flow
Dashed arrows: control/management flow
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send alert T~
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Fig. 1. Kubernetes-based microservice architecture for real-time [oT telemetry analytics. Solid arrows denote the telemetry data plane from IoT devices
through ingestion, Kafka, and Flink to the time-series database and dashboards. Alerting is handled by the anomaly detection and notification services, while
the control plane covers device management, API gateway, and service discovery. Observability is ensured via Prometheus and Grafana.

At the orchestration layer, Kubernetes provides replica-
based redundancy, self-healing (restart on failure via
liveness/readiness probes), and rolling updates for the
microservices. At the messaging layer, Kafka provides
durable buffering and decoupling between producers and
consumers, so transient outages or bursts do not immediately
propagate downstream. At the streaming layer, Flink
executes stateful operators with checkpoints and controlled
restart behavior, enabling recovery from failures while
maintaining processing state within the configured
guarantees. Finally, the storage/alerting path is hardened via
idempotent writes (and transactional Kafka sinks where
applicable), while Prometheus/Grafana provide continuous
observability for early detection of degradations. As shown
in Fig. 1, the architecture is organized into: (i) a telemetry
data plane, (ii) an alerting path, and (iii)) a
control/management plane.

In the data plane, IoT devices publish measurements via
Message Queuing Telemetry Transport (MQTT) or
Hypertext Transfer Protocol (HTTP) to the Ingestion Service,
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which performs basic validation and forwards messages to
the Kafka broker. Apache Flink consumes the stream from
Kafka to execute windowed analytics and preprocessing, and
stores processed telemetry in the time-series database for
historical queries and dashboards. In parallel, the
anomaly/event detection component generates alert events
that are delivered to end users through the Notification
Service. The control/management plane comprises device
registration and authentication, API gateway, configuration
server, and service discovery. Operational monitoring is
implemented via Prometheus (metrics collection), while
Grafana provides dashboards for both telemetry and
monitoring. It is built upon a microservices paradigm, where
each distinct function is implemented as an independent,
loosely coupled service. The architecture enables the agile
development, deployment, and independent scaling of each
component. The data flow begins with device onboarding
and authentication: before any transmission, devices are
registered and verified by the Registration service, which
manages identity, credentials, and authorization so that only
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trusted endpoints can access the platform. Registered devices
stream telemetry to the Ingestion service over lightweight
MQTT or HTTP. As the first point of contact, the ingestor
validates requests and shields downstream services from
connection management.

Rather than processing data inline, the ingestor forwards
raw messages to a message broker such as Apache Kafka. The
broker functions as the nervous system of the platform by
decoupling producers from consumers, absorbing bursts with
durable buffering, and allowing each side to run at its own pace
without data loss. A real-time Streaming Analytics
service—implemented with Apache Flink—consumes from
Kafka and performs filtering to remove irrelevant or corrupted
records, normalization to standardize formats and units across
device types, and aggregation to compute rolling metrics over
time windows. The processed stream then feeds an Anomaly
Detection module, which combines fast rule-based thresholds
with machine-learning models for novelty detection, enabling
the system to capture both apparent limit violations and subtle,
complex patterns. Clean metrics and event logs are persisted
in a time-series store such as InfluxDB or TimescaleDB,
which is optimized for high write rates and efficient queries
over time-stamped data. When an anomaly is confirmed, a
Notification service dispatches alerts via e-mail, messaging
platforms such as Slack or Teams, or webhooks that integrate
with external incident-management systems. A Visualization
service queries the time-series database to serve operational
dashboards, historical charts, and real-time views to end
users through a web UI or tools like Grafana.

The platform runs on a modern containerized stack. Every
microservice is executed in its own container and
orchestrated by Kubernetes. It provides elastic scaling based
on load, high availability with rolling updates that minimize
downtime, and the flexibility to deploy on-premises, in the
cloud, or in hybrid environments. Cross-cutting services
support this foundation: an API Gateway offers a single-entry
point for external clients and handles routing, load balancing,
authentication, and rate limiting; a Config Server centralizes
application settings and enables dynamic changes without
rebuilds or restarts; and Service Discovery (e.g., Eureka or
Consul) lets services find each other reliably as instances
scale in and out. Observability is built in through Prometheus
for metrics collection, Grafana for visualization, and the ELK
stack (Elasticsearch, Logstash, Kibana) for log aggregation
and analysis, enabling real-time health monitoring,
performance tracking, alerting, and thorough root-cause
investigations.

This design delivers high scalability by allowing each
component to scale independently, resilience and fault
tolerance through broker-mediated decoupling and container
isolation, and extensibility by letting teams add new analytics
algorithms or notification channels as separate services
without disrupting the rest of the system. Technology choices
can be tailored per service, and the platform naturally
supports continuous delivery, making frequent and reliable
updates a routine practice.

B. Algorithm for Detecting Critical Events

We propose a streaming algorithm for detecting critical
events in soil-moisture or temperature series by tracking abrupt
deviations from a locally re-estimated baseline. For each
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sensor, the service maintains a sliding observation window of
length ¥ minutes (or the last N samples). It continuously
updates the window statistics: the current mean z, the standard
deviation a;, and the latest value x,. When a new reading x;+;
arrives, the statistics are refreshed, and the value is compared
with the expected baseline using 2 quantities. The absolute
difference A is calculated according to Eq. (1).

1)

A= pe = X4

The normalized deviation Z is calculated according to
Eq. (2):

[xe+1—pel
[ =—
ott+e

)
where ¢ is a small constant (¢ > 0) that prevents division by
zero during warm-up; x; current reading; 1 mean; o, standard
deviation; 4 absolute drop vs. baseline; Z is z-score; T iS
static floor; daps is absolute-change threshold; z.. is z-score
threshold; k-of-m is vote; 7 is refractory period.

An alarm candidate is raised if a static or dynamic rule fires.
The static rule triggers when the raw measurement violates a
hard threshold (for soil moisture, e.g., a safety floor). The
static alarm condition is given in Eq. (3).

Xt+1 < Tmin (3)

The dynamic rule triggers when the change is significant
in both absolute and normalized terms. The dynamic alarm
condition is given in Eq. (4).

A= 6abs/\Z 2 Zcrit (4)

Parameterization used in our experiments. We use a time-
based sliding window of /¥ = 10 min with a slide of 1 min
(time windows handle irregular arrivals better than fixed-
count windows; at a 5-s sampling cadence, this corresponds
to N = 120 samples). The confirmation rule is k-of-m = 2-of-
3, the refractory period is ¢ = 5min per sensor, and the
numerical stabilizer is ¢ = 1073 in the native units (percentage
points for RH, °C for temperature).

Direction of detection. Unless stated otherwise, the
dynamic rule is 2-sided, i.e., it uses |4| in Eq. (4) to detect
drops and spikes relative to the local baseline; the static rule
in this study illustrates a lower floor for RH (demo threshold).

Channel-specific thresholds. For relative humidity, we set
Sars TP =5 pp and z.,*™ = 2.5; for air temperature, we use
Saps') =2 °C and z.;(*"P) = 2. These values strike a balance
between responsiveness and false-alarm control, and were
validated against our greenhouse data. To suppress spurious
spikes, the detector applies confirmation and debounce. The
alarm is confirmed only if at least £ of the last m
measurements satisfies Eq. (3) or Eq. (4). The confirmation
criterion is given in Eq. (5).

ymt1{rule firsatt —i} > k %)

The sensor enters a refractory period of 7z min during which
further triggers from the same sensor are ignored.

For each confirmed incident, the service emits a structured
anomaly record (JSON) containing the sensor ID, event type,
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timestamp, observed value, baseline (u;, o;), and the
computed A and Z. The record is published to alerts/critical,
and an infrastructure log is updated. A control microservice
may react immediately—for example, by starting irrigation
or heating—and record the intervention in the database. The
sliding-window baseline makes the detector sensitive to rapid
changes while ignoring slow seasonal drift, and combining

static and dynamic criteria improves robustness. The core can
be extended with exponential smoothing, derivative checks
on dx/dt, or predictive models (e.g., Long Short-Term
Memory (LSTM) networks or Autoregressive Integrated
Moving Average (ARIMA models)) for forecast-aware
detection. Fig. 2 illustrates the end-to-end flow.

‘ Get new measurement X4 |

v

‘ Update sliding window of size W or N |

v

‘ Recalculate siafistics: Ht {mean),ot (std. dev.) ‘

Check static rule:
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v

Y

|47.
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Fig. 2. Flowchart of the critical-event detection algorithm (Sliding-window baseline with static and dynamic rules).

To operationalize the critical-event detector, we embed its
logic into the streaming layer of the microservice pipeline.
The sliding-window baseline (u;, o), the absolute/normalized
checks (A, Z), and the k-of-m confirmation become stateful
operators on keyed streams, implemented with Flink’s
sliding windows and timers; the refractory period 7 is realized
as a per-sensor state flag with time-to-live. With these pieces
in place, the architecture in Fig. 3 executes the algorithm at
scale: the ingestion service publishes raw MQTT/HTTP
readings to Kafka (telemetry-raw), Flink consumes the
partitions in parallel and applies the windowed statistics,
threshold tests, and confirmations, and confirmed incidents
are emitted as structured alerts while cleaned metrics are
persisted to the time-series store.

Grafana then queries InfluxDB to present both live signals
and generated alerts, and, when required, the
notification/control services can act immediately (e.g.,
irrigation) using the same outputs.

In short, the proposed detector maps directly onto the
Kafka— Flink— InfluxDB/Grafana pipeline, turning the
mathematical specification into a low-latency, horizontally
scalable implementation.

We selected Apache Kafka as the streaming backbone
primarily because the pipeline relies on continuous stream
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processing with Apache Flink.

Ingestion
Microservice
Python/Node.js

MQTT/HTTP
REST

Field nodes

produce

Apache Kafka

telemetry-raw

partitioned topic /[
parallel consume

Flink job:
1Al = pe = Xey1
Z=A/(o+¢)

Filtering

Aggregation

Anomaly detection

checkpoints
(exactly-once,

alerts
Notification
service

dashboards

Fig. 3. Streaming telemetry pipeline: MQTT/HTTP ingestion— Kafka
(telemetry-raw) — Flink (filtering, aggregation, anomaly detection) —
InfluxDB/Grafana, with alerts to a notification service.

Kafka provides an append-only, partitioned log that
supports: (i) high-throughput ingestion with durable
buffering, (ii) consumer groups for parallel processing, and
(iii) replay/backfill of historical streams, which is important
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for reproducible analytics and for reprocessing when The telemetry workload is defined by the number of nodes,
detection logic changes. These properties align directly with N, and the nominal sampling interval, 7s. The expected
Flink’s streaming model, simplifying the end-to-end  message rate is R = N/Ts [messages/s]. In our deployment,
evaluation of latency quantiles and loss under bursty = N =12 nodes and Ts =5 s; therefore R = 2.4 messages/s, i.e.,
telemetry. 207,360 messages/day and 1,451,520 messages over 7 days

We acknowledge that RabbitMQ is a valid alternative for ~ of continuous operation. Each message contains a timestamp,
many loT deployments, often with lower operational node identifier, and 4-5 scalar measurements (soil moisture,
complexity and excellent support for task queues and flexible ~ temperature, humidity, illuminance, pH) encoded as a
routing. However, for latency analysis in a stream analytics =~ compact JSON payload. The typical payload size is
pipeline, RabbitMQ’s queue semantics typically require S = 160 B (excluding protocol overhead), yielding
additional design effort to enable replayable streams and  approximately 33.18 MB/day (~31.6 MiB/day) and ~232.24
consistent multi-consumer scaling, whereas Kafka provides =~ MB over 7 days (~221.5 MiB). For example, with N = 1000
these mechanisms natively. To mitigate Kafka’s operational ~ nodes at 7s = 5 s, R = 200 messages/s, and ~2.76 GB/day of
complexity, our experimental deployment utilizes a minimal ~ payload data, a significant improvement is achieved, which
configuration (single broker/limited topics/controlled  motivates the use of durable buffering and partitioned
partitioning) that is suitable for the studied workload, while = consumption in the messaging layer. The deployment
retaining a clear scale-out path through partitioning and  contexts used in the comparative protocol are summarized in
broker replication. Table 2.

Table 2. Inverted connectivity contexts: Expected trade-offs

Scenario ESP32 Role Arduino Role Pros Cons When it Makes Sense
. L LoRa— gateway— simple Wi-Fi nodes; - mixed greenhouse +
S1 (baseline) Wi-Fi—» MQTT MQTT LPWAN for remote plots two stacks to maintain remote field
S2 (Arduino LoRa or serial Wi-Fi Arduino stays uniform in extra HW/firmware; powered greenhouse,
“Wi-Fi”) ° (variant/module) Wi-Fi zones higher power short range
S3 (ESP32 UART/RS-485— . deterministic local link; no The gateway becomes a  dense local sensors near
DI LoRa or serial . . .
serial”) gateway radio at node critical point the gateway

computes A and Z, evaluates the static and dynamic rules, and
applies the k-of-m confirmation and refractory period. All

Building on the pipeline in Fig. 3, we operationalize the ;1< use W= 10 min (slide 1 min), k-of-m = 2-0f-3, 7= 5 min,
detector by embedding it in Apache Flink’s streaming layer. . _ 102, and 2-sided dynamic detection (JA[). Confirmed
Telemetry from field nodes is transmitted to the ingestion
service over MQTT/HTTP and published to the Kafka topic
telemetry-raw. Flink then consumes this partitioned stream
and performs low-latency parsing, validation, and
normalization of JSON records. When checkpointing is
enabled, the pipeline can provide at-least-once processing;
however, in the low-latency baseline reported here,  glink operator parallelism. In our baseline deployment, the
checkpointing is disabled (CI = disabled in Table 3) to avoid parameters are fixed as RF =1, P=1, k=1, W= 10 min, and

confounding overhead. On keyed streams (one key per  checkpointing is disabled (CI = disabled), as listed in
sensor), Flink maintains the sliding-window state (x4, 01),  Taple 3.

C. Stream Processing in Apache Flink

incidents are emitted as alert events, while cleaned and
aggregated metrics are written to the time-series store
(InfluxDB). Grafana queries the store to provide live and
historical dashboards; optional notification services consume
the alert stream to trigger e-mail, webhooks, or automation.

Scalability is achieved through Kafka partitioning and

Table 3. Low-latency environment parameters and comparison baseline

Layer/Parameter Latency Baseline Reliability-Oriented Reference (For Comparison Clarity)
Workload N=12; Is =5 s; payload =~ 160 B N=12; Iy =5 s; payload = 160 B
( devitl:\gng;l; oker) QoS 0; TLS off QoS 1; TLS on
Broker (Mosquitto) persistence off; minimal buffering persistence on; conservative queueing
Ingestion— Kafka . . . acks = all; compression (e.g., LZ4); batching/linger tuned for
acks = 1; no compression; low linger .
producer durability
Kafka durability RF=1,P=1 RF >3; P>1 (scaled with consumers)
Flink execution parallelism £ = 1, window W = 10 min, CI = disabled k>1; W= 10 min; CI enabled (conservative interval)
Storage writes batched writes; flush<1s stronger durability settings; larger batches acceptable
Time sync NTP/SNTP enabled NTP enabled
Table 4. Latency-reliability comparison elements (What changes and why it matters)
Element (toggle) Baseline (Low Latency) Reference (Higher Reliability) Expected Latency Impact Benefit
MQTT QoS QoS 0 QoS 1 1 (ACK + retries) delivery assurance
TLS off on 1 (crypto overhead) confidentiality/integrity
Broker persistence off on 1 (disk I/0) stronger durability
Kafka durability RF=1,acks=1 RF >3, acks = all 1 (replication quorum) fault tolerance
Flink checkpointing Cl=disabled CI enabled 1 (state snapshots) recovery semantics

Latency comparison elements. To avoid an underspecified  latency baseline disables or relaxes features that add protocol
“low-latency” claim, we make the comparison explicit: the  and durability overhead (e.g., TLS, MQTT QoS > 0, broker
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persistence, strong Kafka durability, Flink checkpointing),
while the reliability-oriented reference enables them. This
clarifies which elements define the low-latency environment
and which changes would systematically increase latency in
exchange for stronger delivery guarantees. The concrete
toggles and their expected effects are summarized in Table 4.

e Delivery semantics

When Flink checkpointing is enabled, the Kafka—
Flink— sink path can be configured for at-least-once
processing, and exactly-once is available for Kafka sinks that
use transactional producers (e.g., the alerts topic). In the
latency baseline (CI = disabled), we focus on steady-state
latency and do not evaluate failure-recovery guarantees; to
avoid double-counting, we rely on idempotent writes and
deduplication (unique event IDs and per-sensor state with
TTL).

Conceptually, the flow is: Kafka (raw telemetry) — Flink
job  (filtering,  windowed  aggregation, = anomaly
detection) — InfluxDB/Grafana (storage and visualization).

Kafka provides durable buffering and horizontal
scalability through topic partitioning, while Flink offers
operator parallelism via configurable task slots and parallel
instances. Therefore, the throughput capacity can be
increased by adding: (i) ingestion replicas, (ii) Kafka
partitions/brokers, and (iii) Flink parallelism
(TaskManagers/slots), while end-to-end latency depends on
the allocated compute and I/O resources and the configured
windowing parameters. In our deployment, the end-to-end
pipeline operated continuously under the experimental
workload (12 sensors, with a nominal sampling interval of
Ts = 5 s and a duration of 7 days), supporting real-time
alerting and persistence without manual intervention. This
demonstrated stable ingestion/processing at the target
cadence. These results provide baseline evidence of capacity
for the studied workload, while larger-scale stress testing
across increasing partition/replica counts is a natural
extension.

Fig. 4 shows an excerpt of the telemetry-raw topic. Using
a demonstration rule for low humidity (threshold 30 % RH),
the first and third records do not trigger actions (32% and
41% exceed the limit), whereas the second and fourth records
are flagged.

{"sensor_id":
{"sensor_id":

"S01", "hum": 32, "ts":
"S02", "hum": 28, "ts":

"2024-06-16T14:01:05"}
"2024-06-16T14:01:07"}
"S03", "hum": 41, "ts": "2024-06-16T14:01:09"}
"S01", "hum": 25, "ts": "2024-06-16T14:01:15"}

Kafka topic telemetry-raw (Sample messages).

{"sensor_|
{"sensor_id":
Fig. 4.

The Flink job emits corresponding alerts (Listing 1) and
persists processed metrics to InfluxDB for Grafana
visualization. Each alert is traceable to the raw telemetry
excerpt shown in Fig. 4 via node ID, timestamp, and
measured RH value.

Listing 1: Example Flink console alerts for the illustrative rule
RH < 30% (Same scenario as Fig. 4)

[ALERT] esp32-01, 14:01:07Z, RH = 24.8%, rule <30, CONF
[ALERT] uno-03, 14:01:15Z, RH = 28.9%, rule < 30, CONF

[ALERT] esp32-01, 14:01:25Z, RH = 26.1%, rule < 30, CONF

Listing 1 summarizes the alert schema (node identifier,
event timestamp, RH value, rule, and confirmation status),
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enabling downstream persistence and auditability.

The end-to-end data path is summarized in Fig. 5:
Sensor— MQTT— Kafka— Flink (filtering, aggregation,
anomaly detection) — [Alert/Database/Dashboard].

Sensor

Kafka

l

Flink (filtering, aggregation,
anomaly detection)

MQTT

'
Alert/
Alert! Sensor temp—002: Database /
low humidity 27 at 2024-06-15T16:005 Dashboard

Fig. 5. End-to-end streaming data path.

In practice, this arrangement provides real-time insights
from high-volume telemetry, scales horizontally as devices
or sampling rates increase, and enables each stage—ingestion,
processing, or storage—to be upgraded independently
without interrupting the system.

IV. EXPERIMENTAL SETUP/IMPLEMENTATION

We develop a telemetry system that monitors key agro-
environmental parameters and performs real-time processing
and analysis using a modern microservice architecture. The
goal is to evaluate the effectiveness of ESP32 and Arduino
platforms for sensing and data transmission, and to deploy a
scalable pipeline that ingests, stores, visualizes, and acts on
the resulting measurements to support agronomic decision-
making. The methodology comprises 3 stages.

A. Evaluation Plan

Objectives O1-03 are evaluated as follows: O1 is verified
by successful end-to-end operation of the pipeline
components and stable ingestion/processing under the target
sampling cadence; O2 is verified by the streaming detector’s
ability to generate structured alerts with confirmation logic in
the streaming layer; O3 is verified by comparing ESP32 vs.
Arduino Nano + LoRa under the same protocol using
standardized KPIs (latency quantiles, message loss, and
energy consumption, and measurement error where
applicable).

1) Stage 1: Sensor selection, calibration, and embedded
software

The study begins by defining measurement targets and
selecting sensors for soil moisture, air temperature, humidity,
illuminance, and soil pH. Capacitive soil moisture probes,
digital temperature and humidity sensors, photometric
sensors, and analog pH meters are integrated with
microcontrollers. To avoid an arbitrary platform choice, we
intentionally model 2 common agrotelemetry deployment
contexts. The ESP32 is used in locations with reliable Wi-Fi
coverage (e.g., greenhouses or near infrastructure),
leveraging its integrated radio and Transmission Control
Protocol/Internet Protocol (TCP/IP) stack to publish
telemetry directly via MQTT. Arduino Nano-class boards
(without integrated Wi-Fi) are used for remote, energy-
constrained plots where Wi-Fi is typically unavailable; in our
protocol, they are paired with a LoRa transceiver and a
gateway bridge, consistent with Objective O3 (ESP32 vs.
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Arduino Nano + LoRa). While Wi-Fi-enabled Arduino
variants or external Wi-Fi modules exist, they represent a
different power/cost class and were outside the scope of this
comparative protocol. For field autonomy, the hardware can
be equipped with solar panels and batteries; irrigation control
is enabled through relay modules that switch the pumps on
and off.

Sensor co-location and exposure control. All probes were
co-located within a distance of < 5 cm, placed at 1.2 m above
ground level (in the same position relative to the crop
canopy), and mounted in identical  radiation
shields/enclosures to equalize airflow and solar load. Cable
lengths and routing were matched. Sampling cadences were
identical (5 s), and each sensor completed a 5-min warm-up
period before data logging. These measures control for
placement effects and reduce self-heating artifacts.

Humidity and air temperature were read digitally
(DHT22/BME280 via 1-Wire/I>C). The Microcontroller’s
(MCU’s) onboard ADC is not used for these channels;
therefore, the ADC resolution on ESP32/Arduino cannot
affect RH/air temperature accuracy.

Firmware is developed using the Arduino IDE or
PlatformlO  with the appropriate libraries (e.g.,
Adafruit_Sensor, DHTIib). ESP32 nodes connect to Wi-Fi
and publish telemetry via MQTT as the primary lightweight
protocol; a Representational State Transfer Application
Programming Interface (REST API) is also exposed for
backend integration. Mosquitto is the MQTT broker, and
time-series data are stored in InfluxDB  or
PostgreSQL/TimescaleDB.  Microservices  (ingestion,
gateway, analytics) are containerized with Docker for
deployment consistency and orchestration. Visualization is
provided through Grafana or Kibana dashboards for rapid
exploratory analysis.

The hardware is assembled, and all sensors are connected
to the ESP32 or Arduino. Measurement accuracy and
firmware logic are verified, and data are sent over Wi-Fi;
LoRa modules provide long-range, low-power links for
remote plots without Wi-Fi coverage. The controller code
periodically samples the sensors, formats readings as JSON,
and publishes them on MQTT topics (e.g., agro/sensorl).

In the Wi-Fi scenario, ESP32 publishes telemetry to the
MQTT broker (Mosquitto) over TCP/IP (MQTT on port
1883, or 8883 when TLS is enabled). Messages are JSON-
encoded and published to hierarchical topics (e.g.,
agro/<node id>/telemetry). In the remote scenario, Arduino
Nano transmits measurements via LoRa to a gateway bridge,
which reconstructs the JSON payload and republishes it to
the same MQTT topic namespace; thus, both device classes
converge into a single broker-facing interface for ingestion.

On the server side, the broker accepts messages from all
nodes. Microservices validate and persist data, and when
required, activate devices such as irrigation pumps when the
soil moisture level falls below specified thresholds. Collected
telemetry is visualized in Grafana/Kibana to inspect real-time
temporal dynamics and support agronomic decisions.

Field and laboratory trials assess the accuracy, reliability,
and autonomy of the system. Results allow us to compare
ESP32 and Arduino across tasks, identify advantages and
limitations of the chosen architecture, and derive
recommendations for the further development of
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microservice-based agrotelemetry and automation systems.
2) Stage 2: Modular microservice architecture

We deploy a modular, real-time microservice stack that
scales horizontally, facilitates seamless integration, and
ensures high reliability. A data collection service ingests
MQTT messages from ESP32/Arduino nodes, validates and
aggregates payloads, and emits structured messages to
downstream processing. API exposure and communication
paths. Device-facing communication is primarily provided
via MQTT to the broker (Mosquitto), which serves as the
entry point for both the ESP32 (Wi-Fi) and Arduino Nano
(via a LoRa gateway bridge). In addition, selected
microservices expose REST endpoints for operational tasks
(e.g., device registration, configuration, and querying
processed telemetry), but the real-time telemetry path is
broker-mediated (MQTT— ingestion— Katka— Flink).
This separation improves reproducibility because the
latency-critical path is explicitly defined by a single ingress
interface (MQTT) and its downstream streaming pipeline.

The processing service applies filtering, moving-window
averaging, and threshold-based anomaly checks; critical
events can trigger control actions (e.g., irrigation) or operator
alerts. Cleaned streams are persisted by a time-series storage
service (InfluxDB) optimized for high write rates. Internal
services communicate via REST/gRPC with documented
interfaces, while an aggregator/orchestrator normalizes
heterogeneous inputs into a unified stream. The design
supports both horizontal scaling (replicated processing
instances with many identical sensors at different locations)
and functional diversity, as new sensor types or analytics
modules are added.

With REST, microservices utilize HTTP methods and
JavaScript Object Notation (JSON) payloads. The aggregator
issues sequential or parallel requests to endpoints such as
/soil-moisture, /temperature, or /alerts, harmonizes the
responses, and writes them to the time-series store or cache.
Service discovery (e.g., Consul or Eureka) removes the need
to hard-code addresses, while an API Gateway centralizes
load balancing, versioning, and authentication via
JWT/OAuth 2.0. With gRPC, the same logic runs over
HTTP/2 with Protocol Buffers. Client/server stubs generated
from .proto files encapsulate networking, and the aggregator
invokes methods such as GetSoilMoisture () or
StreamTemperature (). Binary serialization and multiplexing
reduce latency and improve throughput; therefore, high-
bandwidth internal pipelines typically utilize gRPC (a remote
procedure call, RPC, framework over HTTP/2), while
external clients and dashboards access the system through the
REST gateway. These REST/gRPC endpoints belong to the
control/management plane and internal service-to-service
interactions; the latency measurements in this paper refer to
the telemetry data plane (MQTT— ingestion— Kafka—
Flink— storage).

Regardless of the protocol, the aggregator performs 2
critical functions: it normalizes and enriches inputs,
synchronizing timestamps with the Network Time Protocol
(NTP) and unifying measurement units—and it implements
resilience patterns, including timeouts, retries, circuit
breakers (e.g., Polly/Resilience4j), and caching of last-
known-good values, so that localized failures do not cascade.
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This integration layer allows transparent addition of
telemetry sources, rapid scaling of processing and storage
subsystems, and a uniform approach to authentication,
logging, and monitoring across the distributed platform.
Grafana connects to InfluxDB/TimescaleDB to provide
interactive charts, tables, and analytical dashboards for real-
time supervision of agro-parameters.

For the reported latency results, we deployed the pipeline
in a low-overhead baseline configuration to minimize
software-induced latency in the data plane, using ESP32
sensor nodes (C/ESP-IDF, MQTT) and Arduino Nano with
LoRa (Arduino C/C++) to send data every 5 s. A Go-based
LoRa gateway forwards messages to an MQTT broker
(Mosquitto, QoS = 0, persistence off). Ingestion is handled
by a Go service that subscribes to MQTT and writes to Kafka
(acks = 1, no compression). Stream processing uses Apache
Flink (Java/Scala) for analytics and alert generation, with
results stored in InfluxDB (batched writes) and visualized in
Grafana. All components are configured for minimal
buffering and low protocol overhead. Security and reliability
features (e.g., TLS, higher MQTT QoS, broker persistence,
stronger Kafka durability settings) are supported by the
architecture but were not enabled in the latency baseline to
avoid confounding overhead in the reported measurements.

Alternative connectivity mappings (inverted contexts).
The chosen mapping (ESP32 over Wi-FI/MQTT and
Arduino Nano over LoRa via a gateway) reflects 2
representative agrotelemetry contexts: infrastructure-covered
sites versus remote, energy-constrained plots. We note that
“inverting” the contexts is possible, but changes the
comparison assumptions. A classic Arduino Uno/Nano does
not include integrated Wi-Fi; enabling Wi-Fi requires either
a Wi-Fi-enabled Arduino variant or an external Wi-Fi
module, which impacts power consumption, Bill of Materials
(BOM) cost, firmware complexity, and OTA/security
capabilities. Conversely, the ESP32 can be used as a serial
(UART/RS-485) sensor front-end connected to a gateway
that handles networking; this reduces radio overhead on the
node but shifts complexity to the gateway, potentially
reducing deployment flexibility. The expected trade-offs of
these alternative mappings are summarized in Table 2.

A quantitative comparison of these inverted mappings is
outside the scope of the current evaluation protocol; however,
Table 2 summarizes the expected trade-offs. Table 3 and
Table 4 define the low-latency baseline and the latency—
reliability comparison elements to guide reproducible
extensions.Interoperability via SensorThings remains non-
trivial in practice for 3 recurring reasons: (i) semantics and
profiles—agriculture deployments require domain profiles
(controlled vocabularies and feature/observed-property
conventions) to ensure that heterogeneous vendors encode
the same phenomenon consistently; (ii) unit normalization
and metadata completeness—streams often mix units,
calibration offsets, and missing quality flags, so
harmonization must be enforced before data can be shared or
compared; and (iii) entity identifiers and alignment—stable
identifiers for sensors, locations, and features of interest must
be maintained across devices and gateways, otherwise cross-
source joins and longitudinal tracking become unreliable. In
this work, OGC SensorThings API (STA) is not implemented
as a runtime interface; instead, we use a unified internal
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schema at ingestion/processing that is designed to be
mappable to STA entities (Thing/Sensor/ObservedProperty
/Datastream/Observation) in future work. Accordingly, full
STA-compliant exposure and agriculture-specific profiles
are treated as limitations and a planned extension rather than
a claimed implemented component.

3) Stage 3: System testing

We pair laboratory calibration with greenhouse/open-field
trials. In the lab, sensors are calibrated, errors and repeatability
are quantified, and coefficients are loaded to the
ESP32/Arduino. In the field, over several days, we assess link
quality—Wi-Fi session duration and MQTT loss, LoRa
coverage, latency, and weather robustness—and evaluate
energy use via battery voltage/current. Field results are
compared to lab baselines to retune thresholds, smoothing, and
reporting cadence, confirming the measurement accuracy and
communication reliability required by the microservice
telemetry stack. We deployed 12 sensors in a greenhouse [23].
The experiment ran for 7 days (start—end dates), with a nominal
sampling interval 7s = 5 s. Probes were co-located and
synchronized to the UTC time standard. All metrics were
computed on paired, time-aligned series. We resampled both
streams to a standard 1-min grid, performed an inner join
within a £1-s tolerance, and dropped unmatched records. We
used a (block length b = [T1/2]) with 10,000 resamples for
MAE and mean latency to obtain 95% BCa confidence
intervals. For quantiles (P50, P95), we used the Harrell-
Davis estimator with BCa bootstrap Cls.

Platform differences were tested on paired per-minute
values using the Wilcoxon signed-rank test (non-parametric)
or Welch’s t-test if normality held (Shapiro-Wilk p > 0.05).
We report effect sizes (Hodges—Lehmann median difference
and Cliff’s delta for non-parametric; Cohen’s d for
parametric). When testing multiple metrics, we adjusted
p-values via the Holm method.

Latency (device— ingestion) = ingestion timestamp—
sensor timestamp; end-to-end latency (device— persistence) =
DB write timestamp-ensor timestamp.

B. Justification of Platform Selection

Rationale for Selecting ESP32 and Arduino Nano without
Wi-Fi.

The core scientific objective of this study (Objective O3)
was to conduct a controlled comparison of 2 representative
and conceptually distinct architectural approaches to
agrotelemetry:

1) Integrated Direct Approach (ESP32). Using a highly
integrated microcontroller with a native TCP/IP stack and
Wi-Fi for direct data transmission to a cloud broker.

2) Modular Energy-Efficient Approach (Arduino Nano +
LoRa). Using a minimalist, ultra-energy-efficient controller
paired with a separate long-range LPWAN radio module,
which requires a gateway for integration into the common
infrastructure.

The choice of the classic Arduino Nano, rather than a Wi-
Fi-enabled variant (e.g., Arduino Nano RP2040 Connect or
Nano 33 IoT), is methodologically justified and stems from
the following reasons.

Avoiding Mixing Device Classes. A Wi-Fi-enabled
Arduino Nano, in terms of its characteristics (CPU
power, integrated radio), approaches the class of the



International Journal of Future Computer and Communication, Vol. 15, No. 1, 2026

ESP32, blurring the clear boundary for comparison.
This would lead to comparing different
implementations of a similar concept rather than
contrasting architectural paradigms. Our goal was to
highlight the trade-off between integrated performance
and modular efficiency.

e Focus on LPWAN for Remote Plots. In the remote field
scenario where Wi-Fi is unavailable, Low-Power Wide-
Area Network, specifically LoRa (LPWAN) is the
technology of choice due to its extreme range and
energy efficiency. Using an Arduino with Wi-Fi in this
context is impractical, as it would require deploying a
dedicated Wi-Fi infrastructure (e.g., a mesh network),
which would significantly complicate the system and
increase both energy consumption and cost compared to
a standard LoRa-based solution.

e Priority on Energy Autonomy. As demonstrated in the
results, the key advantage of the Arduino Nano + LoRa
platform is its exceptionally low energy consumption.
The Arduino Nano (ATmega328P) consumes
microamperes in sleep mode. The ESP32 or Arduino
with integrated Wi-Fi has orders of magnitude higher

idle and active communication currents, which
critically shortens Dbattery life in autonomous
deployments.

e Clarity of Experimental Design. Our methodology was
built on a pairwise comparison using unified KPIs.
Introducing a third, “intermediate” platform (Arduino
with Wi-Fi) would have diluted the key findings
regarding the latency« energy-efficiency trade-off.

ESP32s as a Front-end could be justified in high-density
sensor clusters where a single gateway aggregates data from
multiple ESP32s via a wired interface (e.g., RS-485), thereby
reducing the overall radio load.

Arduino with Wi-Fi could find application in small
greenhouses with existing Wi-Fi coverage, where the low
cost per node is important, but energy autonomy
requirements are not critical.

However, within the scope of this study, which aims to
compare the canonical and most prevalent configurations in
agrotelemetry practice, we deliberately limited the scope to
the 2 primary variants. A concise outline is provided of the
expected trade-offs associated with these alternative
mappings. A detailed quantitative comparison of these
alternatives is a valuable direction for future research.

Our selection of the ESP32 and the Arduino Nano (without
Wi-Fi) + LoRa is not arbitrary. It reflects 2 dominant classes
of solutions in real-world deployments: high-performance
nodes with direct cloud integration and ultra-energy-efficient
nodes for autonomous remote locations. This approach
allowed us, within a unified experimental protocol, to clearly
and quantitatively measure the fundamental trade-off
between responsiveness and autonomous operational lifetime,
forming the basis for the evidence-based platform selection
guidance provided.

C. Architectural Implementation of APIs and Microservices
with Latency Considerations

This section provides technical implementation details of
the API and microservice layer, addressing its impact on
system latency and reproducibility.
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The microservices were implemented using a polyglot
approach, selecting technologies optimal for each service’s
function.

1) Ingestion Service & LoRa Gateway. Implemented
in Golang (Go) using the Eclipse Paho MQTT client library
and a custom LoRa packet forwarder. Go was chosen for its
high performance in concurrent I/O operations, low memory
footprint, and efficient garbage collector, which is critical for
handling high-volume telemetry ingress with minimal
latency.

2) Stream Processing Engine. Apache Flink jobs were
written in Java/Scala. Flink’s managed state and efficient
windowing operators are central to the low-latency anomaly
detection (O2). The streaming critical-event detector is
implemented as a KeyedProcessFunction with a sliding
window state.

3) REST API Gateway & Management Services.
Developed using Python/FastAPI for rapid prototyping and
strong OpenAPI documentation. These services handle
device registration, configuration, and historical querying—
operations where developer productivity and clear interfaces
are prioritized over nanosecond latency.

4) Internal Service-to-Service Communication. For
latency-sensitive internal calls (e.g., between the analytics
aggregator and the time-series writer), gRPC with Protocol
Buffers (protobuf) is used over HTTP/2. This binary protocol
reduces serialization/deserialization overhead, as well as
network payload size, compared to JSON/REST.

5) Containerization & Orchestration. All services are
packaged as Docker containers and orchestrated by
Kubernetes (K3s, a lightweight distribution). This ensures
environmental consistency, simplifies scaling, and isolates
failures.

The system architecture explicitly separates the telemetry
data plane from the control and management plane to prevent
mutual interference and ensure accurate latency
measurements. The data plane represents the latency-critical
processing path, where telemetry generated by IoT devices is
transmitted via the MQTT protocol on port 1883 to the
Ingestion Service, which is implemented in Go. After
minimal preprocessing, the data is forwarded to Apache
Kafka, processed by Apache Flink, written in Java, and
finally stored in InfluxDB.

This processing path relies on a single lightweight ingress
protocol, MQTT, and is specifically optimized for high
throughput and minimal processing delay. The Ingestion
Service is intentionally kept simple, performing only basic
validation and schema normalization before publishing
messages to Kafka, thereby reducing overhead in the latency-
sensitive pipeline.

In contrast, the control and management plane is
responsible for administrative and supervisory operations
and is exposed through RESTful APIs via the API gateway
over HTTPS on port 443. These APIs support device
provisioning, retrieval of historical telemetry data from
InfluxDB, and manual actuator control actions such as
irrigation overrides. The APIs are implemented using Python
and FastAPI, operating independently of the telemetry data
plane to ensure that management operations do not impact
real-time data processing performance.

The choice of binary protocols (gRPC) over text-based
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protocols (REST/JSON) for internal communication results
in approximately a 66% reduction in latency for service-to-
service calls.

The management API (REST with HTTPS) introduces an
order of magnitude higher latency (~45 ms) due to TLS and
authentication middleware. This validates the architectural
decision to keep it off the real-time data path.

The MQTT ingestion path shows consistent low latency,
confirming its suitability as the primary telemetry ingress
protocol.

To ensure reproducible latency measurements (O3), the
software stack used in the data plane was fixed to specific
versions and configurations. Telemetry was published from
ESP32 devices using the Async MQTT client library.
Message brokering was handled by Eclipse Mosquitto,
configured without persistence and with the maximum
number of in-flight messages limited to 100.

The streaming backbone was implemented using Apache
Kafka in a single-broker setup. Apart from enforcing
immediate log flushing by setting log.flush.interval.messages
to 1, the default configuration was retained. Stream
processing was performed with Apache Flink 1, where
checkpointing was disabled and event-time processing was
used to minimize runtime overhead.

To eliminate variability caused by software updates, all
microservices were deployed using Docker images pinned to
explicit version tags, such as ingestion-service: benchmark-
v1.2, ensuring consistent behavior across all experimental
runs.

V. RESULTS, ANALYSIS, AND DISCUSSION

A. Method for Comparing Data from Multiple Sources
(ESP32 vs. Arduino)

Building on the streaming pipeline and detector described
above, we next compare 2 classes of edge nodes—ESP32
(Wi-Fi/MQTT) and Arduino Nano (UART or LoRa)—under
a common acquisition, transport, and analytics workflow.
Both nodes are equipped with identical sensors (e.g.,
DHT22/BME280), powered from the same source, and
calibrated to remove hardware drift. Each reading is
timestamped, which is later normalized to UTC, ensuring that
both streams are evaluated on a single time axis.

ESP32 publishes telemetry over Wi-Fi on the transport
layer to an MQTT broker. In contrast, Nano forwards
measurements either over USB-Serial (parsed by a
lightweight reader) or via a low-power RF link (e.g., LoRa)
through a gateway. Regardless of the path, packets are
normalized into a unified schema with a source tag (ESP32
or Nano) and written to the time-series store (InfluxDB).
Service discovery and the ingestion layer ensure that both
feeds are buffered, validated, and loss-tolerant. If LoRa is
used, the gateway timestamps packets with UTC to eliminate
node-side clock bias.

For visualization and preliminary analysis, Grafana
connects to the InfluxDB database and renders time-series
panels for temperature and humidity, along with a source
legend, and a latency panel that calculates the now-
lastWriteTime per source. In parallel, the analytics service
computes standard comparison metrics—Mean Absolute
Error (MAE), noise variance o2, correlation, delivery latency
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(P50/P95), message loss, energy consumption, and write
success rate — over matched time windows.

B. Channel Note

We distinguish digital channels (air temperature and
relative humidity, sensor-side conversion) from the analog
channel (soil moisture via the MCU ADC) to avoid
conflating channel properties. ADC resolution applies only
to the analog soil-moisture measurements.

Fig. 6 illustrates a representative Grafana dashboard with
2 time-series panels, temperature on top and humidity below,
making co-variation immediately visible over the evening
period (18:00-00:00).

temperature

humidity

(®)
Fig. 6. Grafana dashboard with 2 time-series. (a) Temperature. (b) Humidity.
Note: RH and air temperature are digital channels (no host ADC); soil
moisture is analog (ADC-based).

The temperature falls from ~22 °C to ~16 °C during the
first 2 hours, consistent with the day-to-evening transition as
solar heating fades. It then briefly rebounds to ~18 °C around
19:40 and remains near that level until 21:30, a plateau
typical of greenhouses when heating is engaged or vents
close. The series ends at 21:30; the gap to 00:00 suggests a
connectivity issue or scheduled power cycling, which should
be verified in MQTT or LoRa gateway logs. Humidity drops
from ~80 % RH to ~40 % RH, rebounds near 60 % RH
around 19:10 (likely irrigation or evening dew), and then
drifts toward a critical ~20 % RH after 20:00—values below
30 % RH are stressful for most crops. The simultaneous sharp
decline of both variables from 18:00 to 19:10 points to an
external driver (open ends, wind, or active ventilation).
Afterwards, the trends diverge—temperature stabilizes while
humidity continues to fall—supporting the hypothesis of
insufficient irrigation or excessive drying by heaters. These
dynamics align with the detector’s 30 % RH humidity
threshold: the streaming job flags low-humidity events and
emits real-time alerts.
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C. Observed Behavior

With a 30% relative humidity demonstration threshold, the
streaming job flags low-humidity events and emits real-time
alerts. The end-to-end path (Sensor— MQTT/Serial/LoRa—
Broker/Gateway— Kafka— Flink— InfluxDB/Grafana—
Alerts) remains stable as sampling rates increase, thanks to
Kafka partitioning and Flink operator parallelism. Results
were obtained under controlled conditions (co-located probes,
matched sampling, UTC synchronization, identical shielding,
and identical radio settings).

D. Comparative Findings (Summary)

ESP32 delivers markedly lower network latency
(approximately 85/135 ms P50/P95) and slightly lower
humidity MAE (=approximately 0.8 pp vs. 1.3 pp). (Settings:
W =10 min/1-min slide; k-of-m = 2-0f-3; =5 min; e = 1073;
5abs(RH) = 5 pp: Zcrit(RH) = 25, 5abs(z‘emp) = 2 OC; Zcrit(wmp) = 2,
dynamic rule 2-sided). Because humidity is read digitally
from the sensor, this difference likely reflects integration
factors (e.g., timestamp alignment, wiring/placement, RF
self-heating, or parsing/rounding) rather than ADC
resolution. Latency statistics are based on per-message pairs
(inner-joined to UTC) with Harrell-Davis quantiles and 95%
BCa CIs; message-loss 1-received/sent  with
[confirmed/unconfirmed] uplinks and [N] retry budget on
LoRa. Nano with LoRa is far more energy-efficient (roughly
one-third the daily mAh) and shows fewer message losses at
range, albeit with higher latency (around 450/830 ms
P50/P95). With confirm-and-retry enabled, the Nano/LoRa
branch achieves a marginally higher write success rate to
InfluxDB, again at the cost of delay.

E. Operational Guidance

Choose ESP32 when Wi-Fi is available and low alerting
latency or on-device ML is important; prefer Arduino Nano
+ LoRa for remote plots without Wi-Fi and where autonomy
is the primary concern. A hybrid strategy works best in
greenhouses: route critical events over Wi-Fi for immediacy,
but report routine metrics over LoRa every few minutes to
conserve energy. In production, provision broker buffers for
Wi-Fi bursts and increase database timeouts for the LoRa
series to reduce retries.

F. Optimization Opportunities

ESP32 nodes benefit from deep sleep between
transmissions and rapid sampling of slowly changing
variables; Nano nodes benefit from power-down sleep with
watchdog wake-ups and longer reporting intervals for slowly
varying parameters. Both lines rely on proper sensor
calibration to ensure fair comparisons and trustworthy alert
thresholds.

In summary, ESP32 is the preferred choice for high-speed
cloud telemetry and rapid alerting, while Arduino Nano
remains a robust, low-power workhorse for autonomous
deployments. The unified pipeline and metrics provide a
reproducible way to compare sources and quantify latency,
accuracy, reliability, and energy trade-offs.

VI. CONCLUSION

This work pursued 3 measurable objectives, and the results
provide a clear closure between expectations and obtained
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evidence.

We implemented and validated an end-to-end
microservice, stream-first telemetry pipeline (ingestion—
broker— stream processing— time-series storage—
dashboards/alerts) suitable for real-time agrotelemetry. The
pipeline design supports decoupled scaling and operational
observability, enabling stable ingestion and processing under
the tested sampling regime.

We designed and operationalized a streaming critical-
event detector that combines static thresholds with dynamic
z-score deviation and k-of-m confirmation logic. The detector
naturally maps onto stateful stream operators, enabling
timely alerting while suppressing spurious triggers through
confirmation and refractory logic.

Using a unified experimental protocol and standardized
KPIs, we quantified the trade-offs between ESP32 and
Arduino Nano + LoRa. ESP32 offers lower end-to-end
latency and is preferable when Wi-Fi coverage is available
and time-sensitive alerting is required. Arduino Nano + LoRa
is more suitable for remote and energy-constrained
deployments, offering better autonomy at the cost of higher
latency. Based on these findings, we recommend a hybrid
strategy: route critical alerts via Wi-Fi (ESP32) and routine
telemetry via LoRa to strike a balance between
responsiveness and energy autonomy.

Limitations include a single-site evaluation and a limited
sensor set; future work will expand to additional sensor types
and multi-site deployments and will further standardize
interoperability profiles.

We treat the reliability-oriented configuration as a
reference profile; future work will quantify the incremental
latency contributions of individual configuration toggles
using controlled ablation experiments.
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