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Abstract—This paper presents a microservice-based system 
architecture for collecting, processing, and analyzing 
agrotelemetry data in real-time to support precision agriculture. 
The study aims to evaluate the effectiveness of the ESP32 
microcontroller platform (Espressif Systems) and Arduino 
Nano with Long Range (LoRa) platforms as edge nodes for 
monitoring agro-environmental parameters, including soil 
moisture, air temperature, and humidity. The objectives are:  
(i) to validate an end-to-end microservice streaming pipeline for
agrotelemetry, (ii) to operationalize a low-latency critical-event
detector in the streaming layer, and (iii) to compare ESP32 and
Arduino Nano + LoRa under unified Key Performance
Indicators (KPIs) (latency, reliability, accuracy, where
applicable, and energy consumption) to provide evidence-based
deployment guidance. The proposed architecture leverages
Kubernetes, Apache Kafka, Apache Flink, and InfluxDB to
ensure horizontal scalability, fault tolerance, and low-latency
processing. For automated critical event detection, we
implemented a novel streaming algorithm combining static
thresholds with dynamic z-score analysis and a confirmation
mechanism to reduce false positives. The experimental
methodology involved laboratory tests and field trials
conducted in a greenhouse. Results indicate a clear trade-off:
the ESP32 platform achieved lower network latency and higher
accuracy, while the Arduino Nano with LoRa was significantly
more energy-efficient and demonstrated superior long-range
link stability. Based on these findings, we recommend using the
ESP32 for time-sensitive applications within Wi-Fi coverage
and the Arduino Nano with LoRa for energy-constrained,
remote deployments. A hybrid strategy is proposed to strike a
balance between responsiveness and energy autonomy. The
unified pipeline provides a reproducible framework for
evaluating trade-offs among latency, accuracy, reliability, and
energy consumption in agrotelemetry systems.

Keywords—distributed computing, microservice architecture, 
cloud computing  

I. AN INTRODUCTION TO AGROTELEMETRY

Agrotelemetry—the remote measurement and wireless 
transmission of data from fields, livestock, and machinery—
has matured into the data backbone of precision agriculture.  

Agrotelemetry represents a transformative technology in 
modern agriculture, forming the central nervous system of 
the smart farm concept. This field involves the application of 
telemetric principles for the automated collection, wireless 
transmission, and real-time analysis of data related to 
agricultural objects. 

The architecture of agrotelemetry systems is based on a 
4-layer model, integrating sensory, communication,
computational, and application levels. The sensory level
encompasses deployed field sensors for soil, plant, and
livestock parameters, as well as actuating mechanisms. The

communication layer enables data transmission via 
specialized wireless protocols such as LoRa Wide Area 
Network (LoRaWAN), Narrowband Internet of Things  
(NB-IoT), and cellular networks. The computational tier 
handles data cleansing, aggregation, and analysis using edge 
computing for local decision-making and cloud technologies 
for in-depth analytics. The application level provides 
interfaces for data visualization and decision-support tools. 

Key applications of these systems include precision 
irrigation based on soil moisture data, crop monitoring using 
multispectral sensors, tracking microclimate conditions, and 
monitoring livestock health. The agrotelemetry technology 
stack ensures optimized resource use, increased productivity, 
and reduced environmental impact of agricultural activities. 

The industry’s development is characterized by the 
integration of artificial intelligence for predictive analytics, 
the adoption of standardized Application Programming 
Interfaces (APIs) (such as the Open Geospatial Consortium 
(OGC) SensorThings API) to ensure system interoperability, 
and the emergence of autonomous robotic platforms. 
Implementing agrotelemetry solutions presents challenges, 
including high initial costs, technical complexity, and power 
supply requirements for peripheral devices. 

Between 2019–2025, deployments consolidated around 
Low‑Power Wide‑Area Networking (LPWAN) and 4G/5G 
backhauls [1]; standardized data models (OGC SensorThings 

API for observations [2]; ISO 11783/ISOBUS for machinery 
telematics [3]); and edge-cloud patterns that close the loop 
for irrigation, greenhouse climate, and asset 
maintenance [4–6].  

Agrotelemetry spans:  
 In situ sensing (soil moisture/salinity, microclimate,

leaf water stress, trunk diameter, etc.);
 Mobile platforms (Unmanned Aerial Vehicles

/Unmanned Ground Vehicles (UAVs/UGVs));
 On board machinery telemetry (CAN/ISOBUS,

engine/fuel, task controller).
Observations should be exposed via a uniform, geospatial 

API to enable cross-farm analytics and decision support. 
The OGC SensorThings API (STA) is the recommended 

interface, with its Sensing component (Part 1) handling 
observations and its Tasking component (Part 2) managing 
device actuation. 

This study addresses the lack of reproducible, KPI-driven 
comparisons between common low-cost edge platforms in 
real agrotelemetry pipelines. The objective of this work is to 
design and validate a microservice-based, stream-first 
architecture for real-time agrotelemetry, and to quantify the 
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trade-offs between ESP32 (Wi-Fi/MQTT) and Arduino  
Nano + LoRa as edge nodes within a unified data ingestion 
and analytics workflow. 

Specifically, we pursue 3 measurable objectives: 
 Architecture objective (O1): implement an end-to-end 

microservice pipeline (ingestion→ broker→ stream 
processing→ time-series storage→ dashboards/alerts) 
suitable for real-time agrotelemetry. 

 Analytics objective (O2): implement and operationalize 
a streaming critical-event detector that combines static 
thresholds with dynamic z-score deviation and 
confirmation logic (k-of-m voting) to reduce false 
positives. 

 Comparative objective (O3): evaluate ESP32 vs. 
Arduino Nano + LoRa using a common experimental 
protocol and standardized KPIs, including latency 
(P50/P95), message loss, measurement error (e.g., 
Mean Absolute Error (MAE) where applicable), and 
energy consumption, and derive evidence-based 
platform selection guidance. 

Accordingly, the expected outcome is a set of 
experimentally supported recommendations (including a 
hybrid deployment strategy) that closes the loop between 
architecture design choices and measured operational KPIs. 

II. RELATED WORK  

 This section is structured as a scoping review to position 
the proposed architecture within the field–edge–cloud stack 
for agrotelemetry. We surveyed peer-reviewed publications 
(2020–2025) indexed in major scholarly databases (e.g., 
IEEE Xplore, ACM DL, Scopus/Google Scholar) using 
keyword combinations covering (i) smart/precision 
agriculture telemetry, (ii) Low-Power Wide-Area Networks 
(LPWAN), including LoRa/LoRaWAN and cellular IoT 
(NB-IoT/LTE-M/5G), (iii) MQTT/CoAP security, and  
(iv) edge–cloud streaming and microservice architectures. In 
addition, we included a limited number of recent preprints 
when they provide up-to-date comparative analyses not yet 
available in journal form (e.g., the SCI 2025 Springer chapter 
in Ref. [7]). We prioritized sources that report operational 
KPIs (e.g., latency, delivery ratio/loss, energy/device  
lifetime) or describe end-to-end pipelines; purely conceptual 
works are used only to define baseline terms. 

Conceptual framing. We analyze prior work through a 
field–edge–cloud stack: (i) field sensing and edge nodes, (ii) 
last-mile connectivity and gateways, (iii) 
transport/messaging and security controls, and (iv) 
cloud/edge analytics and storage. Across these layers, the 
dominant evaluation dimensions are timeliness (tail latency), 
reliability (delivery ratio/loss under rural backhaul outages), 
and energy autonomy (device lifetime), which jointly 
determine the feasibility of continuous agrotelemetry and 
real-time actuation. 

Agrotelemetry deployments today are best understood 
through the lens of a field-to-edge-to-cloud stack in which 
communication choices and data handling coevolve. Recent 
surveys frame agri-IoT as the backbone of precision and 
climate-smart agriculture, with connectivity, energy 
efficiency, and interoperability as first-order constraints. 
Within that frame, LoRa/LoRaWAN is favored for low-rate, 

long-range telemetry that can sustain multi-year battery life; 
empirical and survey studies report robust coverage, the 
practical benefits of Adaptive Data Rate (ADR), and 
successful irrigation and environmental monitoring projects, 
while also noting latency and downlink limitations [8].  
NB-IoT and Long Term Evolution for Machines (LTE-M), 
delivered by mobile network operators, extend coverage with 
stronger Quality of Service (QoS)—well-suited to sparse 
sensors and mobile assets, such as pumps and tanks—though 
power budgets and subscription costs must be carefully 
weighed [9]. Where throughput and low latency are critical, 
as with bursty machine telemetry or UAV video, 4G/5G 
becomes the natural complement, and many deployments 
now combine LPWAN for slow telemetry with 5G for 
heavier payloads in hybrid architectures [7].  

At the transport layer, Message Queuing Telemetry 
Transport (MQTT) remains the default choice, but it requires 
deliberate security hardening—such as authorization, 
Transport Layer Security (TLS), and careful broker 
exposure—while the Constrained Application Protocol 
(CoAP) persists on constrained nodes and introduces its own 
bootstrapping risks. Both stacks have known attack surfaces 
that must be mitigated systematically [10]. Since 2020, 
architectures have converged on edge gateways—typically 
LoRaWAN or NB-IoT concentrators—that pre-process, 
cache, and forward to cloud data lakes. On top, digital twins 
and decision-support systems consume standardized streams 
(e.g., OGC SensorThings, ISOBUS, AEMP/ISO 15143-3) to 
close control loops for irrigation, fertigation, and greenhouse 
Heating, Ventilation, and Air Conditioning (HVAC); case 
studies in greenhouses and orchards show improved water-
use efficiency and reliability under ADR/just-in-time 
scheduling [4]. Alongside these patterns, reports emphasize 
practical edge–cloud stacks and the growing role of AI/ML 
at the edge for agriculture telemetry, paired with security 
hardening throughout the pipeline [11]. 

Security and reliability remain cross-cutting concerns: 
beyond device hardening, the literature repeatedly flags 
MQTT broker exposure and CoAP bootstrapping issues, and 
recommends end-to-end TLS with credential rotation. 
Robustness techniques—such as ADR on LoRaWAN, 
adaptive duty cycling, and local buffering—help farms 
mitigate rural backhaul outages [10]. Economically and 
environmentally, reviews link telemetry-driven irrigation and 
input optimization to measurable resource savings and 
sustainability gains, reinforcing broader Digital Agricultural 
Technology (DAT) adoption [12]. 

To make the review systematic, Table 1 synthesizes 
representative studies by strand, the KPIs they report, the 
main limitations, and how the present work addresses the 
identified gaps. 

Microservices and API-driven edge–cloud architectures. 
Beyond agriculture-specific surveys, recent reviews of 
IoT/IIoT architectures emphasize microservice 
decomposition and explicit API contracts as a dominant 
pattern for scalable edge–cloud systems, typically deployed 
via containers and orchestrators. Surveys of IoT application 
architectures and edge–cloud continuum systems report that 
microservices and API gateways simplify the integration of 
heterogeneous devices/protocols, while enabling 
independent scaling and fault isolation at the service level. 
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Systematic reviews further note that the practical 
performance (including latency) depends not only on the 
network link but also on platform choices such as 
orchestration, scheduling, and the middleware stack; 
therefore, reproducible studies should disclose the software 
stack and baseline configurations used for latency 
measurements. Microservice- and API-centric edge–cloud 

IoT architectures are reviewed in Refs. [15–20], highlighting 
orchestration and interface standardization as key factors 
affecting practical latency and reproducibility (see Table 1). 

As summarized in Table 1, prior studies rarely report 
standardized end-to-end KPIs under a unified experimental 
protocol, which motivates our KPI-driven evaluation and 
architecture validation in Section III. 

Table 1. Synthesis of related work and gaps (Scoping) 

Strand Sources Coverage (Keywords) KPIs (typ.) Gap (short) This Paper (O1–O3) 

LoRa/LoRaWAN 
(LPWAN) 

[4, 8] 
long-range, low-rate; ADR; 

gateways 
range, energy, 

delivery; lat (avg) 

no P95/P99; no end-to-
end; heterogeneous 

setups 

unified KPI framing + 
comparison context (O1, 

O3) 

NB-IoT/cellular IoT [1, 9, 13] 
irrigation/remote assets; 

operator QoS 

lat (mean), success, 
availability; 
power/cost 

non-standard trade-offs; 
weak cross-tech 
comparability 

standardized KPI protocol 
for selection (O3) 

5G & hybrid 
LPWAN+5G 

[1, 7, 14] 
mixed payloads; hybrid 

models 

throughput, lat; 
cost/reliability 

(concept) 

mostly conceptual; few 
farm-level KPIs 

KPI-grounded guidance in 
one architecture (O1, O3) 

Comms overview & 
challenges 

[1, 14] 
taxonomy of agri comms; 

issues 
selective KPI 

mentions 
high-level; inconsistent 

KPI set 
motivates unified KPI 

set/protocol (O3) 

MQTT/CoAP 
security 

[10, 13, 
14] 

broker exposure; 
bootstrapping; mitigations 

qualitative security 
security ≠ operational 

KPIs; no pipeline 
linkage 

security-by-design within 
pipeline decomposition 

(O1) 

Rural robustness 
patterns 

[4, 8, 10] ADR, duty cycling, buffering 
delivery, outage 
tolerance (often 

descriptive) 

limited quantified end-
to-end reliability 

architecture enabling 
reproducible KPI reporting 

(O1, O3) 

Edge gateways & 
pipelines 

[4, 11, 13, 
14] 

preprocess/cache/forward; 
edge integration 

functional 
validation; few 

KPIs 

descriptive; no joint 
lat/loss/energy 

stream-first microservice 
pipeline (O1) 

Edge–cloud 
microservices & 
APIs (IoT/IIoT) 

[15–20] 
microservices; REST/API 

gateway; edge orchestration; 
continuum 

qual.; few latency 
p95/p99; limited 

workloads 

no reproducible 
baselines; weak KPI 

standardization 

explicit data-plane + 
reproducibility; KPI 
protocol (O1, O3) 

Cloud irrigation 
pipelines 

[5, 13, 14] 
embedded telemetry cloud; 

irrigation mgmt. 

functionality; 
response time 

(loose) 

non-standard KPIs; 
little tail-lat/loss 

KPI-oriented 
validation/comparison 

framing (O1, O3) 

Digital Twins (DT) [6] DT orchestration; applications 
conceptual/use-

case 
limited runtime KPIs; 

varied assumptions 
motivates robust telemetry 

backbone (O1) 
Smart sensors / 

smart data 
[8, 21] 

sensing trends; fidelity vs 
autonomy 

energy, fidelity; 
qualitative 

no unified protocol 
across platforms 

KPI set supports fair 
platform comparison (O3) 

UAV + ML analytics [14, 22] UAV/satellite refinement 
map/estimation 

quality 
mostly post-hoc; weak 
real-time integration 

identifies as future 
extension (gap) 

Interoperability 
(SensorThings) 

[2] 
SensorThings adaptation; 

sharing 
data mgmt focus 

agri semantics/profiles 
unresolved 

motivates 
schema/interoperability 

needs (O1) 

AI/RL actuation [23] RL microclimate control control outcomes 
alert/event semantics 

under-specified 
streaming event detection + 

confirmation (O2) 
DAT impact 
(econ/env) 

[12] sustainability/ROI evidence econ/env indicators 
weak link to telemetry 

KPIs 
operational KPI basis for 
impact linkage (context) 

Cross-cutting gaps 
[1, 2,  
4–22] 

synthesis — 

no standardized end-to-
end KPIs; few 
reproducible 
comparisons 

O1 pipeline + O2 detector + 
O3 unified KPI comparison 

 
Despite progress, several gaps persist. Interoperability at 

scale across heterogeneous sensors, machinery, and satellites 
remains challenging; sensor adoptions, such as SensorThings, 
help but require agriculture-specific profiles to standardize 
semantics [2]. Security-by-design for MQTT/CoAP and 
over-the-air update pipelines is essential in rural  
deployments [10]. Energy autonomy must be balanced 
against sampling fidelity, pushing research into energy 
harvesting and ultra-low-power sensing [21]. Fusing UAV 
outputs with ground telemetry for real-time operational 
control—rather than post-hoc mapping—remains an active 
frontier [22]. Finally, standardized KPIs such as latency, 
delivery ratio, and device lifetime should be reported 
consistently across real farms to enable fair comparisons 
between LPWAN and 5G solutions [7]. 

Representative works map this terrain: broad surveys of 
emerging technologies—spanning networking, UAVs, 

Software-Defined Networking (SDN), Network Function 
Virtualization (NFV), and fog computing–outline the 
ecosystem [14]; a comprehensive IEEE Access survey 
synthesizes IoT/WSN protocols and applications for 
agriculture [13]; LoRa-focused reviews detail energy and 
coverage trade-offs and agricultural use cases [8]; 
communication-technology overviews in agricultural 
systems situate link-layer choices within end-to-end  
stacks [1]; and sensor-centric trend papers track the 
maturation of “smart data” for precision farming [21]. 
Platform studies document LoRaWAN gateways and case 
deployments in greenhouses and irrigation telemetry [4] and 
describe IoT/embedded/cloud pipelines for smart  
irrigation [5]. In contrast, UAV + ML case studies 
demonstrate how aerial analytics refine vegetation indices 
into operational vigor maps that can inform ground-based 
interventions [22]. Security-oriented discussions catalog 
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edge–cloud issues and MQTT/CoAP vulnerabilities with 
concrete mitigations [10]. 

For 2025-ready designs, the literature converges on 3 
actionable themes: adopt hybrid connectivity—LPWAN for 
low-rate agronomic telemetry, augmented with 4G/5G where 
video or autonomy demands higher throughput [7]; harden 
messaging with TLS everywhere, broker isolation, per-
device credentials, and disciplined Over-The-Air (OTA) 
update hygiene [10]; and push intelligence to the edge so that 
local rules or ML can actuate swiftly (e.g., irrigation), while 
cloud-hosted digital twins support scenario analysis and 
optimization [6]. 

In addition, Axak et al. [23] presents a Q-learning–based 
microclimate controller for city-farm environments that 
ingests IoT sensor streams and optimizes temperature, 
humidity, and lighting over an edge–cloud pipeline, 

demonstrating reinforcement-learning-driven actuation. 

III. METHODOLOGY  

A. Microservice System Architecture for Telemetry Data 
Analysis 

A microservice architecture was designed for real-time 
telemetry analytics, dividing functionality into loosely 
coupled services to maximize scalability, fault tolerance, and 
parallel processing under high data ingress. Devices are first 
enrolled and authenticated by a registration service; once 
registered, they stream measurements to an ingestion service 
over MQTT or HTTP.  

This architecture (Fig. 1) is designed to achieve robustness 
and fault tolerance through concrete mechanisms at each 
layer.  

  
Fig. 1. Kubernetes-based microservice architecture for real-time IoT telemetry analytics. Solid arrows denote the telemetry data plane from IoT devices 
through ingestion, Kafka, and Flink to the time-series database and dashboards. Alerting is handled by the anomaly detection and notification services, while 
the control plane covers device management, API gateway, and service discovery. Observability is ensured via Prometheus and Grafana. 
 

At the orchestration layer, Kubernetes provides replica-
based redundancy, self-healing (restart on failure via 
liveness/readiness probes), and rolling updates for the 
microservices. At the messaging layer, Kafka provides 
durable buffering and decoupling between producers and 
consumers, so transient outages or bursts do not immediately 
propagate downstream. At the streaming layer, Flink 
executes stateful operators with checkpoints and controlled 
restart behavior, enabling recovery from failures while 
maintaining processing state within the configured 
guarantees. Finally, the storage/alerting path is hardened via 
idempotent writes (and transactional Kafka sinks where 
applicable), while Prometheus/Grafana provide continuous 
observability for early detection of degradations. As shown 
in Fig. 1, the architecture is organized into: (i) a telemetry 
data plane, (ii) an alerting path, and (iii) a 
control/management plane.  

In the data plane, IoT devices publish measurements via 
Message Queuing Telemetry Transport (MQTT) or 
Hypertext Transfer Protocol (HTTP) to the Ingestion Service, 

which performs basic validation and forwards messages to 
the Kafka broker. Apache Flink consumes the stream from 
Kafka to execute windowed analytics and preprocessing, and 
stores processed telemetry in the time-series database for 
historical queries and dashboards. In parallel, the 
anomaly/event detection component generates alert events 
that are delivered to end users through the Notification 
Service. The control/management plane comprises device 
registration and authentication, API gateway, configuration 
server, and service discovery. Operational monitoring is 
implemented via Prometheus (metrics collection), while 
Grafana provides dashboards for both telemetry and 
monitoring. It is built upon a microservices paradigm, where 
each distinct function is implemented as an independent, 
loosely coupled service. The architecture enables the agile 
development, deployment, and independent scaling of each 
component. The data flow begins with device onboarding 
and authentication: before any transmission, devices are 
registered and verified by the Registration service, which 
manages identity, credentials, and authorization so that only 
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trusted endpoints can access the platform. Registered devices 
stream telemetry to the Ingestion service over lightweight 
MQTT or HTTP. As the first point of contact, the ingestor 
validates requests and shields downstream services from 
connection management. 

Rather than processing data inline, the ingestor forwards 
raw messages to a message broker such as Apache Kafka. The 
broker functions as the nervous system of the platform by 
decoupling producers from consumers, absorbing bursts with 
durable buffering, and allowing each side to run at its own pace 
without data loss. A real-time Streaming Analytics  
service—implemented with Apache Flink—consumes from 
Kafka and performs filtering to remove irrelevant or corrupted 
records, normalization to standardize formats and units across 
device types, and aggregation to compute rolling metrics over 
time windows. The processed stream then feeds an Anomaly 
Detection module, which combines fast rule-based thresholds 
with machine-learning models for novelty detection, enabling 
the system to capture both apparent limit violations and subtle, 
complex patterns. Clean metrics and event logs are persisted 
in a time-series store such as InfluxDB or TimescaleDB, 
which is optimized for high write rates and efficient queries 
over time-stamped data. When an anomaly is confirmed, a 
Notification service dispatches alerts via e-mail, messaging 
platforms such as Slack or Teams, or webhooks that integrate 
with external incident-management systems. A Visualization 
service queries the time-series database to serve operational 
dashboards, historical charts, and real-time views to end 
users through a web UI or tools like Grafana. 

The platform runs on a modern containerized stack. Every 
microservice is executed in its own container and 
orchestrated by Kubernetes. It provides elastic scaling based 
on load, high availability with rolling updates that minimize 
downtime, and the flexibility to deploy on-premises, in the 
cloud, or in hybrid environments. Cross-cutting services 
support this foundation: an API Gateway offers a single-entry 
point for external clients and handles routing, load balancing, 
authentication, and rate limiting; a Config Server centralizes 
application settings and enables dynamic changes without 
rebuilds or restarts; and Service Discovery (e.g., Eureka or 
Consul) lets services find each other reliably as instances 
scale in and out. Observability is built in through Prometheus 
for metrics collection, Grafana for visualization, and the ELK 
stack (Elasticsearch, Logstash, Kibana) for log aggregation 
and analysis, enabling real-time health monitoring, 
performance tracking, alerting, and thorough root-cause 
investigations. 

This design delivers high scalability by allowing each 
component to scale independently, resilience and fault 
tolerance through broker-mediated decoupling and container 
isolation, and extensibility by letting teams add new analytics 
algorithms or notification channels as separate services 
without disrupting the rest of the system. Technology choices 
can be tailored per service, and the platform naturally 
supports continuous delivery, making frequent and reliable 
updates a routine practice. 

B. Algorithm for Detecting Critical Events 

We propose a streaming algorithm for detecting critical 
events in soil-moisture or temperature series by tracking abrupt 
deviations from a locally re-estimated baseline. For each 

sensor, the service maintains a sliding observation window of 
length W minutes (or the last N samples). It continuously 
updates the window statistics: the current mean μt, the standard 
deviation σt, and the latest value xt. When a new reading xt+1 
arrives, the statistics are refreshed, and the value is compared 
with the expected baseline using 2 quantities. The absolute 
difference ∆ is calculated according to Eq. (1).  

 ∆= 𝜇௧ − 𝑥௧ାଵ (1) 

The normalized deviation Z is calculated according to  
Eq. (2): 

𝑍 =
|௫೟శభିఓ೟|

ఙ೟ାఌ
 (2) 

where ε is a small constant (ε > 0) that prevents division by 
zero during warm-up; xt current reading; μt mean; σt standard 
deviation; Δ absolute drop vs. baseline; Z is z-score; Tmin is 
static floor; δabs is absolute-change threshold; zcrit is z-score 
threshold; k-of-m is vote; τ is refractory period. 

An alarm candidate is raised if a static or dynamic rule fires. 
The static rule triggers when the raw measurement violates a 
hard threshold (for soil moisture, e.g., a safety floor). The 
static alarm condition is given in Eq. (3). 

 𝑥௧ାଵ < 𝑇௠௜௡ (3) 

The dynamic rule triggers when the change is significant 
in both absolute and normalized terms. The dynamic alarm 
condition is given in Eq. (4). 

 ∆≥ 𝛿௔௕௦⋀𝑍 ≥ 𝑍௖௥௜௧ (4) 

Parameterization used in our experiments. We use a time-
based sliding window of W = 10 min with a slide of 1 min 
(time windows handle irregular arrivals better than fixed-
count windows; at a 5-s sampling cadence, this corresponds 
to N ≈ 120 samples). The confirmation rule is k-of-m = 2-of-
3, the refractory period is τ = 5 min per sensor, and the 
numerical stabilizer is ε = 10−3 in the native units (percentage 
points for RH, °C for temperature).  

Direction of detection. Unless stated otherwise, the 
dynamic rule is 2-sided, i.e., it uses ∣Δ∣ in Eq. (4) to detect 
drops and spikes relative to the local baseline; the static rule 
in this study illustrates a lower floor for RH (demo threshold). 

Channel-specific thresholds. For relative humidity, we set 
δabs

(RH) = 5 pp and zcrit
(RH) = 2.5; for air temperature, we use 

δabs
(temp) = 2 °C and zcrit

(temp) = 2. These values strike a balance 
between responsiveness and false-alarm control, and were 
validated against our greenhouse data. To suppress spurious 
spikes, the detector applies confirmation and debounce. The 
alarm is confirmed only if at least k of the last m 
measurements satisfies Eq. (3) or Eq. (4). The confirmation 
criterion is given in Eq. (5). 

  ∑ 1{𝑟𝑢𝑙𝑒 𝑓𝑖𝑟𝑠 𝑎𝑡 𝑡 − 𝑖} ≥ 𝑘௠ିଵ
௜ୀ଴  (5) 

The sensor enters a refractory period of τ min during which 
further triggers from the same sensor are ignored. 

For each confirmed incident, the service emits a structured 
anomaly record (JSON) containing the sensor ID, event type, 
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timestamp, observed value, baseline (μt, σt), and the 
computed Δ and Z. The record is published to alerts/critical, 
and an infrastructure log is updated. A control microservice 
may react immediately—for example, by starting irrigation 
or heating—and record the intervention in the database. The 
sliding-window baseline makes the detector sensitive to rapid 
changes while ignoring slow seasonal drift, and combining 

static and dynamic criteria improves robustness. The core can 
be extended with exponential smoothing, derivative checks 
on dx/dt, or predictive models (e.g., Long Short-Term 
Memory (LSTM) networks or Autoregressive Integrated 
Moving Average (ARIMA models)) for forecast-aware 
detection. Fig. 2 illustrates the end-to-end flow. 

 
Fig. 2. Flowchart of the critical-event detection algorithm (Sliding-window baseline with static and dynamic rules). 

 
To operationalize the critical-event detector, we embed its 

logic into the streaming layer of the microservice pipeline. 
The sliding-window baseline (μt, σt), the absolute/normalized 
checks (Δ, Z), and the k-of-m confirmation become stateful 
operators on keyed streams, implemented with Flink’s 
sliding windows and timers; the refractory period τ is realized 
as a per-sensor state flag with time-to-live. With these pieces 
in place, the architecture in Fig. 3 executes the algorithm at 
scale: the ingestion service publishes raw MQTT/HTTP 
readings to Kafka (telemetry-raw), Flink consumes the 
partitions in parallel and applies the windowed statistics, 
threshold tests, and confirmations, and confirmed incidents 
are emitted as structured alerts while cleaned metrics are 
persisted to the time-series store. 

Grafana then queries InfluxDB to present both live signals 
and generated alerts, and, when required, the 
notification/control services can act immediately (e.g., 
irrigation) using the same outputs.  

In short, the proposed detector maps directly onto the 
Kafka→ Flink→ InfluxDB/Grafana pipeline, turning the 
mathematical specification into a low-latency, horizontally 
scalable implementation. 

We selected Apache Kafka as the streaming backbone 
primarily because the pipeline relies on continuous stream 

processing with Apache Flink.  

  
Fig. 3. Streaming telemetry pipeline: MQTT/HTTP ingestion→ Kafka 
(telemetry-raw) → Flink (filtering, aggregation, anomaly detection) → 
InfluxDB/Grafana, with alerts to a notification service. 

 
Kafka provides an append-only, partitioned log that 

supports: (i) high-throughput ingestion with durable 
buffering, (ii) consumer groups for parallel processing, and 
(iii) replay/backfill of historical streams, which is important 
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for reproducible analytics and for reprocessing when 
detection logic changes. These properties align directly with 
Flink’s streaming model, simplifying the end-to-end 
evaluation of latency quantiles and loss under bursty 
telemetry. 

We acknowledge that RabbitMQ is a valid alternative for 
many IoT deployments, often with lower operational 
complexity and excellent support for task queues and flexible 
routing. However, for latency analysis in a stream analytics 
pipeline, RabbitMQ’s queue semantics typically require 
additional design effort to enable replayable streams and 
consistent multi-consumer scaling, whereas Kafka provides 
these mechanisms natively. To mitigate Kafka’s operational 
complexity, our experimental deployment utilizes a minimal 
configuration (single broker/limited topics/controlled 
partitioning) that is suitable for the studied workload, while 
retaining a clear scale-out path through partitioning and 
broker replication. 

The telemetry workload is defined by the number of nodes, 
N, and the nominal sampling interval, Ts. The expected 
message rate is R = N/Ts [messages/s]. In our deployment,  
N = 12 nodes and Ts = 5 s; therefore R = 2.4 messages/s, i.e., 
207,360 messages/day and 1,451,520 messages over 7 days 
of continuous operation. Each message contains a timestamp, 
node identifier, and 4–5 scalar measurements (soil moisture, 
temperature, humidity, illuminance, pH) encoded as a 
compact JSON payload. The typical payload size is  
S ≈ 160 B (excluding protocol overhead), yielding 
approximately 33.18 MB/day (~31.6 MiB/day) and ~232.24 
MB over 7 days (~221.5 MiB). For example, with N = 1000 
nodes at Ts = 5 s, R = 200 messages/s, and ~2.76 GB/day of 
payload data, a significant improvement is achieved, which 
motivates the use of durable buffering and partitioned 
consumption in the messaging layer. The deployment 
contexts used in the comparative protocol are summarized in 
Table 2.

Table 2. Inverted connectivity contexts: Expected trade-offs 
Scenario ESP32 Role Arduino Role Pros Cons When it Makes Sense 

S1 (baseline) Wi-Fi→ MQTT 
LoRa→ gateway→ 

MQTT 
simple Wi-Fi nodes; 

LPWAN for remote plots 
two stacks to maintain 

mixed greenhouse + 
remote field 

S2 (Arduino 
“Wi-Fi”) 

LoRa or serial 
Wi-Fi 

(variant/module) 
Arduino stays uniform in 

Wi-Fi zones 
extra HW/firmware; 

higher power 
powered greenhouse, 

short range 
S3 (ESP32 
“serial”) 

UART/RS-485→ 
gateway 

LoRa or serial 
deterministic local link; no 

radio at node 
The gateway becomes a 

critical point 
dense local sensors near 

the gateway 

 

C. Stream Processing in Apache Flink 

Building on the pipeline in Fig. 3, we operationalize the 
detector by embedding it in Apache Flink’s streaming layer. 
Telemetry from field nodes is transmitted to the ingestion 
service over MQTT/HTTP and published to the Kafka topic 
telemetry-raw. Flink then consumes this partitioned stream 
and performs low-latency parsing, validation, and 
normalization of JSON records. When checkpointing is 
enabled, the pipeline can provide at-least-once processing; 
however, in the low-latency baseline reported here, 
checkpointing is disabled (CI = disabled in Table 3) to avoid 
confounding overhead. On keyed streams (one key per 
sensor), Flink maintains the sliding-window state (μt, σt), 

computes Δ and Z, evaluates the static and dynamic rules, and 
applies the k-of-m confirmation and refractory period. All 
runs use W = 10 min (slide 1 min), k-of-m = 2-of-3, τ = 5 min, 
ε = 10⁻³, and 2-sided dynamic detection (|Δ|). Confirmed 
incidents are emitted as alert events, while cleaned and 
aggregated metrics are written to the time-series store 
(InfluxDB). Grafana queries the store to provide live and 
historical dashboards; optional notification services consume 
the alert stream to trigger e-mail, webhooks, or automation. 

Scalability is achieved through Kafka partitioning and 
Flink operator parallelism. In our baseline deployment, the 
parameters are fixed as RF = 1, P = 1, k = 1, W = 10 min, and 
checkpointing is disabled (CI = disabled), as listed in  
Table 3. 

Table 3. Low-latency environment parameters and comparison baseline 
Layer/Parameter Latency Baseline  Reliability-Oriented Reference (For Comparison Clarity) 

Workload N = 12; Ts = 5 s; payload ≈ 160 B N = 12; Ts = 5 s; payload ≈ 160 B 
MQTT  

(device→ broker) 
QoS 0; TLS off QoS 1; TLS on 

Broker (Mosquitto) persistence off; minimal buffering persistence on; conservative queueing 
Ingestion→ Kafka 

producer 
acks = 1; no compression; low linger 

acks = all; compression (e.g., LZ4); batching/linger tuned for 
durability 

Kafka durability RF = 1, P = 1 RF ≥ 3; P ≥ 1 (scaled with consumers) 
Flink execution parallelism k = 1, window W = 10 min, CI = disabled k ≥ 1; W = 10 min; CI enabled (conservative interval) 
Storage writes batched writes; flush ≤ 1 s stronger durability settings; larger batches acceptable 

Time sync NTP/SNTP enabled NTP enabled 

Table 4. Latency-reliability comparison elements (What changes and why it matters) 
Element (toggle) Baseline (Low Latency) Reference (Higher Reliability) Expected Latency Impact Benefit 

MQTT QoS QoS 0 QoS 1 ↑ (ACK + retries) delivery assurance 
TLS off on ↑ (crypto overhead) confidentiality/integrity 

Broker persistence off on ↑ (disk I/O) stronger durability 
Kafka durability RF = 1, acks = 1 RF ≥ 3, acks = all ↑ (replication quorum) fault tolerance 

Flink checkpointing CI=disabled CI enabled ↑ (state snapshots) recovery semantics 

 
Latency comparison elements. To avoid an underspecified 

“low-latency” claim, we make the comparison explicit: the 
latency baseline disables or relaxes features that add protocol 
and durability overhead (e.g., TLS, MQTT QoS > 0, broker 
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persistence, strong Kafka durability, Flink checkpointing), 
while the reliability-oriented reference enables them. This 
clarifies which elements define the low-latency environment 
and which changes would systematically increase latency in 
exchange for stronger delivery guarantees. The concrete 
toggles and their expected effects are summarized in Table 4. 
 Delivery semantics 
When Flink checkpointing is enabled, the Kafka→ 

Flink→ sink path can be configured for at-least-once 
processing, and exactly-once is available for Kafka sinks that 
use transactional producers (e.g., the alerts topic). In the 
latency baseline (CI = disabled), we focus on steady-state 
latency and do not evaluate failure-recovery guarantees; to 
avoid double-counting, we rely on idempotent writes and 
deduplication (unique event IDs and per-sensor state with 
TTL). 

Conceptually, the flow is: Kafka (raw telemetry) → Flink 
job (filtering, windowed aggregation, anomaly  
detection) → InfluxDB/Grafana (storage and visualization).  

Kafka provides durable buffering and horizontal 
scalability through topic partitioning, while Flink offers 
operator parallelism via configurable task slots and parallel 
instances. Therefore, the throughput capacity can be 
increased by adding: (i) ingestion replicas, (ii) Kafka 
partitions/brokers, and (iii) Flink parallelism 
(TaskManagers/slots), while end-to-end latency depends on 
the allocated compute and I/O resources and the configured 
windowing parameters. In our deployment, the end-to-end 
pipeline operated continuously under the experimental 
workload (12 sensors, with a nominal sampling interval of  
Ts = 5 s and a duration of 7 days), supporting real-time 
alerting and persistence without manual intervention. This 
demonstrated stable ingestion/processing at the target 
cadence. These results provide baseline evidence of capacity 
for the studied workload, while larger-scale stress testing 
across increasing partition/replica counts is a natural 
extension. 

Fig. 4 shows an excerpt of the telemetry-raw topic. Using 
a demonstration rule for low humidity (threshold 30 % RH), 
the first and third records do not trigger actions (32% and  
41% exceed the limit), whereas the second and fourth records 
are flagged.  
 

 
Fig. 4. Kafka topic telemetry-raw (Sample messages). 

 
The Flink job emits corresponding alerts (Listing 1) and 

persists processed metrics to InfluxDB for Grafana 
visualization. Each alert is traceable to the raw telemetry 
excerpt shown in Fig. 4 via node ID, timestamp, and 
measured RH value.  

 
Listing 1: Example Flink console alerts for the illustrative rule  
RH < 30% (Same scenario as Fig. 4) 
[ALERT] esp32-01, 14:01:07Z, RH = 24.8%,  rule < 30, CONF 
[ALERT] uno-03, 14:01:15Z, RH = 28.9%, rule < 30, CONF 
[ALERT] esp32-01, 14:01:25Z, RH = 26.1%, rule < 30, CONF 

 
Listing 1 summarizes the alert schema (node identifier, 

event timestamp, RH value, rule, and confirmation status), 

enabling downstream persistence and auditability. 
The end-to-end data path is summarized in Fig. 5: 

Sensor→ MQTT→ Kafka→ Flink (filtering, aggregation, 
anomaly detection) → [Alert/Database/Dashboard].  

 

 
Fig. 5. End-to-end streaming data path. 

 
In practice, this arrangement provides real-time insights 

from high-volume telemetry, scales horizontally as devices 
or sampling rates increase, and enables each stage—ingestion, 
processing, or storage—to be upgraded independently 
without interrupting the system. 

IV. EXPERIMENTAL SETUP/IMPLEMENTATION  

We develop a telemetry system that monitors key agro-
environmental parameters and performs real-time processing 
and analysis using a modern microservice architecture. The 
goal is to evaluate the effectiveness of ESP32 and Arduino 
platforms for sensing and data transmission, and to deploy a 
scalable pipeline that ingests, stores, visualizes, and acts on 
the resulting measurements to support agronomic decision-
making. The methodology comprises 3 stages. 

A. Evaluation Plan 

Objectives O1–O3 are evaluated as follows: O1 is verified 
by successful end-to-end operation of the pipeline 
components and stable ingestion/processing under the target 
sampling cadence; O2 is verified by the streaming detector’s 
ability to generate structured alerts with confirmation logic in 
the streaming layer; O3 is verified by comparing ESP32 vs. 
Arduino Nano + LoRa under the same protocol using 
standardized KPIs (latency quantiles, message loss, and 
energy consumption, and measurement error where 
applicable). 

1） Stage 1: Sensor selection, calibration, and embedded 
software 

The study begins by defining measurement targets and 
selecting sensors for soil moisture, air temperature, humidity, 
illuminance, and soil pH. Capacitive soil moisture probes, 
digital temperature and humidity sensors, photometric 
sensors, and analog pH meters are integrated with 
microcontrollers. To avoid an arbitrary platform choice, we 
intentionally model 2 common agrotelemetry deployment 
contexts. The ESP32 is used in locations with reliable Wi-Fi 
coverage (e.g., greenhouses or near infrastructure), 
leveraging its integrated radio and Transmission Control 
Protocol/Internet Protocol (TCP/IP) stack to publish 
telemetry directly via MQTT. Arduino Nano-class boards 
(without integrated Wi-Fi) are used for remote, energy-
constrained plots where Wi-Fi is typically unavailable; in our 
protocol, they are paired with a LoRa transceiver and a 
gateway bridge, consistent with Objective O3 (ESP32 vs. 
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Arduino Nano + LoRa). While Wi-Fi-enabled Arduino 
variants or external Wi-Fi modules exist, they represent a 
different power/cost class and were outside the scope of this 
comparative protocol. For field autonomy, the hardware can 
be equipped with solar panels and batteries; irrigation control 
is enabled through relay modules that switch the pumps on 
and off. 

Sensor co-location and exposure control. All probes were 
co-located within a distance of ≤ 5 cm, placed at 1.2 m above 
ground level (in the same position relative to the crop 
canopy), and mounted in identical radiation 
shields/enclosures to equalize airflow and solar load. Cable 
lengths and routing were matched. Sampling cadences were 
identical (5 s), and each sensor completed a 5-min warm-up 
period before data logging. These measures control for 
placement effects and reduce self-heating artifacts. 

Humidity and air temperature were read digitally 
(DHT22/BME280 via 1-Wire/I²C). The Microcontroller’s 
(MCU’s) onboard ADC is not used for these channels; 
therefore, the ADC resolution on ESP32/Arduino cannot 
affect RH/air temperature accuracy. 

Firmware is developed using the Arduino IDE or 
PlatformIO with the appropriate libraries (e.g., 
Adafruit_Sensor, DHTlib). ESP32 nodes connect to Wi-Fi 
and publish telemetry via MQTT as the primary lightweight 
protocol; a Representational State Transfer Application 
Programming Interface (REST API) is also exposed for 
backend integration. Mosquitto is the MQTT broker, and 
time-series data are stored in InfluxDB or 
PostgreSQL/TimescaleDB. Microservices (ingestion, 
gateway, analytics) are containerized with Docker for 
deployment consistency and orchestration. Visualization is 
provided through Grafana or Kibana dashboards for rapid 
exploratory analysis. 

The hardware is assembled, and all sensors are connected 
to the ESP32 or Arduino. Measurement accuracy and 
firmware logic are verified, and data are sent over Wi-Fi; 
LoRa modules provide long-range, low-power links for 
remote plots without Wi-Fi coverage. The controller code 
periodically samples the sensors, formats readings as JSON, 
and publishes them on MQTT topics (e.g., agro/sensor1).  

In the Wi-Fi scenario, ESP32 publishes telemetry to the 
MQTT broker (Mosquitto) over TCP/IP (MQTT on port 
1883, or 8883 when TLS is enabled). Messages are JSON-
encoded and published to hierarchical topics (e.g., 
agro/<node_id>/telemetry). In the remote scenario, Arduino 
Nano transmits measurements via LoRa to a gateway bridge, 
which reconstructs the JSON payload and republishes it to 
the same MQTT topic namespace; thus, both device classes 
converge into a single broker-facing interface for ingestion. 

On the server side, the broker accepts messages from all 
nodes. Microservices validate and persist data, and when 
required, activate devices such as irrigation pumps when the 
soil moisture level falls below specified thresholds. Collected 
telemetry is visualized in Grafana/Kibana to inspect real-time 
temporal dynamics and support agronomic decisions. 

Field and laboratory trials assess the accuracy, reliability, 
and autonomy of the system. Results allow us to compare 
ESP32 and Arduino across tasks, identify advantages and 
limitations of the chosen architecture, and derive 
recommendations for the further development of 

microservice-based agrotelemetry and automation systems. 

2） Stage 2: Modular microservice architecture 

We deploy a modular, real-time microservice stack that 
scales horizontally, facilitates seamless integration, and 
ensures high reliability. A data collection service ingests 
MQTT messages from ESP32/Arduino nodes, validates and 
aggregates payloads, and emits structured messages to 
downstream processing. API exposure and communication 
paths. Device-facing communication is primarily provided 
via MQTT to the broker (Mosquitto), which serves as the 
entry point for both the ESP32 (Wi-Fi) and Arduino Nano 
(via a LoRa gateway bridge). In addition, selected 
microservices expose REST endpoints for operational tasks 
(e.g., device registration, configuration, and querying 
processed telemetry), but the real-time telemetry path is 
broker-mediated (MQTT→ ingestion→ Kafka→ Flink). 
This separation improves reproducibility because the 
latency-critical path is explicitly defined by a single ingress 
interface (MQTT) and its downstream streaming pipeline. 

The processing service applies filtering, moving-window 
averaging, and threshold-based anomaly checks; critical 
events can trigger control actions (e.g., irrigation) or operator 
alerts. Cleaned streams are persisted by a time-series storage 
service (InfluxDB) optimized for high write rates. Internal 
services communicate via REST/gRPC with documented 
interfaces, while an aggregator/orchestrator normalizes 
heterogeneous inputs into a unified stream. The design 
supports both horizontal scaling (replicated processing 
instances with many identical sensors at different locations) 
and functional diversity, as new sensor types or analytics 
modules are added. 

With REST, microservices utilize HTTP methods and 
JavaScript Object Notation (JSON) payloads. The aggregator 
issues sequential or parallel requests to endpoints such as 
/soil-moisture, /temperature, or /alerts, harmonizes the 
responses, and writes them to the time-series store or cache. 
Service discovery (e.g., Consul or Eureka) removes the need 
to hard-code addresses, while an API Gateway centralizes 
load balancing, versioning, and authentication via 
JWT/OAuth 2.0. With gRPC, the same logic runs over 
HTTP/2 with Protocol Buffers. Client/server stubs generated 
from .proto files encapsulate networking, and the aggregator 
invokes methods such as GetSoilMoisture () or 
StreamTemperature (). Binary serialization and multiplexing 
reduce latency and improve throughput; therefore, high-
bandwidth internal pipelines typically utilize gRPC (a remote 
procedure call, RPC, framework over HTTP/2), while 
external clients and dashboards access the system through the 
REST gateway. These REST/gRPC endpoints belong to the 
control/management plane and internal service-to-service 
interactions; the latency measurements in this paper refer to 
the telemetry data plane (MQTT→ ingestion→ Kafka→ 
Flink→ storage). 

Regardless of the protocol, the aggregator performs 2 
critical functions: it normalizes and enriches inputs, 
synchronizing timestamps with the Network Time Protocol 
(NTP) and unifying measurement units—and it implements 
resilience patterns, including timeouts, retries, circuit 
breakers (e.g., Polly/Resilience4j), and caching of last-
known-good values, so that localized failures do not cascade. 
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This integration layer allows transparent addition of 
telemetry sources, rapid scaling of processing and storage 
subsystems, and a uniform approach to authentication, 
logging, and monitoring across the distributed platform. 
Grafana connects to InfluxDB/TimescaleDB to provide 
interactive charts, tables, and analytical dashboards for real-
time supervision of agro-parameters. 

For the reported latency results, we deployed the pipeline 
in a low-overhead baseline configuration to minimize 
software-induced latency in the data plane, using ESP32 
sensor nodes (C/ESP-IDF, MQTT) and Arduino Nano with 
LoRa (Arduino C/C++) to send data every 5 s. A Go‑based 
LoRa gateway forwards messages to an MQTT broker 
(Mosquitto, QoS = 0, persistence off). Ingestion is handled 
by a Go service that subscribes to MQTT and writes to Kafka 
(acks = 1, no compression). Stream processing uses Apache 
Flink (Java/Scala) for analytics and alert generation, with 
results stored in InfluxDB (batched writes) and visualized in 
Grafana. All components are configured for minimal 
buffering and low protocol overhead. Security and reliability 
features (e.g., TLS, higher MQTT QoS, broker persistence, 
stronger Kafka durability settings) are supported by the 
architecture but were not enabled in the latency baseline to 
avoid confounding overhead in the reported measurements. 

Alternative connectivity mappings (inverted contexts). 
The chosen mapping (ESP32 over Wi-Fi/MQTT and 
Arduino Nano over LoRa via a gateway) reflects 2 
representative agrotelemetry contexts: infrastructure-covered 
sites versus remote, energy-constrained plots. We note that 
“inverting” the contexts is possible, but changes the 
comparison assumptions. A classic Arduino Uno/Nano does 
not include integrated Wi-Fi; enabling Wi-Fi requires either 
a Wi-Fi-enabled Arduino variant or an external Wi-Fi 
module, which impacts power consumption, Bill of Materials 
(BOM) cost, firmware complexity, and OTA/security 
capabilities. Conversely, the ESP32 can be used as a serial 
(UART/RS-485) sensor front-end connected to a gateway 
that handles networking; this reduces radio overhead on the 
node but shifts complexity to the gateway, potentially 
reducing deployment flexibility. The expected trade-offs of 
these alternative mappings are summarized in Table 2. 

A quantitative comparison of these inverted mappings is 
outside the scope of the current evaluation protocol; however, 
Table 2 summarizes the expected trade-offs. Table 3 and 
Table 4 define the low-latency baseline and the latency–
reliability comparison elements to guide reproducible 
extensions.Interoperability via SensorThings remains non-
trivial in practice for 3 recurring reasons: (i) semantics and  
profiles—agriculture deployments require domain profiles 
(controlled vocabularies and feature/observed-property 
conventions) to ensure that heterogeneous vendors encode 
the same phenomenon consistently; (ii) unit normalization 
and metadata completeness—streams often mix units, 
calibration offsets, and missing quality flags, so 
harmonization must be enforced before data can be shared or 
compared; and (iii) entity identifiers and alignment—stable 
identifiers for sensors, locations, and features of interest must 
be maintained across devices and gateways, otherwise cross-
source joins and longitudinal tracking become unreliable. In 
this work, OGC SensorThings API (STA) is not implemented 
as a runtime interface; instead, we use a unified internal 

schema at ingestion/processing that is designed to be 
mappable to STA entities (Thing/Sensor/ObservedProperty 
/Datastream/Observation) in future work. Accordingly, full 
STA-compliant exposure and agriculture-specific profiles 
are treated as limitations and a planned extension rather than 
a claimed implemented component. 

3） Stage 3: System testing  

We pair laboratory calibration with greenhouse/open-field 
trials. In the lab, sensors are calibrated, errors and repeatability 
are quantified, and coefficients are loaded to the 
ESP32/Arduino. In the field, over several days, we assess link 
quality—Wi-Fi session duration and MQTT loss, LoRa 
coverage, latency, and weather robustness—and evaluate 
energy use via battery voltage/current. Field results are 
compared to lab baselines to retune thresholds, smoothing, and 
reporting cadence, confirming the measurement accuracy and 
communication reliability required by the microservice 
telemetry stack. We deployed 12 sensors in a greenhouse [23]. 
The experiment ran for 7 days (start–end dates), with a nominal 
sampling interval Ts = 5 s. Probes were co-located and 
synchronized to the UTC time standard. All metrics were 
computed on paired, time-aligned series. We resampled both 
streams to a standard 1-min grid, performed an inner join 
within a ±1-s tolerance, and dropped unmatched records. We 
used a (block length b = ⌈T1/2⌉) with 10,000 resamples for 
MAE and mean latency to obtain 95% BCa confidence 
intervals. For quantiles (P50, P95), we used the Harrell–
Davis estimator with BCa bootstrap CIs. 

Platform differences were tested on paired per-minute 
values using the Wilcoxon signed-rank test (non-parametric) 
or Welch’s t-test if normality held (Shapiro-Wilk p > 0.05). 
We report effect sizes (Hodges–Lehmann median difference 
and Cliff’s delta for non-parametric; Cohen’s d for 
parametric). When testing multiple metrics, we adjusted  
p-values via the Holm method. 

Latency (device→ ingestion) = ingestion timestamp—
sensor timestamp; end-to-end latency (device→ persistence) = 
DB write timestamp-ensor timestamp. 

B. Justification of Platform Selection 

Rationale for Selecting ESP32 and Arduino Nano without 
Wi-Fi. 

The core scientific objective of this study (Objective O3) 
was to conduct a controlled comparison of 2 representative 
and conceptually distinct architectural approaches to 
agrotelemetry: 

1) Integrated Direct Approach (ESP32). Using a highly 
integrated microcontroller with a native TCP/IP stack and 
Wi-Fi for direct data transmission to a cloud broker. 

2) Modular Energy-Efficient Approach (Arduino Nano + 
LoRa). Using a minimalist, ultra-energy-efficient controller 
paired with a separate long-range LPWAN radio module, 
which requires a gateway for integration into the common 
infrastructure. 

The choice of the classic Arduino Nano, rather than a Wi-
Fi-enabled variant (e.g., Arduino Nano RP2040 Connect or 
Nano 33 IoT), is methodologically justified and stems from 
the following reasons. 
 Avoiding Mixing Device Classes. A Wi-Fi-enabled 

Arduino Nano, in terms of its characteristics (CPU 
power, integrated radio), approaches the class of the 
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ESP32, blurring the clear boundary for comparison. 
This would lead to comparing different 
implementations of a similar concept rather than 
contrasting architectural paradigms. Our goal was to 
highlight the trade-off between integrated performance 
and modular efficiency. 

 Focus on LPWAN for Remote Plots. In the remote field 
scenario where Wi-Fi is unavailable, Low-Power Wide-
Area Network, specifically LoRa (LPWAN) is the 
technology of choice due to its extreme range and 
energy efficiency. Using an Arduino with Wi-Fi in this 
context is impractical, as it would require deploying a 
dedicated Wi-Fi infrastructure (e.g., a mesh network), 
which would significantly complicate the system and 
increase both energy consumption and cost compared to 
a standard LoRa-based solution. 

 Priority on Energy Autonomy. As demonstrated in the 
results, the key advantage of the Arduino Nano + LoRa 
platform is its exceptionally low energy consumption. 
The Arduino Nano (ATmega328P) consumes 
microamperes in sleep mode. The ESP32 or Arduino 
with integrated Wi-Fi has orders of magnitude higher 
idle and active communication currents, which 
critically shortens battery life in autonomous 
deployments. 

 Clarity of Experimental Design. Our methodology was 
built on a pairwise comparison using unified KPIs. 
Introducing a third, “intermediate” platform (Arduino 
with Wi-Fi) would have diluted the key findings 
regarding the latency↔ energy-efficiency trade-off. 

ESP32s as a Front-end could be justified in high-density 
sensor clusters where a single gateway aggregates data from 
multiple ESP32s via a wired interface (e.g., RS-485), thereby 
reducing the overall radio load. 

Arduino with Wi-Fi could find application in small 
greenhouses with existing Wi-Fi coverage, where the low 
cost per node is important, but energy autonomy 
requirements are not critical. 

However, within the scope of this study, which aims to 
compare the canonical and most prevalent configurations in 
agrotelemetry practice, we deliberately limited the scope to 
the 2 primary variants. A concise outline is provided of the 
expected trade-offs associated with these alternative 
mappings. A detailed quantitative comparison of these 
alternatives is a valuable direction for future research. 

Our selection of the ESP32 and the Arduino Nano (without 
Wi-Fi) + LoRa is not arbitrary. It reflects 2 dominant classes 
of solutions in real-world deployments: high-performance 
nodes with direct cloud integration and ultra-energy-efficient 
nodes for autonomous remote locations. This approach 
allowed us, within a unified experimental protocol, to clearly 
and quantitatively measure the fundamental trade-off 
between responsiveness and autonomous operational lifetime, 
forming the basis for the evidence-based platform selection 
guidance provided. 

C. Architectural Implementation of APIs and Microservices 
with Latency Considerations 

This section provides technical implementation details of 
the API and microservice layer, addressing its impact on 
system latency and reproducibility. 

The microservices were implemented using a polyglot 
approach, selecting technologies optimal for each service’s 
function. 

1) Ingestion Service & LoRa Gateway. Implemented  
in Golang (Go) using the Eclipse Paho MQTT client library 
and a custom LoRa packet forwarder. Go was chosen for its 
high performance in concurrent I/O operations, low memory 
footprint, and efficient garbage collector, which is critical for 
handling high-volume telemetry ingress with minimal 
latency. 

2) Stream Processing Engine. Apache Flink jobs were 
written in Java/Scala. Flink’s managed state and efficient 
windowing operators are central to the low-latency anomaly 
detection (O2). The streaming critical-event detector is 
implemented as a KeyedProcessFunction with a sliding 
window state. 

3) REST API Gateway & Management Services. 
Developed using Python/FastAPI for rapid prototyping and 
strong OpenAPI documentation. These services handle 
device registration, configuration, and historical querying—
operations where developer productivity and clear interfaces 
are prioritized over nanosecond latency. 

4) Internal Service-to-Service Communication. For 
latency-sensitive internal calls (e.g., between the analytics 
aggregator and the time-series writer), gRPC with Protocol 
Buffers (protobuf) is used over HTTP/2. This binary protocol 
reduces serialization/deserialization overhead, as well as 
network payload size, compared to JSON/REST. 

5) Containerization & Orchestration. All services are 
packaged as Docker containers and orchestrated by 
Kubernetes (K3s, a lightweight distribution). This ensures 
environmental consistency, simplifies scaling, and isolates 
failures. 

The system architecture explicitly separates the telemetry 
data plane from the control and management plane to prevent 
mutual interference and ensure accurate latency 
measurements. The data plane represents the latency-critical 
processing path, where telemetry generated by IoT devices is 
transmitted via the MQTT protocol on port 1883 to the 
Ingestion Service, which is implemented in Go. After 
minimal preprocessing, the data is forwarded to Apache 
Kafka, processed by Apache Flink, written in Java, and 
finally stored in InfluxDB. 

This processing path relies on a single lightweight ingress 
protocol, MQTT, and is specifically optimized for high 
throughput and minimal processing delay. The Ingestion 
Service is intentionally kept simple, performing only basic 
validation and schema normalization before publishing 
messages to Kafka, thereby reducing overhead in the latency-
sensitive pipeline. 

In contrast, the control and management plane is 
responsible for administrative and supervisory operations 
and is exposed through RESTful APIs via the API gateway 
over HTTPS on port 443. These APIs support device 
provisioning, retrieval of historical telemetry data from 
InfluxDB, and manual actuator control actions such as 
irrigation overrides. The APIs are implemented using Python 
and FastAPI, operating independently of the telemetry data 
plane to ensure that management operations do not impact 
real-time data processing performance. 

The choice of binary protocols (gRPC) over text-based 
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protocols (REST/JSON) for internal communication results 
in approximately a 66% reduction in latency for service-to-
service calls. 

The management API (REST with HTTPS) introduces an 
order of magnitude higher latency (~45 ms) due to TLS and 
authentication middleware. This validates the architectural 
decision to keep it off the real-time data path. 

The MQTT ingestion path shows consistent low latency, 
confirming its suitability as the primary telemetry ingress 
protocol. 

To ensure reproducible latency measurements (O3), the 
software stack used in the data plane was fixed to specific 
versions and configurations. Telemetry was published from 
ESP32 devices using the Async MQTT client library. 
Message brokering was handled by Eclipse Mosquitto, 
configured without persistence and with the maximum 
number of in-flight messages limited to 100. 

The streaming backbone was implemented using Apache 
Kafka in a single-broker setup. Apart from enforcing 
immediate log flushing by setting log.flush.interval.messages 
to 1, the default configuration was retained. Stream 
processing was performed with Apache Flink 1, where 
checkpointing was disabled and event-time processing was 
used to minimize runtime overhead. 

To eliminate variability caused by software updates, all 
microservices were deployed using Docker images pinned to 
explicit version tags, such as ingestion-service: benchmark-
v1.2, ensuring consistent behavior across all experimental 
runs. 

V. RESULTS, ANALYSIS, AND DISCUSSION  

A. Method for Comparing Data from Multiple Sources 
(ESP32 vs. Arduino) 

Building on the streaming pipeline and detector described 
above, we next compare 2 classes of edge nodes—ESP32 
(Wi-Fi/MQTT) and Arduino Nano (UART or LoRa)—under 
a common acquisition, transport, and analytics workflow. 
Both nodes are equipped with identical sensors (e.g., 
DHT22/BME280), powered from the same source, and 
calibrated to remove hardware drift. Each reading is 
timestamped, which is later normalized to UTC, ensuring that 
both streams are evaluated on a single time axis. 

ESP32 publishes telemetry over Wi-Fi on the transport 
layer to an MQTT broker. In contrast, Nano forwards 
measurements either over USB-Serial (parsed by a 
lightweight reader) or via a low-power RF link (e.g., LoRa) 
through a gateway. Regardless of the path, packets are 
normalized into a unified schema with a source tag (ESP32 
or Nano) and written to the time-series store (InfluxDB). 
Service discovery and the ingestion layer ensure that both 
feeds are buffered, validated, and loss-tolerant. If LoRa is 
used, the gateway timestamps packets with UTC to eliminate 
node-side clock bias.  

For visualization and preliminary analysis, Grafana 
connects to the InfluxDB database and renders time-series 
panels for temperature and humidity, along with a source 
legend, and a latency panel that calculates the now-
lastWriteTime per source. In parallel, the analytics service 
computes standard comparison metrics—Mean Absolute 
Error (MAE), noise variance σ2, correlation, delivery latency 

(P50/P95), message loss, energy consumption, and write 
success rate – over matched time windows. 

B. Channel Note 

We distinguish digital channels (air temperature and 
relative humidity, sensor-side conversion) from the analog 
channel (soil moisture via the MCU ADC) to avoid 
conflating channel properties. ADC resolution applies only 
to the analog soil-moisture measurements. 

Fig. 6 illustrates a representative Grafana dashboard with 
2 time-series panels, temperature on top and humidity below, 
making co-variation immediately visible over the evening 
period (18:00–00:00).  

 

 
(a) 

 
(b) 

Fig. 6. Grafana dashboard with 2 time-series. (a) Temperature. (b) Humidity. 
Note: RH and air temperature are digital channels (no host ADC); soil 
moisture is analog (ADC-based). 
 

The temperature falls from ~22 °C to ~16 °C during the 
first 2 hours, consistent with the day-to-evening transition as 
solar heating fades. It then briefly rebounds to ~18 °C around 
19:40 and remains near that level until 21:30, a plateau 
typical of greenhouses when heating is engaged or vents 
close. The series ends at 21:30; the gap to 00:00 suggests a 
connectivity issue or scheduled power cycling, which should 
be verified in MQTT or LoRa gateway logs. Humidity drops 
from ~80 % RH to ~40 % RH, rebounds near 60 % RH 
around 19:10 (likely irrigation or evening dew), and then 
drifts toward a critical ~20 % RH after 20:00—values below 
30 % RH are stressful for most crops. The simultaneous sharp 
decline of both variables from 18:00 to 19:10 points to an 
external driver (open ends, wind, or active ventilation). 
Afterwards, the trends diverge—temperature stabilizes while 
humidity continues to fall—supporting the hypothesis of 
insufficient irrigation or excessive drying by heaters. These 
dynamics align with the detector’s 30 % RH humidity 
threshold: the streaming job flags low-humidity events and 
emits real-time alerts. 
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C. Observed Behavior 

With a 30% relative humidity demonstration threshold, the 
streaming job flags low-humidity events and emits real-time 
alerts. The end-to-end path (Sensor→ MQTT/Serial/LoRa→ 
Broker/Gateway→ Kafka→ Flink→ InfluxDB/Grafana→ 
Alerts) remains stable as sampling rates increase, thanks to 
Kafka partitioning and Flink operator parallelism. Results 
were obtained under controlled conditions (co-located probes, 
matched sampling, UTC synchronization, identical shielding, 
and identical radio settings). 

D. Comparative Findings (Summary)  

ESP32 delivers markedly lower network latency 
(approximately 85/135 ms P50/P95) and slightly lower 
humidity MAE (≈approximately 0.8 pp vs. 1.3 pp). (Settings: 
W = 10 min/1-min slide; k-of-m = 2-of-3; τ = 5 min; ε = 10⁻³; 
δabs

(RH) = 5 pp; zcrit
(RH) = 2.5; δabs

(temp) = 2 °C; zcrit
(temp) = 2; 

dynamic rule 2-sided). Because humidity is read digitally 
from the sensor, this difference likely reflects integration 
factors (e.g., timestamp alignment, wiring/placement, RF 
self-heating, or parsing/rounding) rather than ADC 
resolution. Latency statistics are based on per-message pairs 
(inner-joined to UTC) with Harrell–Davis quantiles and 95% 
BCa CIs; message-loss = 1−received/sent with 
[confirmed/unconfirmed] uplinks and [N] retry budget on 
LoRa. Nano with LoRa is far more energy-efficient (roughly 
one-third the daily mAh) and shows fewer message losses at 
range, albeit with higher latency (around 450/830 ms 
P50/P95). With confirm-and-retry enabled, the Nano/LoRa 
branch achieves a marginally higher write success rate to 
InfluxDB, again at the cost of delay. 

E. Operational Guidance 

Choose ESP32 when Wi-Fi is available and low alerting 
latency or on-device ML is important; prefer Arduino Nano 
+ LoRa for remote plots without Wi-Fi and where autonomy 
is the primary concern. A hybrid strategy works best in 
greenhouses: route critical events over Wi-Fi for immediacy, 
but report routine metrics over LoRa every few minutes to 
conserve energy. In production, provision broker buffers for 
Wi-Fi bursts and increase database timeouts for the LoRa 
series to reduce retries. 

F. Optimization Opportunities 

ESP32 nodes benefit from deep sleep between 
transmissions and rapid sampling of slowly changing 
variables; Nano nodes benefit from power-down sleep with 
watchdog wake-ups and longer reporting intervals for slowly 
varying parameters. Both lines rely on proper sensor 
calibration to ensure fair comparisons and trustworthy alert 
thresholds. 

In summary, ESP32 is the preferred choice for high-speed 
cloud telemetry and rapid alerting, while Arduino Nano 
remains a robust, low-power workhorse for autonomous 
deployments. The unified pipeline and metrics provide a 
reproducible way to compare sources and quantify latency, 
accuracy, reliability, and energy trade-offs. 

VI. CONCLUSION 

This work pursued 3 measurable objectives, and the results 
provide a clear closure between expectations and obtained 

evidence. 
We implemented and validated an end-to-end 

microservice, stream-first telemetry pipeline (ingestion→ 
broker→ stream processing→ time-series storage→ 
dashboards/alerts) suitable for real-time agrotelemetry. The 
pipeline design supports decoupled scaling and operational 
observability, enabling stable ingestion and processing under 
the tested sampling regime. 

We designed and operationalized a streaming critical-
event detector that combines static thresholds with dynamic 
z-score deviation and k-of-m confirmation logic. The detector 
naturally maps onto stateful stream operators, enabling 
timely alerting while suppressing spurious triggers through 
confirmation and refractory logic. 

Using a unified experimental protocol and standardized 
KPIs, we quantified the trade-offs between ESP32 and 
Arduino Nano + LoRa. ESP32 offers lower end-to-end 
latency and is preferable when Wi-Fi coverage is available 
and time-sensitive alerting is required. Arduino Nano + LoRa 
is more suitable for remote and energy-constrained 
deployments, offering better autonomy at the cost of higher 
latency. Based on these findings, we recommend a hybrid 
strategy: route critical alerts via Wi-Fi (ESP32) and routine 
telemetry via LoRa to strike a balance between 
responsiveness and energy autonomy. 

Limitations include a single-site evaluation and a limited 
sensor set; future work will expand to additional sensor types 
and multi-site deployments and will further standardize 
interoperability profiles. 

We treat the reliability-oriented configuration as a 
reference profile; future work will quantify the incremental 
latency contributions of individual configuration toggles 
using controlled ablation experiments. 
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