

Abstract—Application’s memory footprints are growing

exponentially due to an increase in their data set and additional

software layer. Modern RDMA capable networks such as

InfiniBand and Myrinet with low latency and high bandwidth

provide us a new vision to utilize remote memory. Remote idle

memory can be exploited to improvement performance of

memory intensive applications on individual nodes. Network

swapping will be faster than traditional swapping to local disk.

In this paper, we design a remote memory system for remote

memory utilization in InfiniBand clusters. We present the

architecture, communication method and algorithm of

InfiniBand Block Device (IBD), which is implemented as

loadable kernel module for version 3.5.0-45 of the Linux kernel.

Especially, we discuss design issues transfer pages to remote

memory. Our experiments show that IBD can bring more

performance gain for applications whose working sets are

larger than the local memory on a node but smaller than idle

memory available on the cluster.

Index Terms—Remote memory, distributed memory,

swapping, cluster system, InfiniBand.

I. INTRODUCTION

Application’s memory footprints are growing

exponentially due to an increase in their data set and

additional software layer. This memory requirement outpaces

the growth in the capacity of current memory modules.

Traditionally magnetic disks are used as the backing store for

virtual memory. However the overall performance of

applications is degraded due to the low speed of disks when

applications need more memory than is physically available.

In addition, since processor performance improves at a

higher rate than disk seek latency, the cost of a disk access

continues to increase with time [1].

Modern networking technologies such as Infiniband and

Myrinet with low latency of a few microseconds and high

bandwidth of up to 10 Gbps provide us a new vision to utilize

remote memory for local system performance improvement.

It is clear that paging to idle memory is faster than paging to

disk because network ram eliminates the physical seek time

and the bandwidth of network connections is increasing

faster than the bandwidth to disk .

Several techniques have been proposed to use remote

memory. These techniques include two approaches: remote

memory mapping [2], [3] and remote memory swapping.

Manuscript received October 2, 2014; revised December 9, 2014. This

work was supported by the ICT R&D program of MSIP/IITP [10038768,

The Development of Supercomputing System for the Genome Analysis].

The authors are with the Cloud Computing Research Department,

Electronics and Telecommunications Research Institute (ETRI), Daejeon

305-350, Republic of Korea (e-mail: {hyunwha, khk, sbae}@ etri.re.kr).

Remote memory mapping techniques deal with the remote

memory as an extension to the local memory space. These

techniques require inflexible malloc-like APIs and

recompilation of the existing applications. Remote memory

swapping techniques deal with the remote memory as a swap

device. The aim of these techniques is partially to fill the

performance gap between local memory and hard disk

without modifying the OS or the running applications.

Especially cluster systems, that encapsulate hundreds or

even thousands of independent computing nodes within a

single platform, have an imbalance of memory usage across

different computing nodes. Therefore large amounts of idle

cluster memory are almost always available for remote

paging [4], [5]. Remote paging adds remote memory between

main memory and disk in the local memory hierarchy. This

caching technology provides an efficient way to boost

application performance.

In order to improve cluster throughput at the main memory

usage, we propose a remote memory system for clustered

architectures. Our remote memory system, called IBD

(InfiniBand Block Device), is a block device driver

implemented as a loadable kernel module. Applications can

take advantage of IBD without having to re-compile or link

with special libraries. IBD can be used as disk device and be

added as a swap device easily. In particular, we have the

following contributions:

 We design a remote memory system exploiting the
efficient low-latency high-bandwidth feature of
InfiniBand.

 We demonstrate the feasibility and benefit of our remote
memory system by developing a prototype and
evaluating the performance of application programs.

 We give insights into how to take advantage of
InfiniBand to significantly speed up the remote memory
access.

The rest of the paper is organized as followings. Section II

reviews the related work. Section III describes the design of

the proposed remote memory systems and the study to

improve the performance of remote memory access. Section

IV provides the results from our evaluations and analyzes the

findings. Finally Section V concludes the work and discusses

the future works.

II. RELATED WORK

There have been several previous projects that attempt to

use remote memory in clustered systems. These remote

memory systems can be either user-level or kernel-level

implementation.

User-level implementation allows user applications to be

A Remote Memory System for High Performance Data

Processing

Hyun-Hwa Choi, Kangho Kim, and Seung-Jo Bae

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

5010.7763/IJFCC.2015.V4.354DOI:

built on top of a user-level memory management library. This

results in a lower performance due to increased context

switching between user-space and kernel-space.

 Dodo [4] requires application-level modification and

provides remote memory as read-only caching. Writes to

remote memory are propagated to disk in parallel to being

sent to the remote node.

DLM (Distributed Large Memory System) [2] is user-level

software as a swap device and offers better performance by

tuning its parameters independently from kernel swap

parameters.

Kernel-level implementations have better performance

since all memory management is performed in the kernel.

Therefore users have no conception of the use of remote

memory.

ACMS (Autonomous collaborative Memory System) [5]

proposes a memory acquisition protocol to perform

autonomous memory collaboration across multiple nodes

within a cluster. ACMS classify nodes into memory client

node, memory server node and memory neutral node

according to their memory usage. The nodes perform

dynamic memory collaboration using the memory acquisition

protocol over Ethernet.

HPBD (High Performance network Block Device) [6] is a

kernel-level swap device using native InfiniBand

communication verbs. The client is a block device driver and

the server is a RamDisk based user space program. The client

send requests for to the remote memory servers, then the

remote memory servers perform RDMA read and RDMA

write operations based on request type. The execution time of

quick sort using HPBD is up to 21 times faster than local

disk.

 LocaSwap [7] provides remote memory based on Ethernet

network in kernel space called LocaBus [8]. LocaSwap is the

virtual RamDisk implemented as a normal block disk driver.

During the load of the client module, the client sends remote

memory servers messages requesting it to reserve a specified

amount of memory for remote access. The reserved memory

is managed by sector granularity.

 Nswap [9] has no centralized server. Each node

independently can make swapping decision based on partial

information about the state of the cluster. Nswap supports

migration of remotely swapped pages between the cluster

nodes, and supports dynamic growing and shrinking of each

nodes’ Nswap cache.

R2MS [1] is a kernel-level reliable remote memory system

to validate whether a remote memory system is efficient for

large memory data processing. R2MS transfers all pages into

remote memory with Remote Direct Memory Access

operations over Infiniband and provides a fast crash/recovery

mechanism.

III. IBD IMPLEMENTATION

In this section, we describe the proposed InfiniBand Block

Device (IBD), including architecture, communication

protocol and algorithm.

A. IBD Architecture

IBD consists of a memory client node and memory server

nodes as shown Fig. 1.

Fig. 1. IBD architecture.

A memory client node performs computation, accesses its

memory space. When it exhausts its local memory, it will free

pages by using memory server nodes. A memory server acts

as fast backing store for the memory client node. In other

words, the pages are stored on the memory server nodes and

are brought back into local memory on the memory client

node by demand.

The memory client and the memory server nodes are

interconnected through InfiniBand with a scalable, high

bandwidth. In an InfiniBand network, nodes are connected

to the switch-based network fabric by Host Channel Adapters

(HCA). The data transfer between the local memory of a

memory client node and the remote memory of a memory

server node is performed with Remote Direct Memory

Access (RDMA) over InfiniBand.

IBD has four components such as ibd, ibd_client,

ibd_rdma_server and ibd_mem_export.

The ibd, which is a Linux kernel module, allows remote

memory to appear as block device on a memory client node.

When the ibd is loaded, a dev file, /dev/ibd0, is created. The

ibd block device can be accessed as either a swap partition or

as a normal file system. We easily construct a file system on

it or map it on Linux’s swap mechanism using standard

system tools such as mkfs.ext2, mkswap, mount and swapon.

The ibd_client configures the available memory servers

and how much memory they have. The size of the ibd block

device is less or equal to the amount of remote memory

requested from the memory server nodes. In addition, the

ibd_client is used to terminate IBD.

The ibd_rdma_server on a memory client node is used for

page transfer. I/O operations are performed in sector

granularity. Using the range value of the sector, the

ibd_rdma_server determines which memory server has a

requested sector and where the sector is stored on the

memory server’s memory.

The ibd_mem_export is executed on a memory server

node. When it is loaded, it will wait for a connection request

from the ibd_rdma_server. Once a request is received, the

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

51

reserved memory is allocated for the ibd_rdma_server.

B. Communication Method

IBD uses two types of communication channels: Ethernet

and InfiniBand, as shown in Fig. 2. It uses TCP/IP sockets

based on Ethernet for synchronization messages between the

memory client and memory server to exchange peer rkey.

Otherwise, it sends the kernel’s paging requests to the remote

memory servers using native InfiniBand communication

verbs.

We implemented the remote memory detecting, allocation

and deallocation protocol by communication between the

ibd_rdma_server and the ibd_mem_export which are

connected via Ethernet NICs. The ibd_mem_export on a

memory server node donates a portion of its memory space.

Once ibd_rdma_server runs on a memory client node, it

exchanges communication information such as the unique

node ID, information about the message transfer engine of

InfiniBand architecture called queue pair (qp) and rkey to

resolve memory mapping. The key exchange operations are

performed over TCP/IP socket connections.

To transfer real data page, we exploit the InfiniBand

architecture as a backbone network. Communication over

InfiniBand requires message buffers to be registered with the

OS. Memory registration is based on virtual memory

addresses to pin down pages for DMA operations with the

HCA. This allows data delivery to remote memory buffers

directly with zero-copy along the communication path. The

RDMA read/write operations can lead performance

improvement of the IBD.

C. Data Transfer Policy

As defined above, an IBD provides as a backing store

memory exported by multiple memory servers. In multiple

memory server scenario, there is a design issue of load

balancing such as data striping and request multiplexing. The

data striping and request multiplexing are traditional ways to

exploit parallelism of a single request. Because of the high

bandwidth feature of InfiniBand, we determine not to split a

single request to multiple one. The IBD allocates sector

values on reserved memory in order of memory server names

taken by user. Then the IBD sends a page-out request to the

corresponding memory server according to the sector value.

Fig. 2. Communication method.

IV. DATA TRANSFER DESIGN

There are many issues in designing and implementing an

IBD. This section discusses design issue related to the data

transfer path on a memory client node. Fig. 3 shows different

data transfer models implemented by us.

A. User Level Data Transfer

A key of InfiniBand Architecture gives every application

direct access to the messaging service. Direct access means

that an application need not rely on the operating system to

transfer data. The InfiniBand driver on user space can

interact directly with the hardware by writing to a segment of

mapped memory. This is involved in functions calls such as

ibv_post_send and ibv_post_recv. Avoiding kernel traps is

one way to decrease the overall latency of send/receive

operations.

Fig. 3 (a) shows a path on a memory client node to send

paging request. Linux virtual memory manager manages

physical memory on memory client node. When free pages

available to the virtual memory manager fall below a

threshold, page-out requests are triggered by the kernel

thread kswapd to swap pages out to the backing store on

swap devices. An ibd kernel module serves the swap requests

as normal block I/O requests. The ibd_rdma_server gets the

I/O requests from the ibd to utilize zero-copy data transfer

and starts data passing using communication buffer

registered with the HCA. At this time, memory copy occurs

from kernel space to user space, and context switch of the

ibd_rdma_server needs two times between user space and

kernel space. The cost of memory copy and context switch is

considerable.

B. User and Kernel Shared Data Transfer

The POSIX mmap() interface offers a viable way to map

file or device into memory. Using such an interface, the

ibd_rdma_server on user space can share paging request

memory allocated by the ibd module on kernel space. As

shown Fig. 3 (b), this model removes memory copy for

paging request from kernel space to user space, thus provides

potentials for performance improvement.

C. Kernel Level Data Transfer

Fig. 3 (c) shows the ibd_rdma_server implemented on

kernel space. This model is the model without memory copy

and context switch of user level data transfer. We will report

the benefit of the kernel level data transfer in Section V.

V. PERFORMANCE EVALUATION

This section describes a set of performance experiments

done to determine the effectiveness of IBD. The main goal of

the IBD is to use remote memory for high performance.

Therefore the experiments are designed to test the

performance of using remote memory as swap device.

The experiments are conducted on a cluster of dual Intel

Xeon E5-2650 2.67 GHz nodes. Each node has 128 GB

physical memory. All nodes are connected to InfiniBand

network using Mellanox SX6036 FDR IB switch with 36

port and Mellanox FDR InfiniBand HCA (ConnectX-3).

Each node has a 1TB SATA3 hard disk. The operating

system is Ubuntu with a Linux kernel version 3.5.0-45.

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

52

Fig. 3. Data transfer model.

To compare the performance impact of remote paging with

local memory performance and study the impact of network

performance on remote paging, we change the total local

memory size available to the OS.

We first evaluated the performance with enough local

memory, swapping over IBD, and local disk. We use the

performance of applications running in-memory as the base

line for evaluation. The experiment is performed by a

simulation program written in C called allocating-memory.

The simulation program includes memory allocation and

initialization.

Fig. 4 shows the time required for the memory allocation

and initialization for various amounts of requested memory.

Each experiment is repeated ten times. For comparison of the

usual hard disk swapping and IBD swapping, we limit the

local memory size that is available to 10GB.The experiments

are performed by allocating memory of 20, 30, 40, 50, and 60

Gigabytes. Thus in all experiments, allocating-memory

allocates more memory than physically available, forcing the

operating system to swap memory. The allocating-memory

allocated five times more memory than physical memory

available.

Fig. 4. Impact on IBD.

Because the result of the execution time without local

memory experiments includes the time required to swap out

inactive processes, the execution times by IBD swap and hard

disk swap are longer than for local memory. But, the time

taken by IBD swap to do the memory allocation and

initialization experiment is shorter than the required for hard

disk. The performance gaps between the IBD swap and the

hard disk swap increase as the amount of used swap space

increases. Even though the Linux kernel tries to re-order disk

I/O requests sequentially to minimize the disk head

movement, IBD performs significantly better than the hard

disk. For 60GB experiment, local memory execution time is

36.73 seconds, while IBD takes 75.5 seconds and hard disk

takes 143.64 seconds. Thus memory is only 2 times faster

than IBD, and IBD swapping is 2 times faster than local disk.

This is caused by the fact that the order in which pages are

swapped out is not the same as the order in which pages will

be swapped back in. In other words, the swap mechanism

causes the random disk head movement. The IBD is good at

transferring data on the random nature of access patterns.

Fig. 5. Impact on data transfer model.

We measured the performance of the IBD data transfer

models. We performed sequential read and write

experiments using Linux utility dd. Fig. 5 shows the

execution time of data read from or written to the remote

memory. Clearly, the IBD implemented on kernel space

results in higher performance of read and receive operation.

By avoiding memory copies and kernel context switches, the

shared data transfer model between user space and kernel

space improves data read and write operation performance by

about 4%, and the kernel data transfer model improves it by

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

53

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

54

about 10%. This means that the host overhead along the path

for data transfer becomes an important performance factor.

VI. CONCLUSION

This paper investigated the potential benefits of a remote

memory system. Considering the speed gap between DRAM

and networks, the performance results show that the remote

memory system as swap device has better performance than

we expected. The IBD outperforms hard disk based swapping

by up to 2 times.

We evaluated the improvements that can be achieved by

avoiding the memory copy and context switch. Our results

show that data transfer path on host node is the important

factor affecting application performance on IBD.

In our future work, we plan to investigate the scalability of

our IBD and the ways of minimizing host overhead on the

swapping critical path. Plans also are in place to provide a

method migrating remote pages between memory servers.

ACKNOWLEDGMENT

This work was supported by the ICT R&D program of

MSIP/IITP. [10038768, The Development of

Supercomputing System for the Genome Analysis]

REFERENCES

[1] H. Han, H. Jung, S. Kang, and H. Y. Yeom, “Performance evaluation

of a remote memroy system with commodity hardware for

large-memory data processing,” Cluster Comput, vol. 14, no. 4, 2011

[2] H. Midorikawa, M. Kurokawa, R. Himeno, and M. Sato, “DLM: A

distributed large memory system using remote memory swapping over

cluster nodes,” in Proc. the IEEE International Conference on Cluster

Computing, 2008, pp. 268-273.

[3] N. Wang, X. Linu, J. He, J. Han, L. Zhang, and Z. Xu, “Collaborative

memory pool in cluster system ,” in Proc. the International Conference

on Parallel Processing, 2007, p. 17.

[4] S. Koussih, A. Acharya, and S. Setia, “Dodo: A user-level system for

expoiting idle memory in workstation cluster,” in Proc. the IEEE

International Symposium on High Performance Distributed

Computing, 1999.

[5] A. Samih, R. Wang, C. Maciocco, T. Y. C. Tai, and Y. Solihin, “A

collaborative memory system for high-[erformance and cost-effective

clusterd architectures,” presented at Workshop on Architectures and

systems for Big Data, 2011.

[6] S. Liang, R. Noronha, and D. K. Panda, “Swapping to remote ,emory

over InfiniBand: an approach using a high performance network block

device,” in Proc. the IEEE International Conference on Cluster

Computing, 2005.

[7] P. Werstein, X. Jia, and Z. Huang, “A remote memory swapping system

for cluster computers,” in Proc. the International Conference on

Parallel and Distribured Computing, pp. 75-81, 2007.

[8] P. Werstein, M. Pethick, and Z. Huang, “LocalBus: A kernel to kernel

communicaiton channel for cluster computing,” in Proc. the

International Conferences on Parallel and Distribuetd Computing,

Aplication and Technologies, 2004, pp. 497-504.

[9] T. Newhall, S. Finney, K. Ganchew, and M. Spiegel, “Nswap: A

network swapping module for Linux clusters,” Euro-Par, pp.

1160-1169, 2003.

Hyun-Hwa Choi received the B.S. degree in computer

engineering from Chungnam National University in

2000, and the M.S. degree in computer engineering

from Pohang university in 2002. She received the

Ph.D. degreee in computer engineering from

Chungnam National University in 2013.

 She joined ETRI (electronics and

teleconnumications research institute), Daejeon, Korea

in 2002. From 2002 to 2003, she was involved in

development of a large scale data management system. From 2004 to 2006,

she was involved in development of the smart object processing framework

that provides the real time processing of large sensor data stream. From 2007

to 2009, she was involved in development of the distributed data processing

system. From 2010 to 2012, she developed a workflow management system

for high performance computing. Since 2013, she has currently developed a

block device driver supporting remote memory system for data intensive

applications.

 Dr. Choi's research interests include parallel and distributed processing,

high-dimensional query processing, and data stream management system

Kangho Kim received the B.S. degree and the M.S.

degree in computer engineering from KyungBuk

National University in 1993 and 1996, respectively.

 He joined SERI (software engineering research

insttitute) and ETRI (electronics and

teleconnumications research institute), Daejeon, Korea

in 1995 and 2000 respectively. From 2000 to 2008, he

was involved in development of Linux and cluster

management system. Since 2009, he has developed system virtualization.

Mr. Kim’s research interests include operating system and next generation

memory.

Seung-Jo Bae received the B.S. degree in computer

engineering from Yonsei University in 1987. He

received the M.S. degree and the Ph.D. degree in

computer and information science form Syracuse

University in 1992 and 1997, respectively.

 He joined ETRI (electronics and

teleconnumications research institute), Daejeon, Korea

in 1997. Since 1997, he was involved in development

of execution engine for high performance computing.

Dr. Bae’s research interests include parallel and distributed computing and

execution engine.

