
  

 

Abstract—Application’s memory footprints are growing 

exponentially due to an increase in their data set and additional 

software layer. Modern RDMA capable networks such as 

InfiniBand and Myrinet with low latency and high bandwidth 

provide us a new vision to utilize remote memory. Remote idle 

memory can be exploited to improvement performance of 

memory intensive applications on individual nodes. Network 

swapping will be faster than traditional swapping to local disk.  

In this paper, we design a remote memory system for remote 

memory utilization in InfiniBand clusters. We present the 

architecture, communication method and algorithm of 

InfiniBand Block Device (IBD), which is implemented as 

loadable kernel module for version 3.5.0-45 of the Linux kernel. 

Especially, we discuss design issues transfer pages to remote 

memory. Our experiments show that IBD can bring more 

performance gain for applications whose working sets are 

larger than the local memory on a node but smaller than idle 

memory available on the cluster. 

 
Index Terms—Remote memory, distributed memory, 

swapping, cluster system, InfiniBand.  

 

I. INTRODUCTION 

Application’s memory footprints are growing 

exponentially due to an increase in their data set and 

additional software layer. This memory requirement outpaces 

the growth in the capacity of current memory modules. 

Traditionally magnetic disks are used as the backing store for 

virtual memory.  However the overall performance of 

applications is degraded due to the low speed of disks when 

applications need more memory than is physically available. 

In addition, since processor performance improves at a 

higher rate than disk seek latency, the cost of a disk access 

continues to increase with time [1]. 

Modern networking technologies such as Infiniband and 

Myrinet with low latency of a few microseconds and high 

bandwidth of up to 10 Gbps provide us a new vision to utilize 

remote memory for local system performance improvement. 

It is clear  that paging to idle memory is faster than paging to 

disk because network ram eliminates the physical seek time 

and the bandwidth of network connections is increasing 

faster than the bandwidth to disk .  

Several techniques have been proposed to use remote 

memory. These techniques include two approaches: remote 

memory mapping [2], [3] and remote memory swapping. 
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Remote memory mapping techniques deal with the remote 

memory as an extension to the local memory space. These 

techniques require inflexible malloc-like APIs and   

recompilation of the existing applications. Remote memory 

swapping techniques deal with the remote memory as a swap 

device. The aim of these techniques is partially to fill the 

performance gap between local memory and hard disk 

without modifying the OS or the running applications.  

Especially cluster systems, that encapsulate hundreds or 

even thousands of independent computing nodes within a 

single platform, have an imbalance of memory usage across 

different computing nodes. Therefore large amounts of idle 

cluster memory are almost always available for remote 

paging [4], [5]. Remote paging adds remote memory between 

main memory and disk in the local memory hierarchy. This 

caching technology provides an efficient way to boost 

application performance.  

In order to improve cluster throughput at the main memory 

usage, we propose a remote memory system for clustered 

architectures. Our remote memory system, called IBD 

(InfiniBand Block Device), is a block device driver 

implemented as a loadable kernel module. Applications can 

take advantage of IBD without having to re-compile or link 

with special libraries. IBD can be used as disk device and be 

added as a swap device easily. In particular, we have the 

following contributions: 

 We design a remote memory system exploiting the 
efficient low-latency high-bandwidth feature of 
InfiniBand. 

 We demonstrate the feasibility and benefit of our remote 
memory system by developing a prototype and 
evaluating the performance of application programs. 

 We give insights into how to take advantage of 
InfiniBand to significantly speed up the remote memory 
access. 

The rest of the paper is organized as followings. Section II 

reviews the related work. Section III describes the design of 

the proposed remote memory systems and the study to 

improve the performance of remote memory access. Section 

IV provides the results from our evaluations and analyzes the 

findings. Finally Section V concludes the work and discusses 

the future works.  

 

II. RELATED WORK 

There have been several previous projects that attempt to 

use remote memory in clustered systems. These remote 

memory systems can be either user-level or kernel-level 

implementation.  

User-level implementation allows user applications to be 
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built on top of a user-level memory management library. This 

results in a lower performance due to increased context 

switching between user-space and kernel-space. 

 Dodo [4] requires application-level modification and 

provides remote memory as read-only caching. Writes to 

remote memory are propagated to disk in parallel to being 

sent to the remote node.  

DLM (Distributed Large Memory System) [2] is user-level 

software as a swap device and offers better performance by 

tuning its parameters independently from kernel swap 

parameters. 

Kernel-level implementations have better performance 

since all memory management is performed in the kernel. 

Therefore users have no conception of the use of remote 

memory.  

ACMS (Autonomous collaborative Memory System) [5] 

proposes a memory acquisition protocol to perform 

autonomous memory collaboration across multiple nodes 

within a cluster. ACMS classify nodes into memory client 

node, memory server node and memory neutral node 

according to their memory usage. The nodes perform 

dynamic memory collaboration using the memory acquisition 

protocol over Ethernet. 

HPBD (High Performance network Block Device) [6] is a 

kernel-level swap device using native InfiniBand 

communication verbs.  The client is a block device driver and 

the server is a RamDisk based user space program. The client 

send requests for to the remote memory servers, then the 

remote memory servers perform RDMA read and RDMA 

write operations based on request type. The execution time of 

quick sort using HPBD is up to 21 times faster than local 

disk. 

 LocaSwap [7] provides remote memory based on Ethernet 

network in kernel space called LocaBus [8]. LocaSwap is the 

virtual RamDisk implemented as a normal block disk driver. 

During the load of the client module, the client sends remote 

memory servers messages requesting it to reserve a specified 

amount of memory for remote access. The reserved memory 

is managed by sector granularity. 

 Nswap [9] has no centralized server. Each node 

independently can make swapping decision based on partial 

information about the state of the cluster. Nswap supports 

migration of remotely swapped pages between the cluster 

nodes, and supports dynamic growing and shrinking of each 

nodes’ Nswap cache. 

R2MS [1] is a kernel-level reliable remote memory system 

to validate whether a remote memory system is efficient for 

large memory data processing. R2MS transfers all pages into 

remote memory with Remote Direct Memory Access 

operations over Infiniband and provides a fast crash/recovery 

mechanism.  

 

III. IBD IMPLEMENTATION 

In this section, we describe the proposed InfiniBand Block 

Device (IBD), including architecture, communication 

protocol and algorithm.  

A. IBD Architecture 

IBD consists of a memory client node and memory server 

nodes as shown Fig. 1.  

 

 
Fig. 1. IBD architecture. 

 

A memory client node performs computation, accesses its 

memory space. When it exhausts its local memory, it will free 

pages by using memory server nodes.  A memory server acts 

as fast backing store for the memory client node.  In other 

words, the pages are stored on the memory server nodes and 

are brought back into local memory on the memory client 

node by demand.   

The memory client and the memory server nodes are 

interconnected through InfiniBand with a scalable, high 

bandwidth.  In an InfiniBand network, nodes are connected 

to the switch-based network fabric by Host Channel Adapters 

(HCA). The data transfer between the local memory of a 

memory client node and the remote memory of a memory 

server node is performed with Remote Direct Memory 

Access (RDMA) over InfiniBand. 

IBD has four components such as ibd, ibd_client, 

ibd_rdma_server and ibd_mem_export. 

The ibd, which is a Linux kernel module, allows remote 

memory to appear as block device on a memory client node. 

When the ibd is loaded, a dev file, /dev/ibd0, is created.  The 

ibd block device can be accessed as either a swap partition or 

as a normal file system. We easily construct   a file system on 

it or map it on Linux’s swap mechanism using standard 

system tools such as mkfs.ext2, mkswap, mount and swapon. 

The ibd_client configures the available memory servers 

and how much memory they have. The size of the ibd block 

device is less or equal to the amount of remote memory 

requested from the memory server nodes.  In addition, the 

ibd_client is used to terminate IBD.  

The ibd_rdma_server on a memory client node is used for 

page transfer. I/O operations are performed in sector 

granularity. Using the range value of the sector, the 

ibd_rdma_server determines which memory server has a 

requested sector and where the sector is stored on the 

memory server’s memory. 

The ibd_mem_export is executed on a memory server 

node. When it is loaded, it will wait for a connection request 

from the ibd_rdma_server. Once a request is received, the 
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reserved memory is allocated for the ibd_rdma_server.  

B. Communication Method 

IBD uses two types of communication channels: Ethernet 

and InfiniBand, as shown in Fig. 2. It uses TCP/IP sockets 

based on Ethernet for synchronization messages between the 

memory client and memory server to exchange peer rkey. 

Otherwise, it sends the kernel’s paging requests to the remote 

memory servers using native InfiniBand communication 

verbs.  

We implemented the remote memory detecting, allocation 

and deallocation protocol by communication between the 

ibd_rdma_server and the ibd_mem_export which are 

connected via Ethernet NICs. The ibd_mem_export on a 

memory server node donates a portion of its memory space.  

Once ibd_rdma_server runs on a memory client node, it 

exchanges communication information such as the unique 

node ID, information about the message transfer engine of 

InfiniBand architecture called queue pair (qp) and rkey to 

resolve memory mapping. The key exchange operations are 

performed over TCP/IP socket connections. 

To transfer real data page, we exploit the InfiniBand 

architecture as a backbone network. Communication over 

InfiniBand requires message buffers to be registered with the 

OS. Memory registration is based on virtual memory 

addresses to pin down pages for DMA operations with the 

HCA.  This allows data delivery to remote memory buffers 

directly with zero-copy along the communication path. The 

RDMA read/write operations can lead performance 

improvement of the IBD. 

C. Data Transfer Policy 

As defined above, an IBD provides as a backing store 

memory exported by multiple memory servers. In multiple 

memory server scenario, there is a design issue of load 

balancing such as data striping and request multiplexing. The 

data striping and request multiplexing are traditional ways to 

exploit parallelism of a single request. Because of the high 

bandwidth feature of InfiniBand, we determine not to split a 

single request to multiple one. The IBD allocates sector 

values on reserved memory in order of memory server names 

taken by user. Then the IBD sends a page-out request to the 

corresponding memory server according to the sector value. 

 

 
Fig. 2. Communication method. 

 

IV. DATA TRANSFER DESIGN 

There are many issues in designing and implementing an 

IBD. This section discusses design issue related to the data 

transfer path on a memory client node. Fig. 3 shows different 

data transfer models implemented by us. 

A. User Level Data Transfer 

A key of InfiniBand Architecture gives every application 

direct access to the messaging service. Direct access means 

that an application need not rely on the operating system to 

transfer data. The InfiniBand driver on user space can 

interact directly with the hardware by writing to a segment of 

mapped memory. This is involved in functions calls such as 

ibv_post_send and ibv_post_recv. Avoiding kernel traps is 

one way to decrease the overall latency of send/receive 

operations.  

Fig. 3 (a) shows a path on a memory client node to send 

paging request. Linux virtual memory manager manages 

physical memory on memory client node. When free pages 

available to the virtual memory manager fall below a 

threshold,  page-out requests are triggered by the kernel 

thread kswapd to swap pages out to the backing store on 

swap devices. An ibd kernel module serves the swap requests 

as normal block I/O requests. The ibd_rdma_server gets the 

I/O requests from the ibd to utilize zero-copy data transfer 

and starts data passing using communication buffer 

registered with the HCA. At this time, memory copy occurs 

from kernel space to user space, and context switch of the 

ibd_rdma_server needs two times between user space and 

kernel space. The cost of memory copy and context switch is 

considerable. 

B. User and Kernel Shared Data Transfer 

The POSIX mmap() interface offers a viable way to map 

file or device into memory. Using such an interface, the 

ibd_rdma_server on user space can share paging request 

memory allocated by the ibd module on kernel space. As 

shown Fig. 3 (b), this model removes memory copy for 

paging request from kernel space to user space, thus provides 

potentials for performance improvement. 

C. Kernel Level Data Transfer 

Fig. 3 (c) shows the ibd_rdma_server implemented on 

kernel space. This model is the model without memory copy 

and context switch of user level data transfer. We will report 

the benefit of the kernel level data transfer in Section V.  

 

V. PERFORMANCE EVALUATION 

This section describes a set of performance experiments 

done to determine the effectiveness of IBD. The main goal of 

the IBD is to use remote memory for high performance. 

Therefore the experiments are designed to test the 

performance of using remote memory as swap device. 

The experiments are conducted on a cluster of dual Intel 

Xeon E5-2650 2.67 GHz nodes. Each node has 128 GB 

physical memory. All nodes are connected to InfiniBand 

network using Mellanox SX6036 FDR IB switch with 36 

port and Mellanox FDR InfiniBand HCA (ConnectX-3). 

Each node has a 1TB SATA3 hard disk. The operating 

system is Ubuntu with a Linux kernel version 3.5.0-45. 
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Fig. 3. Data transfer model. 

 

To compare the performance impact of remote paging with 

local memory performance and study the impact of network 

performance on remote paging, we change the total local 

memory size available to the OS.  

We first evaluated the performance with enough local 

memory, swapping over IBD, and local disk. We use the 

performance of applications running in-memory as the base 

line for evaluation. The experiment is performed by a 

simulation program written in C called allocating-memory. 

The simulation program includes memory allocation and 

initialization. 

Fig. 4 shows the time required for the memory allocation 

and initialization for various amounts of requested memory. 

Each experiment is repeated ten times. For comparison of the 

usual hard disk swapping and IBD swapping, we limit the 

local memory size that is available to 10GB.The experiments 

are performed by allocating memory of 20, 30, 40, 50, and 60 

Gigabytes. Thus in all experiments, allocating-memory 

allocates more memory than physically available, forcing the 

operating system to swap memory. The allocating-memory 

allocated five times more memory than physical memory 

available.  

 

 
Fig. 4. Impact on IBD. 

 

Because the result of the execution time without local 

memory experiments includes the time required to swap out 

inactive processes, the execution times by IBD swap and hard 

disk swap are longer than for local memory. But, the time 

taken by IBD swap to do the memory allocation and 

initialization experiment is shorter than the required for hard 

disk. The performance gaps between the IBD swap and the 

hard disk swap increase as the amount of used swap space 

increases. Even though the Linux kernel tries to re-order disk 

I/O requests sequentially to minimize the disk head 

movement, IBD performs significantly better than the hard 

disk. For 60GB experiment, local memory execution time is 

36.73 seconds, while IBD takes 75.5 seconds and hard disk 

takes 143.64 seconds. Thus memory is only 2 times faster 

than IBD, and IBD swapping is 2 times faster than local disk.  

This is caused by the fact that the order in which pages are 

swapped out is not the same as the order in which pages will 

be swapped back in.  In other words, the swap mechanism 

causes the random disk head movement.  The IBD is good at 

transferring data on the random nature of access patterns. 

 

 
Fig. 5. Impact on data transfer model. 

 

We measured the performance of the IBD data transfer 

models.  We performed sequential read and write 

experiments using Linux utility dd. Fig. 5 shows the 

execution time of data read from or written to the remote 

memory. Clearly, the IBD implemented on kernel space 

results in higher performance of read and receive operation. 

By avoiding memory copies and kernel context switches, the 

shared data transfer model between user space and kernel 

space improves data read and write operation performance by 

about 4%, and the kernel data transfer model improves it by 
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about 10%. This means that the host overhead along the path 

for data transfer becomes an important performance factor.  

 

VI. CONCLUSION 

This paper investigated the potential benefits of a remote 

memory system. Considering the speed gap between DRAM 

and networks, the performance results show that the remote 

memory system as swap device has better performance than 

we expected. The IBD outperforms hard disk based swapping 

by up to 2 times. 

We evaluated the improvements that can be achieved by 

avoiding the memory copy and context switch. Our results 

show that data transfer path on host node is the important 

factor affecting application performance on IBD.  

In our future work, we plan to investigate the scalability of 

our IBD and the ways of minimizing host overhead on the 

swapping critical path. Plans also are in place to provide a 

method migrating remote pages between memory servers. 
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