

Abstract—In a cloud computing, provisioned virtual

machines are insufficient for computing the services it needs to

be fine tuned by adding the additional resources or boosting the

existing resources. A static method of resource allocation

becomes inefficient under the different load. Based on the heavy

load virtual machine can be adopted for dynamically changes of

its behavior. There are two ways of scaling in the cloud scenario

as horizontal scaling and vertical scaling. In a horizontal scaling,

if the virtual machine resources are suffer from providing a

service a new virtual machine was created and launched

immediately. A threshold value has been maintained for scale

out and scale down the virtual machine. Horizontal scaling is a

traditional and well suitable approach for cloud computing

environment. But the limitation of this approach is required

separate load balancer to distribute the load between the virtual

machines. In a vertical scaling resources are boosted by

maximizing the virtual machine capabilities without shutting

down the virtual machines. It’s not like a traditional scaling

approach to set the threshold and adding the resources. Here

the resources are monitored by certain interval and based on

the analysis resources are added to existing virtual machine.

But lots of challenges are there in this approach. The limitation

of this approach is we can’t scale up the virtual machine up to

the physical machine capability. Here we presented and

analysis our approach for increasing the CPU capability of

virtual machine. Likewise we can increase other resources like

memory, vDisk and bandwidth. presented architecture resides

on top of the virtual machine monitor and acts based on the

scheduling algorithm.

Index Terms—Cloud computing, vertical scaling, horizontal

scaling.

I. INTRODUCTION

Cloud computing technology shows a rapid growth in the

field of information technology and provides an efficient and

flexible way to access resources over internet. This includes

on demand services, attracts industries and organizations.

Cloud uses virtualization technologies for managing

resources and provides customized environment as needed

by the user. There were various definitions for cloud around

the world and [1] list some of the basic definitions.

Scaling is defined as increasing or decreasing the capacity

(i.e. ram, CPU, file system, bandwidth, etc…) of resources

for better performance. Scaling is categorized into two types

namely Horizontal and Vertical scaling. Horizontal scaling is

scale-out the computing power by creating new virtual

machines, and vertical scaling is scale-in increasing the

computing power (i.e. ram, cpu, ..) of the existing virtual

machine. Vertical scaling facilitates the users to increasing

Manuscript received October 11, 2014; revised December 15, 2014.

The authors are with Center for Development of Advanced Computing,

Chennai, India (e-mail: {sakthis, mahendrane, mehanathenn}@cdac.in).

the performance on-demand. Dynamic scaling of resources is

feasible by using virtualization technology. In general

horizontal scaling refers to increasing or decreasing the no of

virtual machines, when the loads of the services are varied. In

horizontal scaling a load balancer is used for communication

overheads. Vertical scaling refers to increase the effective

“sizes” of individual virtual machine servers [2]-[4]. By

increasing or decreasing the computing power of virtual

machine is necessary for reducing the communication

overhead. The focuses on the vertical /horizontal scaling

approach for reducing the minimum turnaround time and for

improving the cost efficiency [5].

Eucalyptus [6] is the cloud middleware for managing the

IaaS cloud resources. It is organized in a hierarchical manner

such as cloud controller, cluster controller and node

controller. The cloud controller is responsible for handling

the user requests and the cluster controller is managing the

node controllers. The node controller is responsible for

creating and destroying the virtual machines. This study

proposes a vertical/horizontal scaling mechanism for

different resource scaling situations in cloud.

The rest of the paper is organized as follows: Section II

discusses the related work to the proposed work. Section III

describes the proposed architecture and functions of internal

components; Section IV describes the implementation and

design details. Section V describes the experimental results

and the experimental carried out on our proposed work.

Section VI concludes the proposed work and explores the

possibilities for future work.

II. RELATED WORK

CPU resizing is an important factor of vertical scaling. It is

a not like a traditional approach to maintain the threshold

value and made changes in the cpu size depends upon the

behavior of the value. Here CPU scheduler plays on

important role for cpu resizing. Already scheduler was

implemented such a way that balancing the cpu between the

virtual machine. For our experiments we have used a xen

virtual machine monitor. Xen is an open source virtualization

monitor. It is referred as a para-virtualization hypervisor to

manage the un-privileged domain (guest) from the most

privileged domain (dom0). Responsibility of hypervisor

includes memory management and cpu scheduling of

running virtual machines [7]. Xen has many types of

scheduler to manage the virtual machine running on cpu. The

major scheduler (from xen version > 3.0) was Barrow Virtual

Time (BVT), Simple Earliest Deadline First, (SEDF),

ARINC653 scheduler and Credit scheduler [8]. All the CPU

schedulers implemented with some polices like proportional

CPU Resizing Vertical Scaling on Cloud

Sakthi Saravanankumar P., Mahendran Ellappan, and Mehanathen N.

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

5510.7763/IJFCC.2015.V4.355DOI:

share (PS) scheduler. PS scheduling polices guarantees that

each virtual machine obtains certain percentage of cpu cycles

for computing its task. Generally cpu schedulers are maintain

the following attributes for scheduling. These are shares,

limits and reservation. A virtual machine was assigned twice

as many shares as another virtual machine, it consumes twice

as many cpu cycles. Another attribute limit is used to restrict

the physical resource usage of virtual machine. Also it

ensures that virtual machine doesn’t get more cpu cycles

rather than its allotted. Reservation is guaranteed for reserve

the resources of the shared environment [9]. Usually

scheduling algorithm operate at two modes called

pre-emptive (wc), non-pre-emptive (nwc). In wc (work

conserving) mode if the two virtual machines are shared the

cpu, one goes to the idle state then another one consume the

entire cpu. In nwc (non work conserving) mode even the

shared virtual machine goes for idle another one virtual

machine does not allow getting the remaining idle cpus.

Below, we briefly describe the above algorithms. BVT

(Borrowed Virtual Time) is a fair-share scheduler,

dispatching the runnable virtual machine with the earliest

effective virtual time. The scheduler is accounting a running

time in terms of minimum charging unit (mcu) typically the

frequency of clock interrupt and the scheduler is configured

with a context switch allowance C. It provides low latency

support for real-time application by allowing low latency

sensitive clients to wrap back in virtual time to gain

scheduling priority. It then effectively borrows the virtual

time from the future cpu allocation of virtual time. Each BVT

includes a state variable called effective virtual time and

actual virtual time. BVT is a pre-emptive works at work

conserving mode only [10]. The Simple Earliest Deadline

First (EDF) scheduler sets each domain to run for an n

milliseconds slice every m milliseconds. SEDF is a fairness

scheduler it depends on value of the period. The values of n

and m are configurable by the administrator on a per-domain

basis. It chooses the VCPU which has the closest deadline.

SEDF works on both WC and NWC modes. It doesn’t

support global load balancing on multi-processor [11]. The

Credit scheduler is default scheduler. In the scheduler each

domain has two main properties associated with it, a weight

and a cap. The weight determines the share of physical CPU

time that the domain will get. The cap is mainly the maximum

of CPU time the domain can get. It is widely configurable for

the administrator and work-conserving [12], [13].

ARINC653 scheduler is a periodically repeating fixed time

slice scheduler. The primary goal of this scheduler is

isolating of domains. Each virtual machine has been assigned

to single pCPU. It has two time frames. Overall scheduling

time frame is major frames. It contains many minor frames to

execute the task. CPU pool support also implemented in xen.

But multicore support is not available [14]. Based on the

evaluation of the above scheduler we take credit scheduler

for our experimentation. It has global load balancing support

on multicore architecture. Dynamic Scaling of Cloud

Applications proposes an availability-aware policy by

performing both vertical and horizontal scaling to explore

how and where to allocate computing resource [15].

III. PROPOSED ARCHITECTURE

The proposed cloud architecture for cloud environment for

scaling is depicted in Fig. 1.

Fig. 1. Cloud architecture.

A. Cloud Infrastructure

The cloud has installed with Eucalyptus 4.X Middleware,

euca2ools and XEN Hypervisors installed in Nodes. The

physical infrastructure of cloud is given in Table I.

TABLE I: CLOUD INFRASTRUCTURE

No of Servers Processor Ram (in GB) CPU Cores HDD

Server 1 Intel(R) Xeon(R)

CPU E5-2630 v2

@ 2.60GHz

32 48 1 TB

Server 2 Intel(R) Xeon(R)

CPU X5460

@ 3.16GHz

16 8 500 GB

The proposed architecture for vertical scaling in Cloud

environment is depicted in Fig. 2. The proposed architecture

is deployed over the cloud site for scaling. The architecture

mainly consist CPU Pool Management, Physical Core

Controller, VM Introspection, VM Scheduling & Exception

Handler.

Fig. 2. Vertical scaling in cloud environment architecture.

B. CPU Pool Management

C. Physical Core Controller

It resides in the virtual machine monitor. It is used to

restrict the usage of each and every virtual machine CPU

cycles in the CPU pool. Depends on the increase of the no of

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

56

It is a CPU affinity; which dedicates a specific pool for a

VM. It has a set of CPU pools and maintains the information

of the number of domains that can run in a particular pool; it

also has the information of the physical CPU which is

grouped. The available physical CPU are grouped to a

particular CPU pool, pcpu’s are grouped by 2 powers N (2n).

In runtime the CPU cores can be added/removed from the

pool. A scheduler is used to share the pCPU of the Virtual

machines within the CPU pool.

virtual Machines in the CPU pool, the CAPS value of credit

scheduler can be adjusted and the availability of virtual

machines and the virtual machines application without loss

of generality.

D. VM Introspection

It monitors the following components CPU Pool

Management, Physical core controller and VM Scheduling; it

also monitors the state of the running virtual machines, CPU

usage & demand of the CPU of a specific Virtual Machine.

E. VM Scheduling

It is the important component in the architecture. The

running virtual machine CPU cores can be reduced /

expanded based on the information from the VM

introspection component from the specific CPU pool. If the

virtual machine vcpu has been increased more than

configured the cpu pool the VM gets migrated to another

possible CPU pool.

F. Exception Handler

The role of exception handler is to handle the load of

virtual machines sharing the same pCPU by many of the

vCPU of different VM Fig. 3 illustrated. By default sharing

of pcpu reduces the cpu cycles and availability for running

the VMs. Due to this VMs didn’t get the cpu cycles fully.

This leads to performance degradation of the VMs.

IV. IMPLEMENTATION

In our implementation the CPU pool is created using CPU

pool utility in XL tool stack. Initially the host system vCPUs

are shared all the physical CPU. The host system

requirements vCPUs are grouped and pinned into one pool

then the host system will be moved into that pool. The pCPUs

are unplugged and grouped into pools, based on the request

of the virtual machines. Once the CPUs are grouped and

named the components in our architecture will maintain all

the information’s of CPU pool such as time of creation, no of

VMs in the CPU pool, allocation of vCPUs from the pCPUs.

Physical core controller restrict the virtual machine CPU

cycles. The value can be adjusted by the cap and weight value

of XEN credit scheduler. Based on monitoring system status

the cap and weight value can be changed. Initially it set by 0 it

works as a WC mode and consumes all the cpu cycles.

Libvirt package is used to interact with the hypervisior. It has

the ability to manage virtual machines on XEN. The request

made by eucalyptus is converted into xen managed

configuration through libvirt api interface.

Introspection of particular VM can be done provide by

various tools like xentop and xenmon. It will get the

information based on some time slice value produced. VM

scheduling is the most important component which is used to

migrate the VM between the pool. Frequent switch of VM

migration can be affect the performance of the physical

machine CPUs. When VM is not sufficient to adopt the

particular pool VM can be migrated to some other pool by

provided the xl utility cpupool-migrate. All the components

are implemented and run on top of the XEN hypervisor.

In this paper cpu resizing is not depending on the threshold

value. It is purely depends on the scheduling on the vCPUs.

Over a period of time the components has been monitoring a

vCPUs consumption cpu cycles. By default the scheduler

gives equal priority for each threads (vCPUs) running on

pCPU. When there is more sharing by vCPUs, automatically

scheduler reduces the cpu cycles of each virtual machine

running on the pCPUs.

The main factors for scaling cpu virtually are, initial

number of virtual cpu should be defined for launching virtual

machine. The maximum no of virtual cpu required for

scaling at running state. The constraints to be followed for

resizing of vCPU. The total number of vCPU can’t be

exceeded the total number of pCPU in SMP host (NpCPU >=

NvCPU). The number of vCPU shared by the pCPU

increases a risk of reducing the cpu cycles. For example the

following figure illustrates the VM1 of vCPU2, VM2 of

vCPU2 and VM4 of vCPU1 shared the pCPU2. Here

scheduler gives equal priority for all the running virtual

machine. In case any virtual machine has a weight value as

double as comparatively with other virtual machine, it gets

the twice as cpu cycle. The remaining virtual machine

automatically gets reduced cpu cycles. Another vCPU

depends on this vCPU the process speed automatically

reduced by itself. So here vCPU has been boosted by twice to

get full cpu cycle. The weight value can be adjusted and

regulated based on the cpu cycles. Equally this process can be

monitored.

Load balancing between virtual cpus depends on weight,

the weight range start from 1 to 65535 and the default is 256.

A domain with a weight of 512 will get twice as much CPU

as a domain with a weight of 256 on a guest machine. The cap

optionally fixes the maximum amount of CPU a domain will

be able to consume, even if the host system has idle CPU

cycles. The cap is expressed in percentage of one physical

CPU: 100 is 1 physical CPU, 50 is half a CPU, 400 is 4 CPUs,

etc... The default, 0, means there is no upper cap.

Fig. 3. Multiple vCPU shared single pCPU.

V. EXPERIMENTAL RESULTS

Creation of virtual machines in cloud, our main objective

and in our experiment we focused on the scaling and CPU

resizing of machines. Any virtual machine is launched it

should have the configuration parameter max vCPUs value is

equivalent to maximum physical processor value. Once the

value is fixed we cannot upgrade the CPU level. Our

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

57

TABLE II: WEIGHT AND CAP VALUE OF CREDIT SCHEDULER

Domain Priority CAP

Guest 1 256 No

Guest 2 256 No

Guest 3 512 60%

From the Table II guest3 gets more cpu cycle rather than

guest1 and guest 2. From our experiment initially we are

providing the instruction of disk block (block size 10MB)

write of each virtual machine with four threads. All the virtual

machine consumes 98.0 % of cpu cycles running on different

physical core. In guest3 additionally we are instructed four

more threads and increase the load of cpu. Now the weight

value has been adjusted and provide more cpu cycles

(194.0%), even though the getting chance of cpu utilization is

very less only. This scenario stats that vcpu also has been

resized. Now the efficient utilization of cpu cycles guest3

vcpu has been increased and the virtual machine has been

moved into high capability pool. All these process are

automated by using python and shell script language. But we

are facing some issues in different machines. Sometimes

frequent context switching happened in a single core system.

We observe that for single core earlier credit scheduler itself

produce great performance.

VI. CONCLUSION

In this paper, we propose a vertical scaling and CPU

resizing in cloud infrastructure using virtualization

technology. In our experiment, we provide a definite approach

for running virtual machines over cloud. In this vertical

scaling, a variety of CPUs are grouped together and pinned for

peak conditions. In our future work, this proposed vertical

scaling and CPU resizing can be extended for various types of

application in cloud environment.

ACKNOWLEDGMENT

The authors sincerely thank the Department of Electronics

& Information Technology, Ministry of Communication and

Information Technology, Government of India for

financially supporting the Centre for Development of

Advanced Computing.

REFERENCES

[1] Twenty Experts Define Cloud Computing. [Online]. Available:

http://www. cloudcomputing .syscon.com/read/612375_p.htm.

[2] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. S. Yousif, “Autonomic

resource management in virtualized data centers using

fuzzy-logicbased approaches,” Cluster Computing Journal, vol. 11,

2008.

[3] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S.

Singhal, and A. Merchant, “Automated control of multiple virtualized

resources,” in Proc. the 4th ACM European Conference on Computer

Systems, 2009, pp. 13–26,

[4] S. Blagodurov, D. Gmach, M. Arlitt, Y. Chen, C. Hyser, and A.

Fedorova, “Maximizing server utilization while meeting critical SLAs

via weight-based collocation management,” in Proc. the International

Symposium on Integrated Network Management, 2013, pp. 277-285.

[5] Y. Liu, M. R. Shie, Y. F. Lee, Y. C. Lin, and K. C. Lai,

"Vertical/horizontal resource scaling mechanism for federated clouds,"

in Proc. the 2014 International Conference on Information Science

and Applications (ICISA), vol. 1, no. 4, May 2014, pp. 6-9.

[6] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.

Youseff, and D. Zagorodnov, "The eucalyptus open-source cloud

computing system,” in Proc. the 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid, 2009, pp. 124 –131.

[7] Wikipedia. [Online]. Available: http://www.

en.wikipedia.org/wiki/Xen

[8] Scheduling. [Online]. Available: http://www.

wiki.xen.org/wiki/Scheduling_in_Xen

[9] Reservations and CPU Scheduling. [Online]. Available: http:/www.

/frankdenneman.nl/2010/06/08/reservations-and-cpu-scheduling

[10] K. J. Duda and D. R. Cheriton, “Borrowed-virtual-time (BVT)

scheduling: supporting latency-sensitive threads in a general-purpose

scheduler,” in Proc. the Seventeenth ACM Symposium on Operating

Systems Principles (SOSP '99), New York, NY, USA, pp 261-276,

2013.

[11] M. A. G. Giraldo, “Xen scheduling with load balancing on speed,”

Master in Computer Engineering Project Report, Faculty of Computer

Science Complutense University of Madrid, 2010.

[12] L. Cherkasova, D. Gupta, and Vahdat, “Comparison of the three CPU

schedulers in Xen,” SIGMETRICS Perform. Eval, Rev. vol. 35, no. 2,

2007, pp. 42-51.

[13] Credit Scheduler. [Online]. Available: http://www.

wiki.xen.org/wiki/Credit_Scheduler

[14] ARINC653 Scheduler. [Online]. Available: http://www.

wiki.xenproject.org/wiki/ARINC653_Scheduler.

[15] W. T. Wang, H. P. Chen, and X. Chen, "An availability-aware virtual

machine placement approach for dynamic scaling of cloud

applications," in Proc. the 2012 9th International Conference on the

Ubiquitous Intelligence and Computing and 9th International

Conference on Autonomic and Trusted Computing (UIC/ATC), 2012,

pp. 509-516.

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

58

components are executed on top of the XEN hypervisor CPU

pools are created based on the calculation of 2n. Once the

pool was created virtual machines are moved based on the

availability of vCPUs. The virtual machines are created and

the load increased to the VM using dd (disk write utility)

which consumes more CPU. Then on-demand the cap value

can be adjusted and additional vcpu can be given by physical

core controller.

Sakthi Saravanakumar P. is working as an engineer at

C-DAC, Chennai. He started his career in development of

software application in the health care domain. Initially he

worked in the platform of SaaS development. Later he is

working in the cloud middle-ware development. He is

pursing M.Tech in computer science and engineering. His

major research interests include virtualization and cloud

computing.

Mahendran Ellappan working as a senior engineer at

CDAC, Chennai. He has a unique passion towards research

and development. He pursued bachelor of engineering in

computer science in 2004. He spent over 8 years of

experience in grid and cloud computing. His major

research areas include neural networks, virtualization grid

computing and cloud computing. contributed. he has R&D

publications towards international journals and conferences which include a

wide area of grid computing, virtualization and cloud computing.

Mehanathen Nesamony holds a master of computer

applications from Bharathidhasan University. He started

his career as a project associate in IIT Madras, was

working with TeNet (telecommunication

networking group) for providing Internet connectivity and

portals for the rural kiosks which has poor connectivity.

His next assignment was with a private company Netlink

Technologies (Unimity Solutions) worked with content

management systems on open source technologies. Currently. He is working

as senior engineer in Center for Development of Advanced Computing. He is

working on Open Source technologies like PHP, MySql & Grails. His major

research areas include cloud computing and foss technologies.

