



Abstract—In this paper, we are interested in the number of

red nodes in red-black trees. We first present an O(n2log n) time

dynamic programming solution for computing r(n), the largest

number of red internal nodes in a red-black tree on n keys.

Then the algorithm is improved to a new O(n) time algorithm.

Based on the structure of the solution we finally present a linear

time recursive algorithm using only O(log n) space.

Index Terms—Red-black trees, red internal nodes, dynamic

programming, linear time solution.

I. INTRODUCTION

A red-black tree is a special type of binary tree, used in

computer science to organize pieces of comparable data, such

as strings or numbers. The original data structure was

invented in 1972 by Rudolf Bayer [1] with its name

'symmetric binary B-tree'. In a paper entitled 'A Dichromatic

Framework for Balanced Trees', Guibas and Sedgewick

named it red-black tree in 1978 [2]. In their paper they

studied the properties of red-black trees at length and

introduced the red/black color convention. Andersson [3]

gives a simpler-to-code variant of red-black trees. Weiss [4]

calls these variant AA-trees. An AA-tree is similar to a

red-black tree except that left children may never be red. In

2008, Sedgewick introduced a simpler version of the

red-black tree called the left-leaning red-black tree [5] by

eliminating a previously unspecified degree of freedom in the

implementation. Red-black trees can be made isometric to

either 2-3 trees or 2-4 trees, [5] for any sequence of

operations.

A red-black tree is a binary search tree with one extra bit of

storage per node: its color, which can be either red or black. It

satisfies the following red-black properties [6]:

1) A node is either red or black.

2) The root is black.

3) All leaves (NIL) are black.

4) Every red node must have two black child nodes.

5) Every path from a given node to any of its descendant

leaves contains the same number of black nodes.

The number of black nodes on any simple path from, but

not including, a node x down to a leaf is called the

Manuscript received June 16, 2014; revised November 1, 2014. This work

was supported in part by the Natural Science Foundation of Fujian (Grant

No.2013J01247), and Fujian Provincial Key Laboratory of Data-Intensive

Computing and Fujian University Laboratory of Intelligent Computing and

Information Processing.

Daxin Zhu is with Quanzhou Normal University, Quanzhou, China

(e-mail: dex@qztc.edu.cn).

Xiaodong Wang and Jun Tian are with Fujian University of Technology,

Fuzhou, China (e-mail:wangxd135@139.com, tianjunfjmu@126.com).

black-height of the node, denoted ()bh x . By the property

5),the notion of black-height is well defined, since all

descending simple paths from the node have the same

number of black nodes. The black-height of a red-black tree

is defined to be the black-height of its root.

The property 2) is sometimes omitted in practice. Since the

root can always be changed from red to black, but not

necessarily vice-versa, this property has little effect on

analysis. A binary search tree that satisfies red-black

properties 1), 3), 4), and 5) is sometimes called a relaxed

red-black tree. In this paper we will discuss the relaxed

red-black tree and call a relaxed red-black tree a red-black

tree.

We are interested in the number of red nodes in red-black

trees in this paper. We will investigate the problem that in a

red-black tree on n keys, what is the largest possible ratio of

red internal nodes to black internal nodes, and what is the

smallest possible ratio.

The organization of the paper is as follows. In the

following 3 sections we describe our presented algorithm for

computing the largest number of red internal nodes in a

red-black tree on n keys. In Section II we present a dynamic

programming algorithm for the problem. We then improve

the algorithm to a new ()O n time algorithm in Section III.

Based on the structure of the solution we finally come to a

linear time recursive algorithm using only)(nO log space.

Some concluding remarks are in Section IV.

II. A DYNAMIC PROGRAMMING ALGORITHM

A. Some Special Cases

(1)/2 (1)/2

2 1 1

=0 =0

1 2 (1)/21 1

(1)/2

1 (1) 2 1

1
() = (2 1) = 2 = 2

4

2 1 2 2
= 4 =

3 34

2 2 2 2 2
= =

3 3

2(2 1) 2 2 log(1) 2
= =

3 3

k k

k k i k

i
i i

k kk k

k

k k mod k

k

r n r

kmod

kmod n n mod

       
  

      

  

  



 
 

 

  

   

 

Let T be a red-black tree on n keys. The largest and the

smallest number of red internal nodes in a red-black tree on

n keys can be denoted as)(nr and)(ns respectively. The

values of)(nr and)(ns can be easily observed for the

special case of 12= kn . It is obvious that in this case,

A Simple Dynamic Programming Algorithm for Counting

Red Nodes in Red-Black Trees

Daxin Zhu, Xiaodong Wang, and Jun Tian

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

6310.7763/IJFCC.2015.V4.357DOI:

when the node colors are alternately red and black from the

bottom level to the top level of T, the number of red internal

nodes of T must be maximal. When all of its internal nodes

are black, the number of red internal nodes of T must be

minimal. Therefore, in the case of 12= kn , we have, Then,

the number of black nodes b(n) must be,

3

21)(
=

3

21)(2
=

)(=)(

modnn

modnn
n

nrnnb








log

log

Therefore, the ratio of red internal nodes to black internal

nodes is,

21)(

21)(2
=)()/(

modnn

modnn
nbnr





log

log

If 2 = 0kmod , then 2=)()/(nbnr , otherwise

1=2kmod ,
1

12
=)()/(





n

n
nbnr .

It follows that for any k , if 12= kn , then

1

12
)()/(






n

n
nbnr .

Notice that, 0<
1)(

3
=

1

12
2














xx

x

dx

d
, and

2=
1

12





 n

n

n
lim , the values of

1

12





n

n decrease

monotonically to 2. In the special case of 3=k ,

1

12
=)()/(





n

n
nbnr gets its maximal value of 2.5=5/2 .

Therefore, we have,

2.5
1

12
)()/(0 






n

n
nbnr

This formula can also be generalized to general n .

Therefore, for 7n , we have

2.5
1

12
=

3

12
3

12

)(

)(
0 














n

n

n
n

n

nrn

nr

B. The Dynamic Programming Formula

In the general cases, we denote the largest number of red

internal nodes in a subtree of size i and black-height j to

be ,0),(jia when its root red and ,1),(jia when its root

black respectively. Since in a red-black tree on n keys we

have njn log2log
2

1
 , we have,

),,(=),(
2

2

1
kjnakn

njn

max
loglog 

 (1)

Furthermore, for any ijini loglog 2
2

1
,1  , we

can denote,

1
0 /2

2
0 /2

3
0 /2

4
0 /2

(,) = { (, 1,1) (1, 1,1)}max

(,) = { (, ,0) (1, ,0)}max

(,) = { (, 1,1) (1, ,0)}max

(,) = { (, ,0) (1, 1,1)}max

t i

t i

t i

t i

i j a t j a i t j

i j a t j a i t j

i j a t j a i t j

i j a t j a i t j









 

 

 

 

    


  



   


   

 (2)

Theorem 1. For each ijini loglog 2
2

1
,1  , the

values of ,0),(jia and ,1),(jia can be computed by the

following dynamic programming formula.

1

1 2 3 4

(, ,0) =1 (,)

(, ,1) = max{ (,), (,), (,), (,)}

a i j i j

a i j i j i j i j i j



   





 (3)

 Proof. For each ijini log2log
2

1
,1  , let

,0),(jiT be a red-black tree on i keys and black-height j

with the largest number of red internal nodes, when its root

red. ,1),(jiT can be defined similarly when its root black.

The red internal nodes of ,0),(jiT and ,1),(jiT must be

,0),(jia and ,1),(jia respectively.

We first look at ,0),(jiT . Since its root is red, its two sons

must be black, and thus the black-height of the corresponding

subtrees L and R must be both 1j . For each /20 it  ,

subtrees 1,1),(jtT and 1,1)1,( jtiT connected to a

red node will be a red-black tree on i keys and black-height

j . Its number of red internal nodes must be

1,1)1,(1,1),(1  jtiajta .

In such trees, ,0),(jiT achieves the maximal number of

red internal nodes. Therefore, we have,

0 /2

(, ,0) {1 (, 1,1)max

(1, 1,1)}

t i

a i j a t j

a i t j

 

  

   
 (4)

On the other hand, we can assume the sizes of subtrees L

and R are t and 1 ti , /20 it  , WLOG. If we denote

the number of red internal nodes in L and R to be)(Lr

and)(Rr , then we have that 1,1),()( jtaLr and

1,1)1,()( jtiaRr . Thus we have,

1,1)}1,(1,1),({1,0),(
/20




jtiajtajia
it

max (5)

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

64

In the general cases, denote the largest number of red

internal nodes in a red-black tree on n keys be ,0)(n if

root red and ,1)(n if root black respectively. Then,

() = max{ (, 0), (,1)}r n n n  . We can prove by induction

that
3

12
,0)(




n
n and

3

2
,1)(

n
n  . It follows that

3

12
=

3

2
,

3

12
)(









 


nnn

nr max

Combining (4) and (5) , we obtain,

1,1)}1,(1,1),({1=,0),(
/20




jtiajtajia
it

max (6)

In the first case, both of the subtrees L and R have a black

root. For each /20 it  , subtrees 1,1),(jtT and

1,1)1,( jtiT connected to a black node will be a

red-black tree on i keys and black-height . Its number of

red internal nodes must be

1,1)1,(1,1),( jtiajta . In such trees, ,1),(jiT

achieves the maximal number of red internal nodes.

Therefore, we have,

0 /2

1

(, ,1) { (, 1,1)max

(1, 1,1)} = (,)

t i

a i j a t j

a i t j i j

 

  

  

 (7)

For the other three cases, we can conclude similarly that

),(=,0)}1,(,0),({max,1),(2
/20

jijtiajtajia
it




 (8)

),(=,0)}1,(1,1),({max,1),(3
/20

jijtiajtajia
it




 (9)

),(=1,1)}1,(,0),({max,1),(4
/20

jijtiajtajia
it




 (10)

Therefore, we have,

)},(),,(),,(),,({,1),(4321 jijijijijia max (11)

On the other hand, we can assume the sizes of subtrees L

and R are t and 1 ti , /20 it  , WLOG. In the first

case, if we denote the number of red internal nodes in L and

R to be)(Lr and)(Rr , then we have that

1,1),()( jtaLr and 1,1)1,()( jtiaRr , and thus

we have,

),(=1,1)}1,(1,1),({,1),(1
/20

jijtiajtajia
it




max (12)

For the other three cases, we can conclude similarly that

),(=,0)}1,(,0),({,1),(2
/20

jijtiajtajia
it




max (13)

),(=,0)}1,(1,1),({,1),(3
/20

jijtiajtajia
it




max (14)

),(=1,1)}1,(,0),({,1),(4
/20

jijtiajtajia
it




max (15)

Therefore, we have,

)},(),,(),,(),,({,1),(4321 jijijijijia max (16)

Combining (11) and (16) , we obtain,

)},(),,(),,(),,({=,1),(4321 jijijijijia max (17)

The proof is complete.

According to Theorem 1, our algorithm for computing

),,(kjia is a standard 2-dimensional dynamic

programming algorithm. By the recursive formula (2) and

(3) , the dynamic programming algorithm for computing the

largest number of red internal nodes in a red-black tree on n

keys can be implemented as the following Algorithm 1.

It is obvious that the Algorithm 1 requires)(2 nnO log time

and)(nnO log space.

The algorithm for computing)(ns , the smallest number of

red nodes in a red-black tree on n keys can be built

similarly.

III. THE IMPROVED DYNAMIC PROGRAMMING SOLUTIONS

We have computed)(nr and the corresponding red-black

trees using Algorithm 1. From some examples of the

computed red-black trees with largest number of red nodes,

we can observe some properties of)(nr and the

corresponding red-black trees as follows.

1) The red-black tree on n keys with)(nr red nodes can

be realized in a complete binary search tree, called a

maximal red-black tree.

2) In a maximal red-black tree, the colors of the nodes on

the left spine are alternatively red, black, , from the

bottom to the top, and thus the black-height of the

red-black tree must be nlog
2

1 .

From these observations, we can improve the dynamic

programming formula of Theorem 1 further. The first

improvement can be made by the observation (2). Since the

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

65

We now look at ,1),(jiT . Since its root is black, there can

be 4 cases of its two sons such as red and red, black and black,

black and red or red and black. If the subtree L or R has a red

root, then the black-height of the corresponding subtree must

be, otherwise, if its root is black, then the black-height of the

subtree must be 1j .

j

black-height of the maximal red-black tree on i keys must be

ilog
2

1
1 , the loop bodies of the Algorithm 1 for j can be

restricted to ij log
2

1
= to ilog

2

1
1 , and thus the time

complexity of the dynamic programming algorithm can be

reduced immediately to)(2nO .

It is readily seen from observation (1) that every subtree in

a maximal red-black tree must be a complete binary search

tree. If the size of a complete binary search tree T is n , then

the size of its left subtree must be
log 1 log 1 logleft() = 2 1 min{2 , 2 1}n n nn n         and

the size of its right subtree must be right() = left() 1n n n  .

Therefore, the maximal range /20 it  of the

Algorithm 2 can be restricted to = left()t i , and thus the time

complexity of the dynamic programming algorithm can be

reduced further to)(nO . The time complexity is reduced

substantially to)(nO , but the space costs remain unchanged.

In the insight of above observations (1) and (2), we can build

another efficient algorithm to compute)(nr using only

)log(nO space.

Theorem 2. Let n be the number of keys in a red-black

tree, and)(nr be the largest number of red nodes in a

red-black tree on n keys. The values of (1)=)(dnr can be

computed by the following recursive formula.




















0=2)(1)(2)(2

1=2)(
3)(42)(4

1)(4)(41
1)()(

=)(
mod

mod

mhmdmd

mh
mdmd

mdmd
mhmh

md (18)

where

log log
1 log log

() = 2

log log " "

n m

m
n m n

h m

n m otherwise

  


      


    

 (19)

 Proof. In a maximal red-black tree, we can label the nodes

as a pre-order sequence like a heap. The root is labeled 1. For

each node i in the tree, its left child is labeled i2 and its

right child is labeled 12 i . If we denote)(id , the largest

number of red nodes and)(ih , the height of the subtree

rooted at node i , then it is obvious that (1)=)(dnr . It is

not difficult to verify that in the case of n
i

in
>

2 loglog 
,

we have () = log logh i n i    ， otherwise,

 inih loglog1=)(.

It can be verified directly that if 1)(ih , then)(=)(ihid .

It follows from observation (2) that if)(ih is even then

node i is red and its left and right subtrees rooted at nodes

i2 and 12 i are both maximal red-black trees of black root.

In the case of)(ih odd, the node i is black and its four grand

children rooted at nodes i4 , 14 i , 24 i and 34 i are all

maximal red-black trees. Therefore, we can conclude that in

the case of 1>)(ih ,

1 (4) (4 1) ()

() = (4 2) (4 3)

(2) (2 1) ()

d i d i h i odd

d i d i d i

d i d i h i even

   


  
  

 The proof is complete.
According to Theorem 2, a new recursive algorithm for

computing the largest number of red internal nodes in a

red-black tree on n keys can be implemented efficiently.

Since the algorithm visit each node at most once, the time

cost of the algorithm is thus)(nO . The space used by the

algorithm is only the stack space requirement of recursive

calls. The recursive depth is at most nlog , and therefore the

space cost of the algorithm is)log(nO .

We have suggested a dynamic programming solution for

computing)(nr , the largest number of red internal nodes in a

red-black tree on n keys. The dynamic programming

algorithm requires)log(2 nnO time and)log(nnO space.

We then improve the algorithm to a new)(nO time

algorithm. Based on the structure of the solution we finally

come to a linear time recursive algorithm using only)log(nO

space. The smallest number of red internal nodes in a

red-black tree on n keys can be computed analogously.

REFERENCES

[1] R. Bayer, "Symmetric binary b-trees: Data structure and maintenance

algorithms," Acta Informatica, vol. 1, no. 4, 1972, pp. 290-306.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 3rd ed., MIT Press, Cambridge, MA, 2009.

[3] A. Andersson, "Balanced search treesmade simple," in Proc. the third

Workshop on Algorithms and Data Structures, vol. 709, 1993, pp.

60-71.

[4] M. A. Weiss, Data Structures and Problem Solving Using C++,

Addison-Wesley, 2000.

[5] L. J. Guibas and R. Sedgewick, "A dichromatic framework for

balanced trees," in Proc. the 19th Annual Symposium on Foundations

of Computer Science, 1978, pp. 8-21.

[6] R. Sedgewick. Left-Leaning Red CBlack Trees. [Online]. Available:

http://www.cs.princeton.edu/ rs/talks/LLRB/LLRB.pdf

Daxin Zhu received his M.Sc. degree in computer

science from Huaqiao University of China in 2003. He

is now an associate professor in Quanzhou Normal

University of China. His current research interests

include design and analysis of algorithms, network

architecture and data intensive computing.

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

66

IV. CONCLUDING REMARKS

