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Abstract—In this paper, we are interested in the number of 

red nodes in red-black trees. We first present an O(n2log n) time 

dynamic programming solution for computing r(n), the largest 

number of red internal nodes in a red-black tree on n keys. 

Then the algorithm is improved to a new O(n) time algorithm. 

Based on the structure of the solution we finally present a linear 

time recursive algorithm using only O(log n) space. 

 
Index Terms—Red-black trees, red internal nodes, dynamic 

programming, linear time solution.   

 

I. INTRODUCTION 

A red-black tree is a special type of binary tree, used in 

computer science to organize pieces of comparable data, such 

as strings or numbers. The original data structure was 

invented in 1972 by Rudolf Bayer [1] with its name 

'symmetric binary B-tree'. In a paper entitled 'A Dichromatic 

Framework for Balanced Trees', Guibas and Sedgewick 

named it red-black tree in 1978 [2]. In their paper they 

studied the properties of red-black trees at length and 

introduced the red/black color convention. Andersson [3] 

gives a simpler-to-code variant of red-black trees. Weiss [4] 

calls these variant AA-trees. An AA-tree is similar to a 

red-black tree except that left children may never be red. In 

2008, Sedgewick introduced a simpler version of the 

red-black tree called the left-leaning red-black tree [5] by 

eliminating a previously unspecified degree of freedom in the 

implementation. Red-black trees can be made isometric to 

either 2-3 trees or 2-4 trees, [5] for any sequence of 

operations. 

A red-black tree is a binary search tree with one extra bit of 

storage per node: its color, which can be either red or black. It 

satisfies the following red-black properties [6]: 

1) A node is either red or black. 

2) The root is black. 

3) All leaves (NIL) are black. 

4)  Every red node must have two black child nodes. 

5) Every path from a given node to any of its descendant 

leaves contains the same number of black nodes. 

The number of black nodes on any simple path from, but 

not including, a node x  down to a leaf is called the 
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black-height of the node, denoted ( )bh x . By the property 

5),the notion of black-height is well defined, since all 

descending simple paths from the node have the same 

number of black nodes. The black-height of a red-black tree 

is defined to be the black-height of its root. 

The property 2) is sometimes omitted in practice. Since the 

root can always be changed from red to black, but not 

necessarily vice-versa, this property has little effect on 

analysis. A binary search tree that satisfies red-black 

properties 1), 3), 4), and 5) is sometimes called a relaxed 

red-black tree. In this paper we will discuss the relaxed 

red-black tree and call a relaxed red-black tree a red-black 

tree. 

We are interested in the number of red nodes in red-black 

trees in this paper. We will investigate the problem that in a 

red-black tree on n  keys, what is the largest possible ratio of 

red internal nodes to black internal nodes, and what is the 

smallest possible ratio. 

The organization of the paper is as follows. In the 

following 3 sections we describe our presented algorithm for 

computing the largest number of red internal nodes in a 

red-black tree on n  keys. In Section II we present a dynamic 

programming algorithm for the problem. We then improve 

the algorithm to a new ( )O n  time algorithm in Section III. 

Based on the structure of the solution we finally come to a 

linear time recursive algorithm using only )( nO log  space. 

Some concluding remarks are in Section IV. 

 

II. A DYNAMIC PROGRAMMING ALGORITHM  

A. Some Special Cases 
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Let T be a red-black tree on n  keys. The largest and the 

smallest number of red internal nodes in a red-black tree on 

n  keys can be denoted as )(nr  and )(ns  respectively. The 

values of )(nr  and )(ns  can be easily observed for the 

special case of 12= kn  . It is obvious that in this case, 
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when the node colors are alternately red and black from the 

bottom level to the top level of T, the number of red internal 

nodes of T must be maximal. When all of its internal nodes 

are black, the number of red internal nodes of T must be 

minimal. Therefore, in the case of 12= kn , we have, Then, 

the number of black nodes b(n) must be, 
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Therefore, the ratio of red internal nodes to black internal 

nodes is, 
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If 2 = 0kmod , then 2=)()/( nbnr , otherwise 
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Therefore, we have,  
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This formula can also be generalized to general n . 

 

Therefore, for 7n , we have  
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B. The Dynamic Programming Formula 

In the general cases, we denote the largest number of red 

internal nodes in a subtree of size i  and black-height j  to 

be ,0),( jia  when its root red and ,1),( jia  when its root 

black respectively. Since in a red-black tree on n  keys we 

have njn log2log
2

1
 , we have, 
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Furthermore, for any ijini loglog 2
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Theorem 1. For each ijini loglog 2
2

1
,1  , the 

values of ,0),( jia  and ,1),( jia  can be computed by the 

following dynamic programming formula.  
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 Proof. For each ijini log2log
2

1
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,0),( jiT  be a red-black tree on i  keys and black-height j  

with the largest number of red internal nodes, when its root 

red. ,1),( jiT  can be defined similarly when its root black. 

The red internal nodes of ,0),( jiT  and ,1),( jiT  must be 

,0),( jia  and ,1),( jia  respectively. 

We first look at ,0),( jiT . Since its root is red, its two sons 

must be black, and thus the black-height of the corresponding 

subtrees L and R must be both 1j . For each /20 it  , 

subtrees 1,1),( jtT  and 1,1)1,(  jtiT  connected to a 

red node will be a red-black tree on i  keys and black-height 

j . Its number of red internal nodes must be 

1,1)1,(1,1),(1  jtiajta .  

In such trees, ,0),( jiT  achieves the maximal number of 

red internal nodes. Therefore, we have,   
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On the other hand, we can assume the sizes of subtrees L  

and R  are t  and 1 ti , /20 it  , WLOG. If we denote 

the number of red internal nodes in L  and R  to be )(Lr  

and )(Rr , then we have that 1,1),()(  jtaLr  and 

1,1)1,()(  jtiaRr . Thus we have,   
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In the general cases, denote the largest number of red 

internal nodes in a red-black tree on n keys be ,0)(n if 

root red and ,1)(n if root black respectively. Then, 

( ) = max{ ( , 0), ( ,1)}r n n n  . We can prove by induction 

that 
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Combining  (4) and  (5) , we obtain,   
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In the first case, both of the subtrees L and R have a black 

root. For each /20 it  , subtrees 1,1),( jtT  and 

1,1)1,(  jtiT  connected to a black node will be a 

red-black tree on i  keys and black-height . Its number of 

red internal nodes must be 

1,1)1,(1,1),(  jtiajta . In such trees, ,1),( jiT  

achieves the maximal number of red internal nodes. 

Therefore, we have,   
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For the other three cases, we can conclude similarly that 
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Therefore, we have,   

)},(),,(),,(),,({,1),( 4321 jijijijijia max   (11) 

On the other hand, we can assume the sizes of subtrees L  

and R  are t  and 1 ti , /20 it  , WLOG. In the first 

case, if we denote the number of red internal nodes in L  and 

R  to be )(Lr  and )(Rr , then we have that 

1,1),()(  jtaLr  and 1,1)1,()(  jtiaRr , and thus 

we have,   
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For the other three cases, we can conclude similarly that 
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Therefore, we have,   
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Combining  (11) and  (16) , we obtain,   

 

)},(),,(),,(),,({=,1),( 4321 jijijijijia max  (17) 

The proof is complete.  

According to Theorem 1, our algorithm for computing 

),,( kjia  is a standard 2-dimensional dynamic 

programming algorithm. By the recursive formula  (2) and  

(3) , the dynamic programming algorithm for computing the 

largest number of red internal nodes in a red-black tree on n  

keys can be implemented as the following Algorithm 1. 

 

 
 

It is obvious that the Algorithm 1 requires )( 2 nnO log  time 

and )( nnO log  space. 

The algorithm for computing )(ns , the smallest number of 

red nodes in a red-black tree on n  keys can be built 

similarly. 

 

III. THE IMPROVED DYNAMIC PROGRAMMING SOLUTIONS  

We have computed )(nr  and the corresponding red-black 

trees using Algorithm 1. From some examples of the 

computed red-black trees with largest number of red nodes, 

we can observe some properties of )(nr  and the 

corresponding red-black trees as follows. 

1) The red-black tree on n  keys with )(nr  red nodes can 

be realized in a complete binary search tree, called a 

maximal red-black tree. 

2) In a maximal red-black tree, the colors of the nodes on 

the left spine are alternatively red, black, , from the 

bottom to the top, and thus the black-height of the 

red-black tree must be nlog
2

1 . 

From these observations, we can improve the dynamic 

programming formula of Theorem 1 further. The first 

improvement can be made by the observation (2). Since the 
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We now look at ,1),( jiT . Since its root is black, there can 

be 4 cases of its two sons such as red and red, black and black, 

black and red or red and black. If the subtree L or R has a red 

root, then the black-height of the corresponding subtree must 

be, otherwise, if its root is black, then the black-height of the 

subtree must be 1j .

j



  

black-height of the maximal red-black tree on i  keys must be 

ilog
2

1
1 , the loop bodies of the Algorithm 1 for j  can be 

restricted to ij log
2

1
=  to ilog

2

1
1 , and thus the time 

complexity of the dynamic programming algorithm can be 

reduced immediately to )( 2nO . 

It is readily seen from observation (1) that every subtree in 

a maximal red-black tree must be a complete binary search 

tree. If the size of a complete binary search tree T is n , then 

the size of its left subtree must be 
log 1 log 1 logleft( ) = 2 1 min{2 , 2 1}n n nn n         and 

the size of its right subtree must be right( ) = left( ) 1n n n  . 

Therefore, the maximal range /20 it   of the 

Algorithm 2 can be restricted to = left( )t i , and thus the time 

complexity of the dynamic programming algorithm can be 

reduced further to )(nO . The time complexity is reduced 

substantially to )(nO , but the space costs remain unchanged. 

In the insight of above observations (1) and (2), we can build 

another efficient algorithm to compute )(nr  using only 

)log( nO  space. 

Theorem 2. Let n  be the number of keys in a red-black 

tree, and )(nr  be the largest number of red nodes in a 

red-black tree on n  keys. The values of (1)=)( dnr  can be 

computed by the following recursive formula. 
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 Proof. In a maximal red-black tree, we can label the nodes 

as a pre-order sequence like a heap. The root is labeled 1. For 

each node i  in the tree, its left child is labeled i2  and its 

right child is labeled 12 i . If we denote )(id , the largest 

number of red nodes and )(ih , the height of the subtree 

rooted at node i , then it is obvious that (1)=)( dnr . It is 

not difficult to verify that in the case of n
i

in
>

2 loglog 
, 

we have ( ) = log logh i n i    ， otherwise, 

 inih loglog1=)( . 

It can be verified directly that if 1)( ih , then )(=)( ihid . 

It follows from observation (2) that if )(ih  is even then 

node i  is red and its left and right subtrees rooted at nodes 

i2  and 12 i  are both maximal red-black trees of black root. 

In the case of )(ih  odd, the node i  is black and its four grand 

children rooted at nodes i4 , 14 i , 24 i  and 34 i  are all 

maximal red-black trees. Therefore, we can conclude that in 

the case of 1>)(ih , 

1 (4 ) (4 1) ( )
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    The proof is complete.  
According to Theorem 2, a new recursive algorithm for 

computing the largest number of red internal nodes in a 

red-black tree on n  keys can be implemented efficiently. 

Since the algorithm visit each node at most once, the time 

cost of the algorithm is thus )(nO . The space used by the 

algorithm is only the stack space requirement of recursive 

calls. The recursive depth is at most nlog , and therefore the 

space cost of the algorithm is )log( nO . 

 

  

We have suggested a dynamic programming solution for 

computing )(nr , the largest number of red internal nodes in a 

red-black tree on n  keys. The dynamic programming 

algorithm requires )log( 2 nnO  time and )log( nnO  space. 

We then improve the algorithm to a new )(nO  time 

algorithm. Based on the structure of the solution we finally 

come to a linear time recursive algorithm using only )log( nO  

space. The smallest number of red internal nodes in a 

red-black tree on n  keys can be computed analogously. 
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IV. CONCLUDING REMARKS




