


Abstract—Peer-to-Peer(P2P) technique has been successfully

used in many applications, especially P2P file sharing and P2P

live stream. However, there are very few work that try to

employ P2P to improve package management for Linux

distributions. In this paper, we first introduce the principle of a

P2P package management system and a popular

implementation named apt-p2p. Then, we develop a crawler to

record the information of a normal peer and a bootstrapping

peer in apt-p2p network. We measure and analyze the routing

table, database, network traffic and network delay for this

package management network. Some interesting and valuable

results were found in our measurement and the results shows

that it is feasible and reliable to use P2P technique to support

distributions package measurement.

—DHT, measurement, package, Linux.

I. INTRODUCTION

Linux-based open source distributions have been more and

more popular in the past decade, e.g., Redhat [1] is used in

more than 60% of enterprise servers and Ubuntu [2] owns ten

millions of users during the last 5 years. These distributions

mostly distribute free software based on the client/sever

model, e.g., the Advance Package Tool (apt) for Ubuntu.

Normally, there are tens to hundreds of mirror servers for a

Linux distribution. When a new version (or even a security

patch) is released, there are millions of upgrade requests from

all over the world rush to those mirror servers. On one hand,

these mirror servers would prepare a large amount of

bandwidth to handle these frequently requirements; on the

other hand, users may still suffer from slow response (or even

denial of service) at these rush hours.

Peer-to-Peer(P2P) technique has been a hot research area

in the last 20 years along with rapid improvement of Internet.

Nowadays, P2P applications have been more and more

popular and have lots of users, especially P2P file sharing and

P2P live stream. It is reported that P2P file sharing

contributes more than 70% of the traffic in some areas [3].

Given the free nature of Linux-based software, there are

normally a number of users motivated by altruism to help out

with the distribution, in order to promote the healthy

development of this voluntary society. P2P technique is a

nature choice to make use of these available resources and

scale the package management system to a distributed

manner.

Although it seems straightforward to use an existing P2P

file sharing tool like BitTorrent for this free software package

distribution, there are indeed a series of new challenges in

this unique scenario [4], such as 1) 80% of the packages are

less than 512 KB, 2) about 1.5% of the software archive is

updated with new versions of packages, and 3) 80% of the

packages are installed by less than 1% users. Hence, C.Dale

and J.Liu propose a novel peer-to-peer assisted distribution

system to address the above challenges. It is implemented as

apt-p2p, a practical implementation based on the Debian

Package distribution system. This software was first released

at about 6 years ago and is still in use during these days. In

this paper, we will empirically measure apt-p2p to evaluate

the feasibility and reliability of a distributed package

management system, which is helpful to guide the future

design and optimization of a better P2P package management

system.

We developed a crawler to record the information of a

normal peer and bootstrapping peer in apt-p2p network. This

crawler was deployed for 20 days. Our measurement shows

that:

 The total number of users in apt-p2p network is

estimated at 128, which is 150% more than the number

estimated in 2008.

 The routing table of the boot peer changes frequently

and the number of its contacts is 118% more than the

normal peer.

 The normal peer stores 12 keys and 12 values, and these

numbers do not change all day; the boot peer stores

427.8 keys and 501.1 values on average, and these

numbers change in the range of 15%.

 The minimal bandwidth for current apt-p2p network is

211.5 Bps and the maximal bandwidth price is 1371.5

Bps, which is acceptable in today’s Internet situation.

 The normal peer needs 6.0 iterations and the boot peer

needs 3.2 iterations to locate the target.

The rest of this paper is organized as follows. The

architecture and implementation of a P2P package

management system for Linux distributions are presented in

Section II. We introduce our measurement methodology and

analyze the results in Section III. We then recall some relate

work in Section IV and the Section V concludes the paper and

offers some future directions.

II. OVERVIEW

In this section, we first present the design idea of the P2P

assisted distribution system for free software package

management, then introduce the principle of a DHT network,

Measurement on a Peer-to-Peer Package Management

System for Linux Distributions

Jie Yu, Weihua Zhang, Xiaodong Tang, Shasha Li, Qiang Li, and Qingtao Shen

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

67

Manuscript received October 5, 2014; revised December 15, 2014. This

work was supported in part by the National Natural Science Foundation of

China (61103015, 61303190).

Jie Yu, Weihua Zhang, Xiaodong Tang, Shasha Li, and Qingtao Shen are

with the National University of Defense Technology, Hunan, China (e-mail:

yj@nudt.edu.cn).

Shasha Li and Qiang Li are with School of Computer Science and

Engineering, Beihang University, Beijing, China.

Index Terms

10.7763/IJFCC.2015.V4.358DOI:

and finally give the detail of a Debian implementation of the

P2P package management system.

A. Architecture

A key principle in this design is that the new function-

alities implemented in the distributor should be transparent to

users, thus offering the same experience as using

conventional software management systems, but with

enhanced efficiency.

Fig. 1. The architecture of a P2P based distributed package management

system.

The architecture is shown in Fig. 1. The voluntary users

form a DHT (Distributed Hash Table) network with the

ability to locate peers and resources in the network. When a

user wants to install or upgrade a software, the request will be

sent to the proxy (step 1). The proxy firstly send the request

to DHT network (step 3) to find if a peer has the resource and

where the peer is (step 4); if not, the proxy will sent the

request to mirror server (step 5) and the mirror server then

send back the data (step 6). The proxy will finally send back

the data to the user (step 2).

B. DHT Network

The most important part for this P2P package management

system is the building and maintenance of DHT network. In

this section, we give a brief overview of a typical DHT

protocol, i.e., Kademlia [5]. Each Kademlia peer has a

128-bit ID and it computes the distance between two peers by

XOR metric of their IDs.

In Kademlia, when a peer P joins the network, it sends

BOOTSTRAP request messages to n known peers. An alive

peer which receives the message will respond it with a

BOOTSTRAP response message. P then builds its own

routing table and sends its location message – HELLO

request message to all peers in its routing table. When a peer

receives HELLO request message, it will add the location

information to its routing table.

Then, P moves on to publish files information it is sharing.

File publishing process consists of two steps as to convenient

for searching and economize memory resources:

 Location information publishing: First, P hashes each

file in its sharing list and obtains a 128-bit file identifier.

Then it sends each file identifier and file location (IP

and TCP port) to peers close to the file identifier. When

peers receive this PUB_SOURCE request message,

they update their local file indexes.

 Metadata information publishing: First, P extracts

keyword from each name of sharing files and hashes

each keyword into a 128-bit key. Then it sends each key,

file identifier and metadata information of the file to

peers close to the key. When peers receive this

PUB_KEYWORDS request message, they update their

local keyword indexes.

When searching resources, P hashes each keyword that

user enter to search, and then send the key into Kademlia for

iteratively searching. When a peer that records for this

keyword receives the message, it responds corresponding

records to P. Each record contains files identifier and meta

-data information of the file. P then displays all matching file

identifiers to user. After user selects certain file identifier I, P

sends location search messages of I into Kademlia for

iteratively searching. When a peer that has records for this

file identifier receives the message, it responds

corresponding to P. Each record contains file location (IP and

TCP port). P then tries to establish TCP connections with

these IPs and downloads that file simultaneously.

C. Implementation

C. Dale and J. Liu have created a sample implementation

that functions as described above, and is freely available for

other distributors to download and modify [6]. This software,

called apt-p2p, interacts with the popular apt tool.

Since all request from apt are in the form of HTTP

downloads from a server, this implementation takes the form

of a caching HTTP proxy. Making a standard apt

implementation use the proxy is then as simple as perpending

the proxy location and port to the front of the mirror name in

apts configuration file (i.e. http://localhost:9977/ mirror name.

debian.org/...).

A customized DHT based on Khashmir is created, which is

an implementation of Kademlia. Khashmir is also the same

DHT implementation used by most of the existing BitTorrent

clients to implement trackerless operation. The

communication is all handle by UDP messages, and RPC

(remote procedure call) requests and responses between

nodes are all be encoded in the same way as

BitTorrent .torrent files.

Downloading is accomplished by sending simple HTTP

requests to the peers identified by lookups in the DHT to have

the desired file. Requests for a package are made using the

packages hash (properly encoded) as the URL to request from

the peer. The HTTP server used for the proxy also doubles as

the sever listening for requests for downloads from other

peers. All peers support HTTP/1.1, both in the server and the

client, which allows for pipelining of multiple requests to a

peer, and the requesting of the smaller pieces of a large file

using the HTTP Range request header. Like in apt, SHA1

hashes are then used to verify downloaded files, including the

large index files that contain the hashes of the individual

packages.

III. MEASUREMENT

A. Youker-APT Project

The apt-p2p package was initial released on 25 Apr, 2008

and five updates were released during 2008. Then the authors

released the 0.1.6 version on 21 Mar, 2010. Although there is

no updates during the next five years, we found that this

package is still in the archives of both Debian and Ubuntu.

The latest version is 0.1.6+nmul uploaded by Michael Gilbert,

who fixed a Python dependence bug.

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

68

We tried to install the apt-p2p 0.1.6+nmul on Ubuntu

Kylin 14.04 LTS, a Ubuntu based Chinese Linux distribution

[7], and it fails due to the upgrade of python-apt library.

Hence we create a Youker-APT project [8] forked from

apt-p2p and released the first 0.1.7 version which updates to

python-apt 0.9.3.5 API and sqlite3 API. We plan to maintain

and improve this P2P-based distributed package management

system in future.

B. Measurement Methodology

We developed a crawler writing in Qt to record following

information of a peer: 1) the number of contacts in its routing

table; 2) the number of keys in its database; 3)the number of

values in its database; 4) the download traffic for DHT

maintenance; 5) the upload traffic for DHT maintenance; 6)

the delay for peer ping and 7) the delay for peer location.

We deployed this crawler for more than 20 days during

August and September of 2014. It monitors two peers in

apt-p2p network: one is a normal peer that joined from a

usual PC running Ubuntu Kylin 14.04 LTS with 10 Mpbs

Internet access and 2.4 GHz CPU (called as normal peer for

short), the other is a bootstrapping peer that has been

deployed on a public web server for a long time (called as

boot peer for short).

C. Results Analysis

We found that the peer information shows a daily cycle, so

we just take and analyze the information of one day as a

typical example.

Fig. 2. Number of contacts in each routing table.

Each peer has a list of known peers, called contacts, which

are structured by the routing table. Routing table is a key

component in DHT. It plays the role for DHT maintenance.

Fig. 2 shows the number of contacts in the routing table of

each peer. The average number of contacts for normal peer

and boot peer are 18.5 and 40.4 respectively. Since boot peer

receives ping messages frequently, its routing table changes

frequently too and its number of contacts is 118% more than

the normal peer. We further monitor the estimated number of

users in the DHT according to the formula, where

table.buckets is a list of bucket which stores up to K contacts

and K = 8 in this apt-p2p network. The result shows that the

total number of users in apt-p2p network is estimated as 128,

which is 150% more than the number estimated in 2008 [4].

Each peer has a database to store the key-value pairs for

package information. Fig. 3 and Fig. 4 show the number of

keys and values in the database of each peer. The normal peer

stores 12 keys and 12 values, and these numbers do not

change all day; the boot peer stores 427.8 keys and 501.1

values on average, and these numbers change in the range of

15%. Since boot peer would be in the routing tables of most

peers, the variation of key value pair in its routing table could

reflect the variation of the hole network. We found that there

are two peeks everyday at about 13 PM and 23 PM in

GMT+8. We also found that the rate between key and value is

1.00 for the normal peer and 1.17 for the boot peer.

Fig. 3. Number of keys in each database.

Fig. 4. Number of values in each database.

Fig. 5. Download traffic for each peer.

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

69

As introduced in Section II-B, a peer should send BOOT

STRAP request messages to get contacts into its routing table,

send HELLO (ping) message to keep contacting with other

peers, and so on. All these actions require the traffic between

the peer and the other peers, which represents the bandwidth

price of network maintenance. Fig. 5 and Fig. 6 show the

download traffic and upload traffic for each peer. The

average download traffic are 541.3 Bps and 64.0 Bps

respectively; the average upload traffic are 830.2 Bps and

147.5 Bps respectively. In our measurement, the bandwidth

price for normal peer is about 6-7 times more than that for

boot peer. It’s due to two reasons: 1) the routing table of

normal peer is very small, so it sends find node messages

more frequently than the boot peer, and 2) the normal peer

has several packages to share to the apt-p2p network, which

results in frequently store value messages. Hence, we can

conclude that the minimal bandwidth price for current

apt-p2p network is 211.5 Bps and the maximal bandwidth

price is 1371.5 Bps, which is acceptable in today’s Internet

situation.

Fig. 6. Upload traffic for each peer.

Fig. 7. Delay for peer ping.

Fig. 7 shows the delay for ping message for each peer. The

average delay is 2.1 seconds for the normal and 3.1 seconds

for the boot peer. We also found that the peek of delay for

each peer occurs at different time. It’s possibly because the

normal peer is located in China and the boot peer is located

Canada.

Fig. 8. Delay for peer location.

A peer iteratively sends find node messages to nearest

contact until it finds the target. The delay to locate a peer

depends on the network condition (i.e., the ping delay for

each peer) and number of iterations. Fig. 8 shows the delay to

find a target for each peer. The average delay is 25.4 seconds

and 19.6 seconds respectively. We could calculate the

average number of iterations as the average location delay

dividing two times of a single ping delay. It means that the

normal peer needs 6.0 iterations and the boot peer needs 3.2

iterations to locate the target. This is mainly because that the

routing table of the boot peer is about one time bigger than

the normal peer and the boot peer could start with a closer

contact.

IV. RELATED WORK

There are extensive works on measurement and modeling

of P2P networks, such as file sharing workload of Kazaa [10],

query behavior of Gnutella [11], swarm evolution of

BitTorrent networks [12], tracker availability in BitTorrent

systems [13]. Gummadi et al. [10] demonstrated that the

fetch-at-most-once behavior causes the Kazaa opularity

distribution to deviate sub-stantially from Zipf-like curves for

the Web, and this deviation has significant implications for

the performance of multimedia file-sharing systems. Klemma

et al. [11]] characterized peer behavior in a form that can be

used for constructing representative synthetic workloads for

evaluating new P2P system designs, and The characterization

is based on trace data gathered in the Gnutella P2P system

over a period of 40 days. Guo et al. [12] found that client

performance in the BitTorrent-like systems is unstable, and

fluctuates widely with the peer population. Dhungel et al. [13]

analyzed the resilience of BitTorrent leechers to two different

kinds of attacks: the connection attack and the piece attack,

and discovered that BitTorrent architecture is fundamentally

resilient to Internet leecher attacks.

For DHT networks, a few studies are performed on

Mainline and Azureus, while lots of measurements and

analysis focus on Kad [14]-[16]. Stutzbach et al. [17]

investigated how the efficiency and consistency of lookup in

Kad can be improved by performing parallel lookup and

maintaining multiple replicas, and they empirically showed

the best operating point for the degree of lookup parallelism

and the degree of replication. Kang et al. [18] studied the

poor lookup hit rate in Kad, and found that this poor

performance is due to the high level of routing table

similarity, despite the relatively high churn rate in the

network. We have observed that a significant portion of peers

in Kad do not have unique IDs. We further analyzed the

effects of ID repetitions under simplified settings and found

that ID repetition degrades Kads performance on publishing

and searching, but has insignificant effect on lookup process

[19]. We also propose a hybrid search strategy which could

both start up quickly and slow down slowly to get an accurate

snapshot of a DHT network [20]. There are also several work

[21]-[23] that try to investigate and analyze distributed

package management, which are much similar to apt-p2p

system we deeply measure in this paper.

There are very few research work focusing on P2P assisted

package distribution system. In this paper, we measure and

analyze the routing table, database, network traffic and

network delay for apt-p2p package management network. We

found that the total number of users in apt-p2p network is

estimated as 128, which is 150% more than the number

estimated in 2008, and the network traffic and network delay

are acceptable for normal Linux users. These measurement

results are valuable to improve the design and

implementation of a P2P package management system.

Our future work are as following: 1) develop a powerful

crawler to collect the global information of apt-p2p network

and investigate its DHT characteristics and user behaviors; 2)

improve Youker-APT project based on apt-p2p

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

70

V. CONCLUSION AND FUTURE WORK

International Journal of Future Computer and Communication, Vol. 4, No. 1, February 2015

71

implementation and make it as a default service in Ubuntu

Kylin distributions; and 3) design a more efficient distributed

package management system based on the measurement

results and user feedback.

REFERENCE

[1] Redhat Website. [Online]. Available: http://www.redhat.com/.

[2] Ubuntu Website. [Online]. Available: http://www.ubuntu.com/.

[3] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and T. Anderson,

“Profiling a million user DHT,” in Proc. the 7th ACM SIGCOMM

Conference on Internet Measurement, vol. 7, 2007.

[4] C. Dale and J. Liu, “Apt-p2p: A peer-to-peer distribution system for

software package releases and updates,” in Proc. the 28th IEEE

International Conference on Computer Communications (INFOCOM),

2009.

[5] P. Maymounkov and D. Mazires. Kademlia, “A peerto-peer

information system based on the XOR metric,” Lecture Notes in

Computer Science, pp. 1-6, 2002.

[6] The Apt-P2p Website. [Online]. Available:

http://www.camrdale.org/aptp2p/

[7] The Ubuntu Kylin Website. [Online]. Available:

http://www.ubuntukylin.org/

[8] Youker-APT Website. [Online]. Available:

https://launchpad.net/youkerapt

[9] R. Jimenez, F. Osmani, and B. Knutsson, “Connectivity properties of

mainline bittorrent DHT nodes,” Lecture Notes in Computer Science,

vol. 3, 2009.

[10] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J. Zahorjan,

“Measurement, modeling, and analysis of a peer-to-peer file-sharing

workload,” Computer Science and Engineering, pp. 1-16, 2003.

[11] A. Klemma, C. Lindemanna, M. Vernonb, and O. Waldhorsta,

“Characterizing the query behavior in peerto-peer file sharing

systems,” in Proc. the 4th Conference on Internet Measurement, pp.

56-67, 2004.

[12] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang,

“Measurement, analysis, and modeling of BitTorrent-like systems,” in

Proc. the 5th Conference on Internet Measurement, pp. 35-48, 2005.

[13] P. Dhungel, D. Wub, and K. Ross, “Measurement and mitigation of

bittorrent leecher attacks,” Computer Communications, vol. 32, pp.

852-1861, 2009.

[14] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in a

DHT,” present at USENIX Annual Tech. Conf., 2004.

[15] M. Steiner, T. E. Najjary, and E. W. Biersack. “A global view of

KAD,” in Proc. the 7th Conference on Internet Measurement, pp.

117-122, 2007.

[16] M. Steiner, D. Carra, and E. W. Biersack, “Long term study of peer

behavior in the KAD DHT,” ACM Transactions on Networking, pp.

1371-1384, 2009.

[17] D. Stutzbach and R. Rejaie, “Improving lookup performance over a

widely deployed DHT,” Distributed Hash Tables, vol. 2, 2006.

[18] H. Kang, E. Chan-Tin, N. Hopper, and Y. Kim, “Why Kad Lookup

Fails,” Computer Communications,vol. 34, no. 13, 2009.

[19] J. Yu, Z. J. Li, P. Xiao, C. F. Fang, J. Xu, and E.-C. Chang, “ID

repetition in structured P2P networks,” The Computer Journal, vol. 54,

no. 6, pp. 962-975, 2011.

[20] J. Yu, P. Xiao, Z. J. Li, and Y. Zhou, “Towards an accurate snapshot of

DHT networks,” IEEE Communication Letters, vol. 15, no. 1, pp.

97-99, 2011.

[21] P. Shah, J. Pris, J. Morgan, J. Schettino, and C. Venkatraman, “A

p2p-based architecture for secure software delivery using volunteer

assistance,” Software Security Built For Developers, vol. 2, 2008.

[22] Z. Xu, "Distributed package management network," Internship Report,

2010.

[23] E. Neblock, "Peer-to-peer based package management," Abstract for

Master Thesis, 2013.

Jie Yu was born in 1982. He is working as an assistant

professor of National University of Defense Technology

(NUDT), China. He got his PHD in 2010 at NUDT. His

research interests include distributed system and

operation system. He has published more than 30 papers,

including journals like the Computer Journal, Computer

Communications, IEEE Communication Letters, and

conferences like ICPP, P2P, ICPADS.

Weihua Zhang was born in 1977. He is working as an

associate professor of National University of Defense

Technology (NUDT), China. He got his PHD in 2006 at

NUDT. His research interests include operating system

design and engineering. He has published more than 10

papers.

Xiaodong Tang was born in 1973. He is working as an

associate professor of National University of Defense

Technology (NUDT), China. He got his bachelor's

degree in 1998 at NUDT. His research interests include

operation system and security. He is working on the

Development of the Open Source Operating System.

Shasha Li was born in 1982. she is working as an

assistant professor of National University of Defense

Technology (NUDT), China. She got his PHD in 2011 at

NUDT. Her research interests include big data and

intelligent information processing. She has published

more than 10 papers, including journals like TKDE, and

conferences like ACL.

Qiang Li was born in 1982. He got his PhD candidate of

Beihang University, China. His research interests

include P2P and network security.

Qintao Shen was born in 1993. He is a graduate in

National University of Defense Technology (NUDT),

China. He got his bachelor's degree in 2010 at Henan

Polytechnic University (HPU). He joined the research in

2014 which focuses on distributed system and operation

system.

Author’s formal

photo

http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://www.sciencedirect.com/science/journal/01403664
javascript:void(0);
javascript:void(0);
javascript:void(0);

