

Abstract—The increase in the usage of mobile devices has

increased the number of mobile applications and sensitive data

stored by these applications. This has put forward many new

challenges for securing the data using cryptographic algorithms

and performing search for relevant data. As Android is one of

the most widely used mobile operating system and Java is its

development language, the paper presents two design

approaches for secure storage and retrieval of Java objects on

Android Platform. Along with the security of the data, the

overhead involved in securing the data is also considered while

designing these approaches. At the end of the paper, a

comparison study of the performance of the two proposed

approaches is presented.

Index Terms—Encryption, decryption, serialization,

de-serialization, cryptography, android, database, querying.

I. INTRODUCTION

In the modern world, the reachability of a mobile device is

increased1 because of reduced hardware manufacturing costs,

improved computing capabilities and wide availability of the

open source mobile operating systems. This reachability and

the computing power has developed many new origins for

application development on mobile platforms. The

applications installed on a mobile device holds a variety of

sensitive (private) data of the user like passwords,

credit/debit card details, personal details, etc., The sensitive

data stored by these applications need to be protected with

necessary security mechanisms. One such security

mechanisms is encrypting the data using the cryptographic

algorithms. The encryption provides security to the data, but

there lies a challenge in providing security without affecting

the user experience. So, the paper presents two design

approaches for effectively querying over an encrypted data.

The related approaches for querying on the encrypted data are

discussed in Section II. Our approaches are discussed in

Section III. Section IV gives a detailed analysis along with

results of the proposed approaches.

II. RELATED WORK

The encryption of data provides security to the data but

searching on the encrypted data proves time consuming. The

traditional way to search on an encrypted data is to decrypt

entire data and search the decrypted data for matching records.

Manuscript received December 18, 2014; revised February 3, 2015. This

work is supported by Department of Electronics and Information Technology

(DeitY), Ministry of Communications & IT, Government of India.

The authors are with C-DAC, Hyderabad, Telangana 500005, India.

(e-mail: vcamancha@cdac.in, kharish@cdac.in, mkchaithanya@cdac.in,

poonguzhalip@cdac.in, maheshp@cdac.in).

This approach is time consuming, as it is needed to decrypt all

the records to make a search.

Erez Shmueli et al. in [1] discusses about major challenges

and design considerations pertaining to database encryption.

It presents an attack model and main relevant challenges of

data security, encryption overhead, key management and

integration footprint. The presents related academic work on

alternative encryption configurations pertaining to encryption

locus, indexing encrypted data and key management.

Dawn Xiaodong Song et al. in [2] proposes four schemes

that allow searching the encrypted data without decryption.

However those schemes are suitable for client server

environment.

In [3] H. Hacigumus et al. proposes a query method over

encrypted data, in which the query processing is performed at

service provider’s site while decryption and remainder of the

query processing is performed at the client site.

Hyun-A Park et al. in [4] proposes a group search scheme

over encrypted data. The shared sensitive information

requires more security and privacy protection, in that paper

two schemes are proposed which can search the encrypted

document without re-encrypting all documents in a server even

if group keys have to be updated. The schemes can support

general database normalization for encrypted database.

Eu-Jin Goh in [5] discusses about hash table based secure

indexes, which uses hash tables for storing key words and

pointers to encrypted documents. This approach is mainly

aimed at querying encrypted documents for a particular

keyword without actually decrypting the complete document.

Z. Wang et al. in [6] proposes a framework which

implements query over encrypted data based on B+ tree.

Before encrypting the data, a B+ tree index is generated for

the data. When querying the encrypted data, it locates the

encrypted records related to the input query key based on the

B+ tree index and then it decrypts the encrypted records to

accomplish the results. In this approach the B+ tree must be

encrypted to avoid leaking of confidential information. The

results of experiments for approach discussed in [6] show that

the query performance over the encrypted data decreases about

20 percent compared with the plain text query performance.

In [7] Hong Zhu et al. proposes a query scheme, which

conducts fast LIKE and range query over the encrypted

character strings in databases. The strings are represented as

characteristics matrix & the size of this matrix is large and

requires much computation.

References [2]-[4] discuss about searching on encrypted

data for a client server architecture which is not suitable for

mobile device environment. Reference [5] discusses a

method to search on an encrypted document using secure

indexes.

A. Vivek Chandra, K. Harish Kumar, M. K. Chaithanya, Poonguzhali P., and Mahesh U. Patil

Database Design Approaches for Secure Storage on

Mobile Devices

130

International Journal of Future Computer and Communication, Vol. 4, No. 2, April 2015

10.7763/IJFCC.2015.V4.371DOI:

mailto:mkchaithanya@cdac.in
mailto:poonguzhalip@cdac.in

131

International Journal of Future Computer and Communication, Vol. 4, No. 2, April 2015

References [6], [7] require more computation power and

the mobile devices have limited computation capabilities

when compared to a desktop environment.

In [8] Mohammed Alhanjouri et al. discusses an approach

to query over the encrypted data using the HashMap. In this

approach the mapping between the plain text and the

encrypted text is maintained using the KEY, VALUE pairs of

the HashMap. In this, the KEY is a plain text and the VALUE

is an encrypted text of the plain text. The key being an

un-encrypted content, will reveal some information about the

data. Also, in this approach, we need to have index on a

particular column for the query to be successfully performed.

By considering the shortcomings in the previous approach, a

new approach of Hash Table, which solves the previous

shortcomings and is suitable for the mobile environment is

proposed.

Also, a Field based approach is proposed and a comparison

study with respect to performance of both the approaches is

presented in this paper.

III. IMPLEMENTATION

The proposed database design introduce two approaches

for encrypted storage and querying on Java objects (from here

on referred to as records)

1) Hash Table Based Approach.

2) Field Based Approach.

A. Hash Table Based Approach

Save Operation: Figure 1 depicts the architecture of save

operation for Hash Table based approach. As shown in the

Figure 1, first the Java object which need to be saved is

concurrently processed by two engines. The first one is the

hash engine and the second one is the crypto engine. In the

hash engine, there are two sub components, i.e., field

extractor and hash manager. The field extractor extracts all

the individual fields of the object. Then the hash manager

calculates the hash of these extracted fields and stores those

hashes in a hash table. This hash table is provided as input to

the database manager. Calculation of hash section below

explains in detail the steps involved in calculating the hash

and storing those hashes in the hash table with an example.

Concurrently, the object is given to the crypto engine also.

The crypto engine consists of two sub components. One is the

object serializer and the other is data encryptor. The Java

object provided to the crypto engine is first serialized by the

object serializer and then the serialized object is encrypted by

the data encryptor. The encryption key provided to the data

encryptor is generated using a PBES (Password Based

Encryption Standard) algorithm where the password is

supposed to be provided by the user. The encrypted object is

stored in the database and the corresponding row id is mapped

to the hash table. The mapping of hash table to the row id is

explained in detail in the Mapping of hash table to the row id

section below.

Calculation of hash: After each individual field of the Java

object is extracted by the Field Extractor, they are hashed by

the Hash Manager. For performing this hash operation, each

field value is first concatenated with the corresponding field

name. The hash operation is now performed on this

concatenated string. This concatenation of field name with

field value is aimed at removing the unwanted search results as

explained in the example below. These hashes are then stored

in the hash table. The Algorithm 1 shows the implementation

of save operation in Hash Table approach.

Fig. 1. Save operation in Hash Table approach.

For example, consider a contact bean object whose fields

are contact_id, contact_first_name, contact_last_name,

contact_address, contact_number, contact_email and

contact_organization. We consider the two records shown in

Table I as sample data for all our examples discussed in the

following sections.

TABLE I: SAMPLE CONTACT RECORDS

ID
First
Name

Last
Name

Address Org. Email Phone

1 vivek chandra Hyderabad CDAC vca@cdac.in 23150115

2 chandra sri Hyderabad CDAC sri@cdac.in 23150117

The contact record 1 is saved by initially calculating the

hash values of all the field entries as described in the above

section. The hash table after calculating hash keys is shown

in Table II. Record table after serializing and encrypting the

object is shown in Table III.

TABLE II: HASH TABLE

Keys Row id's

HASH(contact_id+l)

HASH(contact_last_name+vivek)

HASH(contact_first_name+chandra)

HASH(contact_number+23150115)

HASH(contact_address+hyderabad)

HASH(contact_organization+CDAC)

HASH(contact_email+vca@cdac.in)

TABLE III: RECORD TABLE

 Row Id Encrypted Object

 1 Encrypted Contact Record 1

Mapping of hash table to the row id- Now each individual

mailto:vca@cdac.in
mailto:sri@cdac.in

132

International Journal of Future Computer and Communication, Vol. 4, No. 2, April 2015

Java object has multiple entries in the hash table, each entry

representing a field of the object. Also, each Java object is

serialized, encrypted and then this encrypted Java object is

stored as a row in the database. This row id is mapped to each

individual hash entry which corresponds to that particular

object. Now, the row id's in the record table are mapped to the

entries in the hash table corresponding to record 1 (contact 1).

The updated hash table is shown in Table IV.

TABLE IV: HASH TABLE

Keys Row id's

HASH(contact_id+l) 1

HASH(contact_last_name+vivek) 1

HASH(contact_first_name+chandra) 1

HASH(contact_number+23150115) 1

HASH(contact_address+hyderabad) 1

HASH(contact_organization+CDAC) 1

HASH(contact_email+vca @ cdac in) 1

Table V and Table VI shows the updated database tables

after adding the contact 2 shown in Table I.

TABLE V: HASH TABLE

Keys Row id's
HASH(contact_id+l) 1
HASH(contact_first_name+vivek) 1
HASH(contact_last_name+chandra) 1
HASH(contact_number+23150115) 1
HASH(contact_address+hyderabad) 1,2
HASH(contact_organization+CDAC) 1,2
HASH(contact_email+vca @ cdac.in) 1
HASH(contact_id+2) 2
HASH(contact_first_name+chandra) 2
HASH(contact_last_name+sri) 2
HASH(contact_number+23150117) 2
HASH(contact_email+sri@cdac.in) 2

TABLE VI: HASH TABLE

Row Id Encrypted Object
1 Encrypted Contact Record 1
2 Encrypted Contact Record 2

Fig. 2. Search operation in Hash Table approach.

Search Operation: The architecture of search operation for

the Hash table based approach is depicted in Fig. 2. The

search parameter is first provided to the hash manager which

in turn calculates the hash of that parameter as explained in

the Calculation of hash section above. This calculated hash is

searched against the hash table for a match. If a match is

found, the corresponding row id which was mapped earlier

(refer to Mapping of hash table to the row id section) is

retrieved. With this row id, the encrypted object is retrieved

by the database manager. This encrypted object is decrypted

and then de-serialized to get the required Java objects.

The Algorithm 2 shows the implementation of search

operation in Hash Table approach.

For example, consider the contacts shown in Table I and

we want to retrieve all the contact records whose last name is

"sri". First we query the hash table for retrieving row id's

corresponding to matching records.

SELECT rowid from HashTable WHERE key =

HASH*(contact_last_name+sri)

This query returns a list of row id's who are having the last

name as "sri". Now we perform another query requesting

records with row ids retrieved in the above step.

SELECT encrypted_record from RecordTable

WHERE rowid = 2

This query returns all the encrypted records that are having

last name as "sri". These records are decrypted and de-

serialized.

Consider another example, where we want to retrieve

records whose last name is 'chandra' from the contacts shown

in Table I. In this case if we saved only hash of field value

then the query would return 2 records one whose last name is

'chandra' and other whose first name is chandra which is not

the desired result. So, to overcome this result we are

calculating the hash of fieldname+fieldvalue. So if we want

to fetch for record whose last name is 'chandra' then the hash

of contact_last_name+chandra is calculated, which gives a

different result when compared to hash of

contact_first_name+chandra and accordingly the

corresponding records are fetched.

B. Field Based Approach

Save Operation: Fig. 3 depicts the architecture for save

operation in Field based approach. In this approach, the

individual fields of the Java object which need to be saved are

extracted by the Field Extractor. Each of these fields are

encrypted individually by the Field Encryptor. The encryption

key provided to the Field Encryptor is generated in the same

way as in Hash table based approach, i.e., using a PBES

(Password Based Encryption Standard) algorithm where the

password is supposed to be provided by the user. Once the

encryption of each individual field is completed, they are saved

in the database by the Database Manager. In the database, each

Java object is represented by a row and each field in the Java

object is represented by a column in the row. That means, the

133

International Journal of Future Computer and Communication, Vol. 4, No. 2, April 2015

number of columns in a row is equivalent to the number of

fields in the Java object.

Fig. 3. Save operation in field approach.

The Algorithm 3 shows the implementation of save

operation in Field approach.

For example, consider the contacts shown in Table I. In this

approach we first extract values of all the fields of the input

bean object and encrypt those values. These values are saved

into the database table as shown in Table VII. The Table VII

represents two bean objects saved in Field based approach.

TABLE VII: RECORD TABLE IN FIELD APPROACH

ID First

Name
Last

Name
Addr. Org. Email Phone

en

c*
(1)

enc
(vivek)

enc
(chan-
dra)

enc (
Hy-
der-
abad

)

enc (
CDAC)

enc
(vca@

cdac.in)

enc
(23150

115)

en

c
(2)

enc
(chan-

dra)

enc
(sri)

enc (
Hy-
der-
abad

)

enc (
CDAC)

enc
(sri@

cdac.in)

enc
(23150

117)

*enc- encrypted value

Fig. 4. Search operation in field approach.

Search Operation: The architecture of search operation in

Field based approach is depicted in Fig. 4. Here, the search

parameter is one or more individual fields of a Java object.

This search parameter is encrypted by the Encryptor and this

encrypted search parameter is provided as input to the

Database Manager in order to perform the search operation.

All the records which contain the encrypted search parameter

as one of its column are returned by the Database Manager.

These records are decrypted by the Field Decryptor to get the

required Java objects

The Algorithm 4 shows the implementation of search

operation in Field approach.

For example, consider the contacts shown in Table I and

we want to retrieve all the contact records whose last name is

"chandra". First we encrypt the input search key and perform

select query using the search key.

SELECT * from RecordTable WHERE

contacts_last_name = ENC_VALUE(''chandra''

This query returns a list of records whose last name is

"chandra".

Fig. 5. Time analysis for save operation on HTC One X.

Fig. 6. Time analysis for search operation on HTC One X.

IV. EXPERIMENTAL RESULTS

The approaches discussed in Section III are implemented

and tested on HTC One X, Micromax Unite 2 and Moto E.

The device configurations [9]-[11] are shown in Table XI

The performance of the all the approaches is calculated on the

sample contacts schema represented in Table I. All the

134

International Journal of Future Computer and Communication, Vol. 4, No. 2, April 2015

observations are recorded on the devices mentioned in table

XI in Annexure A.

Fig. 5 shows the observations for save operation in Hash

table approach, Field based approach and Plain storage on

HTC One X Device.

Fig. 6 shows the observations for search operations in

Hash Table approach, Field based approach and Plain storage

on HTC One X device.

Fig. 7 shows the observations for save operation in Hash

Table approach on HTC One X, Micromax Unite 2 and Moto

E devices.

Fig. 7. Time analysis for save operation in Hash approach on HTC One X,

Micromax Unite 2 and Moto E.

Fig. 8 shows the observations for search operation in Hash

Table approach on HTC One X, Micromax Unite 2 and Moto

E devices.

Fig. 8: Time analysis for search operation in Hash approach

on HTC One X, Micromax Unite 2 and Moto E.

Fig. 9 shows the observations for save operation in Field

based approach and Plain storage on HTC One X, Micromax

Unite 2 and Moto E devices.

Fig. 10 shows the observations for search operation using

1column in Field based approach and Plain storage on HTC

One X, Micromax Unite 2 and Moto E devices.

Fig. 9. Time analysis for save operation in Plain storage andField based

approach on HTC One X, Micromax Unite 2 and Moto E.

Fig. 10. Time analysis for search operation using 1 column in Plain storage

and Field based approach on HTC One X, Micromax Unite 2 and Moto E.

Fig. 11 shows the observations for search operation using

2columns in Field based approach and Plain storage on HTC

One X, Micromax Unite 2 and Moto E devices.

Fig. 11. Time analysis for search operation using 2 columns in Plain storage

and Field based approach on HTC One X, Micromax Unite 2 and Moto E.

TABLE VIII: SAVE OPERATION IN HASH TABLE AND FIELD BASED

APPROACH (OBSERVATIONS FOR 1000 RECORDS)

 Hash Table Approach Field Approach

HTC
One

X

Micr-

omax

Unite
2

Moto

E

HT

C
One

X

Micr-

omax

Unite
2

Mot

o

E

Median 131 104 10 14 9 14
Standard

Deviation
18.08 60.90 22.85 4.78 3.44 4.86

Minimum Value 93 70 9 11 8 10
Maximum Value 286 1213 480 79 59 78

1st Quartile 119 91 10 13 8 13
3rd Quartile 142 120 11 16 11 16

TABLE IX: SEARCH OPERATION IN HASH TABLE (OBSERVATIONS FOR 1000

)

 HTC One X Micromax Unite 2 Moto E

1
Col-

umn

2

Col-

umn

1

Col-

umn

2

Col-

umn

1
Col-

umn

2

Col

-

um

n
Median 12 9 10 10 11 11

Standard

Deviation
7.56 2.17 2.41 3.13 2.15 2.59

Minimum Value 7 7 9 9 9 9
Maximum Value 159 35 60 38 36 38

1st Quartile 9 8 9 10 10 10
3rd Quartile 13 9 10 10 11 11

ECORDSR

TABLE X: SEARCH OPERATION IN FIELD BASED APPROACH

(OBSERVATIONS FOR 1000 RECORDS)

HTC One X Micromax Unite 2 Moto E

1

Col-

umn

2

Col-

umn

1

Col-

umn

2

Col-

umn

1

Col-

umn

2

Col-

umn

Median 5 5 5 6 6 7

Standard Deviation 1.37 1.47 2.40 3.41 2.92 3.13

Minimum Value 3 4 4 5 5 5

Maximum Value 19 21 40 76 33 34

1st Quartile 4 5 5 6 6 6

3rd Quartile 5 5 6 6 7 7

135

International Journal of Future Computer and Communication, Vol. 4, No. 2, April 2015

Tables VIII, IX and X show the median, standard deviation,

min value, max value, 1st quartile and 3rd quartile for the Hash

Table and Field based approaches. All the observations are

done taken on a sample data of 1000 records and is performed

on all the three devices mentioned in Table XI in Annexure

A.

ANNEXURE A

TABLE XI: DEVICE CONFIGURATION

 HTC One X Micromax

Unite 2
Moto E

OS Android 4.2.2 Android 4.2.2 Android 4.4.4
Chipset Nvidia Tegra 3 Mediatek

MT6582
Qualcomm
Snapdragon

200
CPU Quad-core 1.5

GHz
Quad-core 1.3

GHz
Cortex-A7

Dual-core 1.2
GHz

Cortex-A7
GPU ULP GeForce Mali-400MP2 Adreno 302
RAM 1 GB 1 GB 1 GB

V. CONCLUSION

The increase in the mobile device usage has increased the

number of mobile applications which in turn has increased

the storing of sensitive data on these devices. This has put

many challenges for securely storing and searching on the

sensitive information held by mobile applications, in order to

address these challenges no approach specific to mobile

environment are available. We have discussed two approaches

for saving and querying on the data. The two approaches

discussed in our paper are Hash Table approach and the Field

based approach. The Field based approach gives good results

when compared with the Hash Table based approach. Both the

save and search operations in Field based approach fared better

than the Hash Table approach. The Field based approach also

fared near to the Plain storage method. After calculating the

considerable overhead of encryption in the Field based and

Hash Table approach, the overhead that is added in Field

based method is 1.04% while it is 7.44 times more in Hash

Table based approach. The Plain storage method is faster than

all the other available method, while from the encrypted

approaches the Field based approach fares near to Plain

storage approach and is considered better than Hash Table

approach in terms of time taken. From our experimental

results we observed that the Field based approach is better

than the Hash Table based approach in terms of time taken.

ACKNOWLEDGMENT

The authors acknowledge Department of Electronics and

Information Technology (DeitY), Ministry of

Communications & IT, Government of India for supporting

this work.

REFERENCES

[1] E. Shmueli, R. Vaisenberg, Y. Elovici, and C. Glezer, "Database

encryption - An overview of contemporary challenges and design

considerations," S1GMOD Record, vol. 38, no. 3, 2009.

[2] D. X. D. Song, D. Wagner, and A. Perrig, "Practical techniques for

searches on encrypted Data," in Proc. IEEE Symposium on Security and

Privacy, pp. 44-55, 2000.

[3] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra, "Executing SQL over

encrypted data in the database service provider model," in Proc. the

ACM SIGMOD Conference, 2002, pp. 216-227.

[4] H. A. Park, D. Lee, J. Zhan, and G. Blosser, "Efficient keyword index

search over encrypted documents of Groups," Intelligence and Security

Informatics, vol. 2, 2008.

[5] E. J. Goh, "Secure indexes," Journal of Software, pp. 1-19, 2004.

[6] Z. Wang, A. Tang, and W. Wang, "Fast query over encrypted data based

on b+ tree," in Proc. International Conference on Apperceiving

Computing and Intelligence Analysis (ICACIA), 2009, pp. 23-25.

[7] H. Zhu, J. Cheng, and R. Jin, "Execution query over encrypted

character strings in databases," Frontier of Computer Science and

Technology, 2007, pp. 90-97.

[8] M. Alhanjouri and A. M. A. Deraw, "A new method of query over

encrypted data in database using hash map,'' International Journal of

Computer Applications, vol. 41, no. 4, March 2012.

[9] HTC One X Specifications. [Online]. Available:

http://www.htc.com/in/smartphones/htc-o ne-x/#/

[10] Micromax Unite 2 Specifications. [Online]. Available:

http://www.micromaxinfo.com/mobiles/smartphones/canvas/Unite-2-A

106

[11] Motorola Moto E Specifications. [Online]. Available:

http://www.motorola.com/us/consumers/shop-all-mobile-phones/Moto-

E-pdp/moto-e.html

A. Vivek Chandra received his bachelor degree in

information technology from JNT University,

Hyderabad in 2012.

 Presently he is working as a project engineer at

Centre for Development of Advanced Computing. His

research interests include mobile security and linux.

K. Harish Kumar received his bachelor degree in

information technology from JNT University,

Hyderabad in 2012.

 Presently he is working as a project engineer at

Centre for Development of Advanced Computing. His

research interests include android platform security.

M. K. Chaithanya is currently working as a technical

officer at C-DAC, Hyderabad. He received his B.Tech

(ECE) degree and M.Tech (CS) from JNT University,

Hyderabad in 2005 and 2010 respectively. He holds

certifications in CEH and GSSP-Java.

 He also holds a significant expertise in the area of

Android application development, enterprise java

application development, windows system

programming, apache module development. His areas

of interest include network security, mobile security, ubiquitous computing,

network protocol design and Tizen OS.

Poonguzhali P. is currently working as a senior

technical officer at C-DAC, Hyderabad. She received

her B.E (ECE) degree from Anna University and MS in

electronics and communication from JNT University,

Hyderabad in 2005 and 2011 respectively. She holds

certifications in CEH, ECSA, GSSP-Java.

 She also holds a significant expertise in the area of

Android application development, enterprise java

application development, network simulators, Wireless

sensor networks and ASIC & FPGA Design. Her areas of interest include

mobile security, network security, reconfigurable computing systems, FPGA

& ASIC designs and ubiquitous computing.

Mahesh U Patil received his master degree in

electronics and communication.

 Presently he is working as a principal technical

officer at Centre for Development of Advanced

Computing. His research interests include mobile

security and embedded systems.

